
eman ta zabal zazu

A
Universidad

del País Vasco
Euskal Herriko
Unibertsitatea

Seminar 1

1 Synopsis.

What we are set about to do. We are going to use simulation to compute an approximation
to number π. Not that we will ever compute π using this method —there are much better ways,
as you will see below. Next, we will compute an area below the N(0, 1) density curve —the kind
of thing you would usually search in statistical tables.

The beauty of using simulation is that it is quite general, and will enable you to tackle problems
that would be hard or impossible to solve in any other way. After you gain some insight on how to
use this method, you will be ready for Activity 1.

What you need. In order to benefit from this seminar you need:

1. Access to a computer running R. Most machines in the computer rooms have R loaded.
Otherwise, you can download R at no charge1 and install it in any computer you may own or
have access to2.

2. Some rudiments of R.

3. A working knowledge of the notions of density and distribution functions, the laws of large
numbers and convergence in probability.

Aside from that, some background information is provided in the Section 2 next.

2 Background information

2.1 Random number generators.

For a variety of purposes, we would like to have a way of generating a stream of random numbers
from a given distribution with a computer. This may strike you as an impossible task, since a
computer is a perfectly deterministic machine.

1From CRAN, http://cran.es.r-project.org or http://www.et.bs.ehu.es/cran.
2In which case, we strongly advise you to also install Rstudio, which is also a free grab from http://rstudio.org.

1

http://cran.es.r-project.org
http://www.et.bs.ehu.es/cran
http://rstudio.org

Statistics Applied to Economics Curso 2.013-2.014

This is true: however you may generate with a computer streams of numbers, called “pseudo-
random numbers”, which for all practical intents and purposes behave like truly random numbers.
How exactly this is done, need not concern us here: you may see for instance [5] and [3] or the sum-
mary in Statprob, http://statprob.com/encyclopedia/GeneratingRandomVariables.html, if
you are curious.

In R you have good facilities to generate pseudo-random numbers. A family of functions starting
with r generate random numbers with different distributions: runif (uniform), rnorm (normal),
rf (Snedecor’s F), rchisq (χ2), etc. For instance,

> runif(5)

[1] 0.08333041 0.62713625 0.45104137 0.75017887 0.26352897

generates 5 random numbers from a uniform distribution U(0, 1) (default). Should you want uniform
random numbers from, say, a U(7, 10), you might obtain them by typing

> runif(5,min=7,max=10)

[1] 8.419603 8.175255 7.055262 7.945237 9.499688

2.2 Flow control in R.

In its simplest incantation, a computer program is a sequence of instructions, much as you would
type directly in the R console. They are written in a file and submitted at once to the computer,
which performs them one after the other.

In practice, this would not be of much use, as we frequently want the flow of the instructions
to be dependent on some conditions. Several specialized instructions allow us to do so.

for. Sometimes, we want to do something repeatedly a given number of times. The instruction
for allows easy iteration. If we wanted to add the first 5 natural numbers, we could write:

> Total <- 0

> Total <- Total + 1

> Total <- Total + 2

> Total <- Total + 3

> Total <- Total + 4

> Total <- Total + 5

but it would be far easier (and less error prone) to write:

> Total <- 0

> for (i in c(1,2,3,4,5)) {

Total <- Total + i

}

Let’s dissect the previous code. The instruction tells: “For all values of i in the set, do whatever is
written between the opening { and closing } brackets. There is even shorthand notation to describe
sets of integers, so the above code could still be rewritten as:

> Total <- 0

> for (i in 1:5) {

Total <- Total + i

}

where 1:5 stands for all integers from 1 to 5.

2

http://statprob.com/encyclopedia/GeneratingRandomVariables.html

Statistics Applied to Economics Curso 2.013-2.014

if. Sometimes we want our code to follow a different path according to some condition. For
instance, if we are betting on a game which will produce us a price of 10 if a uniform random
number is greater than 0.7 and a loss (negative price) of 3 if the random number is smaller than or
equal 0.7, we might code:

> Price <- 0

> if (runif(1) > 0.7) {

Price <- 10

} else {

Price <- -3

}

Notice that the condition“if a uniform U(0,1) random variable is greater than 0.7”is a convenient
way of saying “with probability 0.3”.

Aside from the brief in-class introduction to R, you may benefit from using any of the available
introductory books: among them, [6], [2], [7] and the freely available documents in http://cran.

r-project.org.

2.3 The Monte Carlo method.

The Monte Carlo method is a way to solve problems through simulation. The principle is quite
simple, and is best demonstrated by way of example.

2.3.1 Computing number π.

You know that the surface of a circle is given by the formula πr2, where r is the radius and
π = 3.14159265 . . ., an irrational number. There are quite simple and fast methods to compute
decimal digits of π to any desired accuracy3.

Now, suppose these methods were unavailable to you. You could approximate π easily by
simulation reasoning as follows (refer to Figure 1): “The surface inside the quarter circle is π/4; if
I generate a great many points uniformly distributed in the square [0, 1]× [0, 1] and I compute the
proportion of those falling inside the quarter circle, that should be approximately the proportion
of areas of the quarter circle and the inscribing square.”

In other words, you could do something as follows:

> N <- 10000

> x <- runif(N)

> y <- runif(N)

> Inside <- 0

> for (i in 1:N) {

if (x[i]^2 + y[i]^2 < 1)

Inside <- Inside + 1

}

Let’s look at the code: N is the number of points you want to generate. You generate first the x

coordinate, then the y, in both cases uniformly between 0 and 1 (the default of runif). When

3For instance, it can be shown that
∑∞

k=1(−1)k 1
2k−1 = π

4 so taking enough terms in the sum π can be approximated
as closely as desired. You can see many more ways of computing π and other constants in books like [4] or [1].

3

http://cran.r-project.org
http://cran.r-project.org

Statistics Applied to Economics Curso 2.013-2.014

Figure 1: Quarter circle inscribed in [0, 1]× [0, 1].

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

the for loop ends, Inside counts the number among those points falling inside the quarter circle
(those points must verify x2 + y2 < 1).

Now, your approximation of π/4 (ratio of the area of the quarter circle to the total area of the
square, which is 1) would be4:

> Inside / N

[1] 0.7815

You may check that you are not far off (and you could do still better by increasing N):

> pi / 4

[1] 0.7853982

The example presented is certainly artificial, as there are much faster and simpler ways to calculate
π; the importance of the method lies in that it is completely general, and allows approximate
integration5 of functions were all other methods fail.

4Your results may vary slightly from those shown, from those obtained by a fellow student, and even from the
ones you obtain in different runs. The streams of pseudo-random numbers generated are different each time you run
the program. You might obtain the same stream by fixing the “seed”: type help(set.seed) while in R to see how
this is done.

5In fact, the value of π/4 that we have approximated can be seen as the integral
∫ 1

0

√
1− x2dx; make sure you

understand why.

4

Statistics Applied to Economics Curso 2.013-2.014

Computing the probability under the N(0, 1) distribution of a certain interval. As a
second example, consider the N(0, 1) density function,

f(x) = 1√
2π
e−x

2/2. (1)

We want to obtain the approximate integral of such function over the interval [0, 1] (see Figure 2),
using simulation.

Figure 2: Normal density; shaded area is the probability of the interval [0, 1].

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

We will mimic what we did in the first example. We know that the maximum value of the
density is 1/

√
2π = 0.3989423, so the shaded area we are interested in is completely inside the box

[0, 1]× [0, 0.4] represented in Figure 2. We will generate random points inside that box and count
how many lie below the density curve —in the greyed area—. The proportion of points in that
area times 0.4 (the area of the box) will give us a good approximation of the greyed area..

The following short code would compute the desired probability to a good approximation:

> N <- 10000 # try 20000, 50000....

> Hits <- 0

> for (i in 1:N) {

x <- runif(1, min=0, max=1)

y <- runif(1, min=0, max=0.4)

if (y < dnorm(x))

Hits <- Hits + 1

}

> Prob <- (Hits / N) * 0.4

5

Statistics Applied to Economics Curso 2.013-2.014

We may compare the value in Prob with the “exact” value which can be computed directly with
function pnorm in R:

> Prob

[1] 0.33868

> pnorm(1) - pnorm(0)

[1] 0.3413447

3 Some comments and questions

Now, you can play at will changing N in the little code fragment above, and running it over and
over. Think about and try to answer the following questions:

1. The way our first program is written, increasing N requires storage of larger vectors x and
y. This is totally unnecessary: the second program, for the normal probability, shows an
alternative which uses less memory (but is much slower).

2. With larger N you should get a better a approximation of π. What statistical result or theorem
makes you confident that as you increase N you will likely be closer to the true value of π/4?

The law of large numbers (it suffices a weak version). Notice that our estimate
of π is Inside / N or, in mathematical notation,

ZN = 1
N

N∑
i=1

Zi (2)

where Zi is a value taking the value 1 if the i-th point is inside the quarter circle,
and 0 otherwise. Since Zi is a binary random variable with mean π/4 an finite
variance pq = π/4× (1− π/4), the sample average converges in probability to the
population mean:

plimN→∞ZN = π

4 (3)

3. The approximation of π/4 you obtain is random: it has a variance. Is that variance going to
zero?

The variance of ZN above is trivially,

pq

N
= 1
N

π

4

(
1− π

4

)
, (4)

so it clearly goes to zero.

4. If your answer to your previous question is “yes”, how fast?

The variance goes to zero at the same speed as 1/N . The usual notation for
that is O(1

N). Therefore, the standard deviation goes to zero at the same speed as

1/
√
N , or O(N−1/2). We will come back to this much later in the course and say

that ZN is a square-root consistent estimator of π/4.

6

Statistics Applied to Economics Curso 2.013-2.014

5. We would be much happier with our newly acquired method to estimate π/4 if we could
make an statement of the sort: “If we use this procedure with N larger than such and such,
the probability that we commit an error larger than 0.01 in estimating π/4 will be smaller
than 0.02.”

Can we make such an statement? (Hint: Remember Tchebychev inequality?)

Using the hint provided, and remembering that Tchebychev’s inequality for a
variable X with mean m and variance σ2 says :

P (|X −m| ≥ kσ) ≤ 1
k2 (5)

we can replace X with ZN , m with π/4 and σ with
√

1
N
π
4
(
1− π

4
)
. Now we only

have to set k so that 1/k2 is smaller than 0.02 and N so that, with that k, kσ ≤ 0.01.

6. Regarding the second example (area under the normal curve between 0 and 1.0): we have
taken care to enclose the desired area into a box [0, 1] × [0, 0.4] as small as possible. What
would be the effect of using a larger box? For instance, we could generate random numbers
in [0, 1] × [0, 1] and the proportion of “hits” below the density curve would be directly our
estimate of the grey area.

We could, but our approximation would not be as good. The variance would be
the variance of Hits/N. The way we have done it, the variance is the variance of
(Hits/N) * 0.4, which is smaller. In general, we are better off if we start with a
box which includes “tightly” the area to estimate.

References

[1] M. Abramovitz and I. Stegun, editors. Handbook of Mathematical Functions. Dover Pub., 1965.

[2] P. Dalgaard. Introductory Statistics with R. Statistics and Computing. Springer-Verlag, 2002.
Signatura: 519.682 DAL.

[3] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986.

[4] A. Jeffrey. Handbook of Mathematical Formulas and Integrals. Academic Press, 1995.

[5] D. K. Knuth. Fundamental algorithms. In The Art of Computer Programming, volume 1.
Addison-Wesley, Reading, Mass., 1968.

[6] M.D. Ugarte, A.F. Militino, and A.T. Arnholt. Probability and Statistics with R. CRC Press,
2008.

[7] W.N. Venables and B.D. Ripley. Modern Applied Statistics with S-Plus. Springer-Verlag, New
York, third edition, 1999.

7

	Synopsis.
	Background information
	Random number generators.
	Flow control in R.
	The Monte Carlo method.
	Computing number .

	Some comments and questions

