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Finite Population Sampling
Introduction

Sampling of independent observations
I We have been assuming samples

X1,X2, . . . ,Xn

made of independent observations.

I This makes sense:

I When we sample an infinite population: seeing one value
does not affect the probability of seeing the same or
another value.

I When we sample with replacement.

I With finite populations without replacement, what we see
affects the probability of what is yet to be seen.
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Finite versus infinite populations (I)

I With infinite populations, precision depends only on
sample size.

I Usually, standard error of estimation is σ
n where n is

sample size and σ2 the population variance.
I If estimator is consistent we approach (but never quite

hit with certainty) the true value of the parameter.
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Finite versus infinite populations (II)
I If population is finite of size N , we could inspect all units

and estimate anything with certainty:

m̂ =
X1 + X2 + . . .+ Xn

n
would verify m = m̂ if n = N .

I All parameters can, in principle, be known with certainty!
I With n 6= N ,

I If n/N ≈ 0, independent sampling good approximation.
I If n/N � 0, we have to take into account that we are

looking at a substantial portion of the population.

.5cm



Finite Population Sampling
Introduction

Finite versus infinite populations (II)
I If population is finite of size N , we could inspect all units

and estimate anything with certainty:

m̂ =
X1 + X2 + . . .+ Xn

n
would verify m = m̂ if n = N .

I All parameters can, in principle, be known with certainty!

I With n 6= N ,

I If n/N ≈ 0, independent sampling good approximation.
I If n/N � 0, we have to take into account that we are

looking at a substantial portion of the population.

.5cm



Finite Population Sampling
Introduction

Finite versus infinite populations (II)
I If population is finite of size N , we could inspect all units

and estimate anything with certainty:

m̂ =
X1 + X2 + . . .+ Xn

n
would verify m = m̂ if n = N .

I All parameters can, in principle, be known with certainty!
I With n 6= N ,

I If n/N ≈ 0, independent sampling good approximation.
I If n/N � 0, we have to take into account that we are

looking at a substantial portion of the population.

.5cm



Finite Population Sampling
Introduction

Finite versus infinite populations (II)
I If population is finite of size N , we could inspect all units

and estimate anything with certainty:

m̂ =
X1 + X2 + . . .+ Xn

n
would verify m = m̂ if n = N .

I All parameters can, in principle, be known with certainty!
I With n 6= N ,

I If n/N ≈ 0, independent sampling good approximation.

I If n/N � 0, we have to take into account that we are
looking at a substantial portion of the population.

.5cm



Finite Population Sampling
Introduction

Finite versus infinite populations (II)
I If population is finite of size N , we could inspect all units

and estimate anything with certainty:

m̂ =
X1 + X2 + . . .+ Xn

n
would verify m = m̂ if n = N .

I All parameters can, in principle, be known with certainty!
I With n 6= N ,

I If n/N ≈ 0, independent sampling good approximation.
I If n/N � 0, we have to take into account that we are

looking at a substantial portion of the population.
.5cm



Finite Population Sampling
Introduction

An overview of things to come

We will see:
I What makes sampling without replacement more complex.

I What relationship there is among independent and
non-independent sampling.

I What other types of sampling exist.
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Sampling of independent observations

The central approximation

I Requirement: replacement of “large” population size N .

I If n is “large” and X1, . . . ,Xn “near” independent,

X =
X1 + . . .+ Xn

n ∼ N(m, σ2/n)

I Then,

Prob
X − zα/2

√
σ2

n ≤ m ≤ X + zα/2

√
σ2

n

 = 1− α
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Estimation of the population total

I Since T = Nm, we just have multiply by N the extremes
of the interval for m.

I Hence,

Prob
NX − Nzα/2

√
σ2

n ≤ T ≤ NX + Nzα/2

√
σ2

n

 = 1−α
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Estimation of a proportion

I If Xi is a binary variable, X is the sample proportion.

I We have X ∼ N(p, pq/n)
I Usual estimate of variance is p̂(1− p̂)/n.
I Sometimes we use a (conservative) estimate: pq ≤ 0.5,

hence a bound for σ2 is 0.5/n.
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Sampling error with confidence 1− α.

I From

Prob
X − zα/2

√
σ2

n ≤ m ≤ X + zα/2

√
σ2

n

 = 1− α

we see that we will be off the true value m by less than
zα/2

√
σ2

n with probability 1− α.

I This is called the “1− α (sampling) error”.
I “Sampling error” also used to mean standard deviation of

the estimate.



Finite Population Sampling
Sampling of independent observations

Sampling error with confidence 1− α.

I From

Prob
X − zα/2

√
σ2

n ≤ m ≤ X + zα/2

√
σ2

n

 = 1− α

we see that we will be off the true value m by less than
zα/2

√
σ2

n with probability 1− α.
I This is called the “1− α (sampling) error”.

I “Sampling error” also used to mean standard deviation of
the estimate.



Finite Population Sampling
Sampling of independent observations

Sampling error with confidence 1− α.

I From

Prob
X − zα/2

√
σ2

n ≤ m ≤ X + zα/2

√
σ2

n

 = 1− α

we see that we will be off the true value m by less than
zα/2

√
σ2

n with probability 1− α.
I This is called the “1− α (sampling) error”.
I “Sampling error” also used to mean standard deviation of

the estimate.



Finite Population Sampling
Sampling of independent observations

Finding the required sample size n

I Example:
What n do we need so that with confidence 0.95 the error
in the estimation of a proportion is less than 0.03?

I Solution:
Error is less than zα/2

√
σ2

n with confidence 1− α.
I Confidence 0.95 means zα/2 = 1.96
I Want 0.03 > 1.96

√
σ2

n . Worst case scenario is σ2 = 0.25.

I Therefore, n > (1.96)2×0.25
0.032 = 1067.11 will do. Will take

n = 1068.
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Sampling of independent observations

Interesting facts (I)

I Under independent sampling (infite population or
sampling with replacement), required sample size depends
only on variance and precsion required.

I Questions like: “Is a sample of 4% enough?” are badly
posed.

I n = 4% of a population with N = 10000 insufficient to
give a precision of 0.03 with confidence 0.95.

I . . . but n = 0.3% of a population with N = 1000000 will
be more than enough!
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Interesting facts (II)

I As long as populations are large detail is expensive!

I To estimate a proportion in the CAPV with the precision
stated requires about n = 1068.

I To estimate the same proportion for each of the three
Territories with the same precision, requires three times
as large a sample!

I Subpopulation estimates have much lower precision than
those for the whole population.
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Sampling without replacement

Estimation of the mean (I)
I In independent sampling,

E [x ] = E
[

X1 + . . .+ Xn

n

]

=
m + m + . . .+ m

n =
nm
n = m

I E [Xi ] = m irrespective of what other values are in the
sample.

I Without replacement, distribution of Xi depends on what
other values are already present in the sample.

I The same result as for independent sampling is true!
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Sampling without replacement

Estimation of the mean (II)

I Theorem 1
In a finite population of size N with m =

∑N
i=1 yi/N , for

samples Y1, . . . ,Yn without replacement of size n < N we
have:

E [Y ] = m

I Proof

I Y1, Y2, . . . , Yn are the elements of the sample.
I y1, y2, . . . , yN are the elements of the population.
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Estimation of the mean (III)

I There are
(

N
n

)
= N!

(N−n)!n! different samples.

I Of those,
(

N−1
n−1

)
contain each of the values y1, y2, . . . , yN .

I Clearly,

∑
(Y1 + Y2 + . . .+ Yn) =

(
N − 1
n − 1

)
(y1 + y2 + . . .+ yN)

where the sum in the left is taken over all
(

N
n

)
different

samples. Dividing by
(

N
n

)
finishes the proof.
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Estimation of the mean (IV)
I Indeed,

∑
(Y1 + Y2 + . . .+ Yn)(

N
n

) =

(
N−1
n−1

)
(y1 + y2 + . . .+ yN)(

N
n

)
=

n
N (y1 + y2 + . . .+ yN)

I Therefore,

E [Y ] =

∑
(Y1 + . . .+ Yn)/n(

N
n

) =
(y1 + . . .+ yN)

N = E [y ] = m
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Sampling without replacement

The indicator variable method
I We have

(Y1 + Y2 + . . .+ Yn) = (y1Z1 + y2Z2 + . . . yNZN)

where Zi is a binary variable which takes value 1 if yi
belongs to a given sample.

I The probability of that happening is n/N . Then,

E [(Y1 + Y2 + . . .+ Yn)] =
n
N (y1 + y2 + . . . yN),

which again gives the previous result E [Y ] = y = m.
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Sampling without replacement

Population variance an quasi-variance
I They are defined as:

σ2 =

∑N
i=1(yi − y)2

N σ̃2 =

∑N
i=1(yi − y)2

N − 1

I Similarly for sample analogues:

s2 =
∑n

i=1(Yi − Y )2

n s̃2 =
∑n

i=1(Yi − Y )2

n − 1

I Turns out some formulae are simpler in terms of
quasi-variances.
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Sampling without replacement

Variance of Y (I)
I Theorem 2

In a finite population of size N , the estimator Y of
m =

∑N
i=1 yi/N based on a sample of size n < N without

replacement Y1, . . . ,Yn has variance:

Var[Y ] =
σ̃2

n

(
1− n

N

)

I Factor (
1− n

N

)
usually called “finite population correction factor” or
“correction factor”.
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“correction factor”.
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Variance of Y (II)

I Remarks:

I It is the same expression as in independent random
sampling with i) σ2 replaced by σ̃2, and ii) corrected with
the factor (1− n/N).

I If n = N , the variance Var(Y ) is 0 (why?).
I Formula covers middle ground between infinite

populations (n/N = 0) and census sampling (n/N = 1).
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Variance of Y (III)

I Proof

Var(Y ) = Var
(

y1Zi + . . .+ yNZN

n

)

=
1
n2

 N∑
i=1

y 2
i Var(Zi) +

N∑
i=1

∑
j 6=i

yiyjCov(Zi ,Zj)



I We only need expressions for Var(Zi) and Cov(Zi ,Zj).
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Variance of Y (IV)
I Since Zi is binary with probability n/N ,

Var(Zi) = (n/N)(1− n/N).

I But E[ZiZj ] = P(Zi = 1,Zj = 1) = n(n−1)
N(N−1) , so

Cov(Zi ,Zj) =
n(n − 1)
N(N − 1) −

( n
N

)2
= −n(1− n/N)

N(N − 1)

I Replacing in expression for Var(Y ) will lead to result.
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Variance of Y (V)

Var(Y ) =
1
n2


N∑

i=1
y 2

i Var(Zi)︸ ︷︷ ︸
(n/N)(1−n/N)

+
N∑

i=1

∑
j 6=i

yiyj Cov(Zi ,Zj)︸ ︷︷ ︸
− n(1−n/N)

N(N−1)


=

1
n2

( n
N

)(
1− n

N

) N∑
i=1

y 2
i −

1
N − 1

N∑
i=1

∑
j 6=i

yiyj



I Will rewrite expression in brackets.
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Variance of Y (VI)

I Remark that,

N∑
i=1

(yi −m)2 =
N∑

i=1
y 2

i −

(∑N
i=1 yi

)2
N

=
N − 1

N

 N∑
i=1

y 2
i −

N∑
i=1

∑
j 6=i

yiyj

N − 1



I The expression in square brackets in th r.h.s is therefore
N

N−1
∑N

i=1(yi −m)2.
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Variance of Y (VII)

I We are now done!

Var(Y ) =
1
n2

( n
N

)(
1− n

N

) N∑
i=1

y 2
i −

1
N − 1

N∑
i=1

∑
j 6=i

yiyj


︸ ︷︷ ︸

N
N−1

∑N
i=1(yi−m)2

=
1
n

(
1− n

N

) ∑N
i=1(yi −m)2

N − 1

=
(
1− n

N

)
σ̃2

n
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Sample size for given precision (I)
I The (1− α) error is

δ = zα/2

√
σ̃2

n (1− n/N)

I Solving for n we obtain

n =
Nz2α/2σ̃2

Nδ2 + σ̃2z2α/2
I In terms of the variance, it can be written as:

n =
Nz2α/2σ2

(N − 1)δ2 + σ2z2α/2
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Sample size for given precision (II)

I σ̃2 or σ2 are required.

I We either replace an upper bound or conservative
estimation for σ2.

I Failing that, we estimate σ2 or σ̃2.
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Finite Population Sampling
Stratified sampling

Why strata?

I Sometimes we know something about the composition of
the population, knowledge that can be put to use.

I Example: We might know that males and females have
different spending in e.g. tobacco or cosmetics.

I To estimate average spending, it makes sense to sample
males and females, and combine the estimations.

I Sometimes, the target quantity might be similar, but the
variance quite different. Also makes sense to differentiate.
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Example 1

1 2 3 4 5 6 7 8

2
3

4
5

6

Sample unit

E
xp

en
di

tu
re

o

o

o

o

o

o
o

o

X1

X2

I Makes sense to estimate mean in each subpopulation
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Definitions and notation
I We assume the population is divided in h strata. Total

size is N = N1 + N2 + . . .+ Nh.

I The i-th stratum has a mean mi =
1
Ni

∑Ni
j=1 yij and

variance σ2i = 1
Ni

∑Ni
j=1(yij −mi)

2.

I Clearly,

m =
h∑

i=1

(
Ni

N

)
mi

σ2 =
h∑

i=1

Ni

N σ2i +
h∑

i=1

Ni

N (mi −m)2
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Estimation of the mean
I The estimation of the mean sampling without

replacement the whole population has variance
σ̃2

n (1− n/N).

I Similarly, the estimation of the mean of each stratum has
variance σ2i =

σ̃2i
n (1− ni/Ni).

I The variance of the global mean reconstituted from the
estimated means of the strata is

σ2∗ =
h∑

i=1

(
Ni

N

)2
σ̃2i
ni
(1− ni/Ni)
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Does the estimation of m improve?

I Yes. If we sample each stratum in proportion to its size
(i.e., ni/Ni = n/N for all i), then:

σ̃2

n (1− n/N)− σ2∗ =(
1− n

N

) h∑
i=1

(
Ni

N

)[
Ni − 1
N − 1 −

Ni

N

]
σ̃2i
ni

+

(
1− n

N

) 1
n

h∑
i=1

Ni

N − 1(mi −m)2

I Marked Improvement when the mi ’s very different.
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Abraham Wald on sample selection

Abraham Wald (1902-1950)

I Hungarian-born. Graduated
(Ph.D. Mathematics) from
University of Vienna, 1931.

I Fled to the USA in 1938, as
Nazi persecution intensified in
Austria.

I Important contributions to the
war effort as statistician (notably
sequential analysis)

I Was consulted about aircraft
armoring.



Finite Population Sampling
Taking samples

Abraham Wald on sample selection

Abraham Wald (1902-1950)

I Hungarian-born. Graduated
(Ph.D. Mathematics) from
University of Vienna, 1931.

I Fled to the USA in 1938, as
Nazi persecution intensified in
Austria.

I Important contributions to the
war effort as statistician (notably
sequential analysis)

I Was consulted about aircraft
armoring.



Finite Population Sampling
Taking samples

Abraham Wald on sample selection

Abraham Wald (1902-1950)

I Hungarian-born. Graduated
(Ph.D. Mathematics) from
University of Vienna, 1931.

I Fled to the USA in 1938, as
Nazi persecution intensified in
Austria.

I Important contributions to the
war effort as statistician (notably
sequential analysis)

I Was consulted about aircraft
armoring.



Finite Population Sampling
Taking samples

Abraham Wald on sample selection

Abraham Wald (1902-1950)

I Hungarian-born. Graduated
(Ph.D. Mathematics) from
University of Vienna, 1931.

I Fled to the USA in 1938, as
Nazi persecution intensified in
Austria.

I Important contributions to the
war effort as statistician (notably
sequential analysis)

I Was consulted about aircraft
armoring.



Finite Population Sampling
Taking samples

Abraham Wald on sample selection

Abraham Wald (1902-1950)

I Hungarian-born. Graduated
(Ph.D. Mathematics) from
University of Vienna, 1931.

I Fled to the USA in 1938, as
Nazi persecution intensified in
Austria.

I Important contributions to the
war effort as statistician (notably
sequential analysis)

I Was consulted about aircraft
armoring.



Finite Population Sampling
Taking samples

Abraham Wald on sample selection

Abraham Wald (1902-1950)

I Hungarian-born. Graduated
(Ph.D. Mathematics) from
University of Vienna, 1931.

I Fled to the USA in 1938, as
Nazi persecution intensified in
Austria.

I Important contributions to the
war effort as statistician (notably
sequential analysis)

I Was consulted about aircraft
armoring.



Finite Population Sampling
Taking samples

Abraham Wald on sample selection

Abraham Wald (1902-1950)

I Hungarian-born. Graduated
(Ph.D. Mathematics) from
University of Vienna, 1931.

I Fled to the USA in 1938, as
Nazi persecution intensified in
Austria.

I Important contributions to the
war effort as statistician (notably
sequential analysis)

I Was consulted about aircraft
armoring.



Finite Population Sampling
Taking samples

What Wald saw that the others did not
I Mark hits in B-29 bombers as they come back.

I Pretty obvious! Will armor the most beaten areas.
I I didn’t tell you to do that!
I Do you want us to protect the areas with no hits?
I That’s exactly what I suggest!
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Taking samples

Sample selection is ubiquitous!

I If you ask for volunteers in a field study, no chance you
will get a truly random sample.

I Never do!
I Do not let the survey taker to choose the units.
I A random sample is not a “grab set”.
I Build a census, randomize properly, address the chosen

units and no others.
I If you use systematic sampling (every n-th unit with

random start), make sure no periodicities exist that will
destroy randomness.
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