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Probability function

I Defined on non-negative integers, x = 0, 1, 2, . . . with PX (x):

PX (x) =
e−λλx

x!

I Well defined; obviously non-negative, and:

∞∑
x=0

PX (x) =
∞∑
x=0

e−λλx

x!

= e−λ
(

1 +
λ

1!
+
λ2

2!
+ . . .

)
= e−λeλ = 1

How do we get last expression from the previous one?

Using the Taylor series expansion et = 1 + t + t2/2! + t3/3! + . . .
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Historical notes

I Named after Siméon Denis Poisson
(1781-1840)

I French mathematician,
contemporaneous of Lagrange,
Laplace and Fourier.

I Did important work in many areas of
mathematics.

I See http://en.wikipedia.org/

wiki/Siméon_Denis_Poisson.

What does it look like?

> x <- 0:1

> dpois(x,lambda=3)

[1] 0.04978707 0.14936121

> x <- 0:20

> barplot(dpois(x,lambda=3),

col="yellow",

xlab="x",

ylab="P(x)",

main="Poisson P(x)")
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Moment generating function

ϕX (u)
def
= E [euX ] =

∞∑
x=0

euXPX (x) =
∞∑
x=0

euX
e−λλx

x!

=
∞∑
x=0

e−λ(λeu)x

x!

= e−λ
∞∑
x=0

(λeu)x

x!
(1)

= e−λeλe
u

(2)

= eλ(eu−1)

How do we get (2) from(1) in previous line?

Yet another use of et = 1 + t + t2/2! + t3/3! + . . .

Mean and variance

I Remember:

α1 =

[
∂ϕX (u)

∂u

]
u=0

α2 =

[
∂2ϕX (u)

∂u2

]
u=0

I Hence,

α1 =

[
∂

∂u
eλ(eu−1)

]
u=0

=

[
∂ (λ(eu − 1))

∂u
× eλ(eu−1)

]
u=0

=
[
λeueλ(eu−1)

]
u=0

= λ

α2 =

[
∂2

∂u2
eλ(eu−1)

]
u=0

= λ+ λ2

How are α1 = E [X ] and α2 = E [X2] related to meand and variance?

m = α1 = λ and σ2 = α2 − (α1)2 = λ.
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Sum of independent Poisson variables

I Let Xi ∼ P(λi ) for i = 1, . . . , n, independent of each other.

I Let X = X1 + . . .+ Xn. Then, X ∼ P(λ1 + . . .+ λn).

I Proof is easy:

ϕX (u) = ϕX1(u)× · · · × ϕXn(u)

= eλ1(eu−1) × · · · × eλn(eu−1)

= e(λ1+...+λn)(eu−1)

and we recognize in the last expression the mgf of a Poisson
random variable with λ = λ1 + . . .+ λn.

Would the average of X1, . . . , Xn be Poisson-distributed?

No, ϕX (u) = e(λ1+...+λn)(eu/n−1) which is not the mgf of a Poisson.

Poisson as a limit of the binomial

I Remember: if we have a sequence of random variables Zn and

lim
n→∞

ϕZn(u)→ ϕZ (u)

then the distribution of Zn approaches the distribution of Z

I Now, consider Zn ∼ b(p = λ/n, n), We have,

ϕZn(u) = [q + peu]n = [(1− p) + peu]n

= [1 + p(eu − 1)]n

=

[
1 +

λ

n
(eu − 1)

]n
lim
n→∞

ϕZn(u) = lim
n→∞

[
1 +

λ(eu − 1)

n

]n
= eλ(eu−1)

which is ϕZ (u) of a Poisson distribution with parameter λ.

Remember what additional condition was required on ϕZ (u)?

It has to be continuous for u = 0.

Practical use of the limiting distribution (I)

I Whenever np →∞, normal approximation better.

I Poisson approximation best for λ = np < 18.

I Particularly useful when np very small (in which case normal
approximation is quite poor).

I Discrete approximation with a discrete distribution: no
continuity corrections, no nothing.

I Poisson PX (x) = e−λλx/x! quite easy to compute, even on a
pocket calculator.

What problems would you anticipate calculating PX (x)?

Large factorials might be the only problem
(69! = 1.711225× 1098).

Practical use of the limiting distribution (II)

I Tables do exist.

I We have the usual assortment of {d,p,q,r}pois functions in
R, to assist with any computations.

I A useful recurrence:

PX (x ;λ) =
e−λλx

x!
=

e−λλ(x−1)

(x − 1)!︸ ︷︷ ︸
PX (x−1;λ)

×λ
x

so each probability can be obtained from the previous
multiplying by λ

x . (First one, PX (0;λ) = e−λ.)

I Avoids large factorials.
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Practical use of the limiting distribution (III)

> dbinom(x=2,size=50,prob=0.1) # Exact binomial

[1] 0.0779429

> dpois(x=2,lambda=50*0.1) # Poisson approximation

[1] 0.08422434

> pnorm((2.5-5)/sqrt(50*0.1*.9)) - pnorm((1.5-5)/sqrt(4.5))

[1] 0.06981634

> dbinom(x=2,size=500,prob=0.01) # Exact binomial

[1] 0.08363103

> dpois(x=2,lambda=500*0.01) # Poisson approximation

[1] 0.08422434

> pnorm((2.5-5)/sqrt(500*0.01*.99)) - pnorm((1.5-5)/sqrt(4.95))

[1] 0.07273327

The “rare events” model

I Many units, n, with small probability p of failure, and np < 18
give a Poisson-distributed number of units failing.

I Examples:
I Many soldiers, small probability of dying by horse kick ⇒

number of soldiers dead approximately Poisson-distributed.
I Many phone lines, small probability of one of them being in

use ⇒ simultaneaous calls placed at any one moment
Poisson-distributed.

I Many houses insured against fire, small probability of any of
them catching fire in the insurance period ⇒ total number of
claims in that period Poisson-distributed.

I Arrival intervals i.i.d. exponentially distributed, fX (x) = θe−θx

⇒ total number of arrivals in (T ,T + t) Poisson-distributed
with λ = θt.

Example 1 (I)

Consider a company with 120 workers. On average, they spend
10% of their time calling to the outside. They place calls
independently of each other.

I What is the mean value of the number of people
simultaneously calling outside?

I If there are 16 outgoing phone lines, what is the probability of
no saturation?

I If the company is split in two divisions, with respectively 80
and 40 people and 10 and 6 phone lines, what’s the
probability of neither division having saturation?

I What are your conclusions? Is it better to provide a
centralized service or not?

Example 1 (II)

I What is the mean value of the
number of people simultaneously
calling outside?

I If there are 16 outgoing phone lines,
what is the probability of no
saturation?

I Two divisions, with respectively 80
and 40 people and 10 and 6 phone
lines. Probability of neither division
having saturation?

> 120 * 0.1

[1] 12

> #

> ppois(16,lambda=12)

[1] 0.898709

> #

> ppois(10,80*0.1) *

ppois(6,40*0.1)

[1] 0.7255885
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Example 2

Your are auditing a company. They claim high quality of their
records, with a proportion of 0.1% at most containing errors. You
screen 4000 records, uncovering 6 mistakes (i.e., a proportion of
0.15%, or 50% larger than their alleged error rate). What would
you conclude about the veracity of their claims?

I Assuming their claims are right, total number of errors in 4000
records Poisson distributed, with λ = 4000× 0.001 = 4 in the
worst case.

I If λ = 4, the probability of over 5 errors is

> 1 - ppois(5,lambda=4)

[1] 0.2148696

which is by no means small.

I There is no conclusive evidence to challenge their claim: with
λ = 4, 6 errors out of 4000 records is by no means abnormal.

Example 3

Five hundred school children enjoy recreation. The probability that
any of them injures itself and comes to the infirmary of the school
to have a wound bandaged is p = 0.01. How many bandages must
the infirmary stock at the beginning of the day so that the
probability of running out is less than 0.001?

I The number of children injured is distributed as P(λ = 5).

I Bandages required are less than or equal

> qpois(0.999,lambda=5)

[1] 13

with probability 0.999, so enough to stock 13.

I Let’s check:

> 1 - ppois(12:13,lambda=5)

[1] 0.002018852 0.000697990

We see indeed that 12 would not be enough and 13 is.

Example 4

The probability of a type of cancer in children of school age is
0.001 per children-year (=1 out of 1000 children on the average).
You are suspicious of the mobile phone antennas erected in the
vicinity of your district public shool, and find out that out of 400
children, 3 have contracted the disease. Is that an abnormal
incidence rate?

I The number of cancer cases is distributed as P(λ = 0.4).

I The probability of less than or equal to 0, 1, 2, 3, 4 cases is:

> ppois(0:4,lambda=0.4)

[1] 0.6703200 0.9384481 0.9920737 0.9992237 0.9999388

so 3 cases is fairly rare, happening by pure chance less than
1% of the time.

Example 4 (continued)
Setup like of the previous example. You collect data on all 1300
schools with 400 children each within 200m of mobile phone
antennas. Have 540 cases of cancer in all, worst one alone had 4
cases. What would you say?

I Total number of cases is P(λ = 0.4× 1300). Then,

> 1 - ppois(539,lambda=1300*0.4)

[1] 0.1956853

doesn’t look abnormal; expected about 19% of the time.

I The school with 4 cases does look abnormal in isolation:

> 1 - ppois(3,lambda=0.4)

[1] 0.0007762514

I As the worst case among the 1300 schools examined, it can
no longer be considered abnormal:

> 1 - ( ppois(3,lambda=0.4) )^1300

[1] 0.6356057
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Our next week or so...

. . .will be a crossing of the desert.

What is ahead of us

I We need to introduce quite a few distributions.

I The fastest presentation requires that for a while we forgo
applications.

I You may have a feeling of lack of purpose. . .
I . . .but trust me:

I I have been there, I have done that,
I and (after some 30 years experience) think there is no better

way.

I So bear with me for a while, later the subject will be as
interesting as it gets.

The gamma function Γ(r)

I Defined as:

Γ(r) =

∫ ∞
0

tr−1e−tdt

I Defined for all r , although only for r > 0 it will be of interest
to us.

I Sometimes called Euler integral of the second kind.

I Does not have closed form; value can be computed
analytically for certain values of r , numerically for others.

I Interestingly, Γ(r) = (r − 1)! for natural r .

How do you think Γ(r) changes with r?

Clearly, Γ(r)→∞ as r →∞, but also as r → 0.

Γ(r) in R

> gamma(5)

[1] 24

> factorial(4)

[1] 24

> curve(gamma,from=0.01,

to=6,n=200,

ylab=expression(

Gamma(r)

),

xlab="r",

main="Gamma function")
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The gamma distribution γ(a, r) (I).

I It is clear that

FX (x) =
1

Γ(r)

∫ x

0
tr−1e−tdt

is a well defined distribution on [0,∞).

I If we make the change t → at for a > 0 right hand side still
defines the γ(a, r) distribution function:

ar

Γ(r)

∫ x

0
tr−1e−atdt

I Density function therefore is:

fX (x) =
ar

Γ(r)
tr−1e−at

The gamma distribution γ(a, r) (II).

I Alternative parameterizations:

fX (x) =
ar

Γ(r)
tr−1e−at

fX (x) =
1

Γ(r)sr
tr−1e−t/s

I In either case, r is the “shape” parameter and a (or s) the
“scale” or “rate” parameter.

I Important to check definition when using tables. . .

I . . .although you will use rarely the γ(a, r) directly.

The gamma distribution γ(a, r) in R

I Usual assortment of (d,p,q,r)gamma) functions.

I Sintax is, e.g. dgamma(x, shape, rate, scale

fX (x) =
ar

Γ(r)
tr−1e−at

fX (x) =
1

Γ(r)sr
tr−1e−t/s

I In either case, r is the“shape” parameter and a the“rate”(or s
is the “scale”) or parameter.

I Only one of rate or scale needs to be specified.

What does the γ(a, r) look like? (I)

> gammar0.9 <- function(x) {

dgamma(x,shape=0.9,scale=1)

}

> curve(gammar0.9,from=0.01,

to=6,n=200,

ylab="f(x)",

xlab="x",

main="Gamma densities")
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What does the γ(a, r) look like? (II)
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What does the γ(a, r) look like? (III)
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Moment generating function of the γ(a, r) (I).

ϕX (u) = E [euX ] =

∫ ∞
o

ar

Γ(r)
x r−1e−axeuxdx

=
ar

Γ(r)

∫ ∞
o

x r−1e−(a−u)xdx

=
ar

Γ(r)

[
(a− u)r

Γ(r)

]−1

=
(

1− u

a

)−r
See how the integral went away?

It is equal to content within brackets in next-to-last expression.

Moment generating function of the γ(a, r) (II).

I Let X = X1 + . . .+ Xn independent gamma random variables
with equal scale parameter and respectively r1, . . . , rn as shape
parameter. Then:

ϕX (u) =
(

1− u

a

)−r1
· · ·
(

1− u

a

)−rn
=

(
1− u

a

)−r1+...+rn

so X is γ(a, r1 + . . .+ rn) distributed.

I The same does not hold if the scale parameters are not equal.
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Mean and variance of γ(a, r).

I Mean and variance are now easy to compute:[
ϕ′X (u)

]
u=0

=

[
−r
(

1− u

a

)−r−1
(
−1

a

)]
u=0

=
r

a[
ϕ′′X (u)

]
u=0

=

[
r(r + 1)

(
1− u

a

)−r−2
(
−1

a

)2
]
u=0

=
r2

a2
+

r

a2

Hence, m = r/a and σ2 = α2 − (α1)2 = r/a2.
I It can also be checked that the mode is at r−1

a (or zero, in
case r < 1 and monotone decreasing density).

How would you choose γ(a, r) with mean 2 and variance 5?

Matching moments.

Exponential distribution exp(λ) (I)

I A very important particular case occurs when r = 1. Then,

γ(a, r = 1) =
ar

Γ(r)
x r−1e−ax = ae−ax

I Conventionally, a denoted by λ. Distribution called
exponential, exp(λ).

I Alternative in terms of θ = 1/λ:

fX (x) = λe−λx =
1

θ
e−x/θ

I If we stick with the λ-parameterization, m = 1/λ and
σ2 = 1/λ2.

I Clearly, FX (x) = 1− e−λx .

Exponential distribution exp(λ) (II)

I The moment generating function comes straight from the
γ(a = λ, r = 1) general case:

ϕX (u) =
(

1− u

λ

)−1

I With fX (x) = λe−λx and FX (x) = 1− e−λx no need of tables;
however, still the usual R functions {d,p,q,r}exp.

I Sintax: dexp(x,rate) where rate is λ.

What if we sum n independent exponential variables with the same λ?

We get a variable distributed as γ(λ, n).

Square-normal distribution

I If X ∼ N(0, 1), what is the distribution of Y = X 2?

I FY (y) = P(Y ≤ y) = P(X 2 ≤ y) = P(−√y ≤ X ≤ √y).

I Therefore FY (y) = Φ(
√
y)− Φ(−√y), and

fY (y) = φ(
√
y)× 1

2
√
y
− φ(−√y)×

(
− 1

2
√
y

)
= φ(

√
y)

1
√
y

=
1√
2π

y−1/2e−
y
2 (y > 0)

What density is this a particular case of?

It is clearly a γ(a = 1
2 , r = 1

2 ).
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Things you can easily check:

I If Y is square-normal, E [Y ] = 1.
(Try it both ways, using the “gamma ancestry” of Y and the
direct approach: remember Y = X 2 and X ∼ N(0, 1)).

I If Y is square-normal, its variance is 2.

I If X1, . . . ,Xn are i.i.d N(0, 1), then Y = X 2
1 + . . .+ X 2

n is
distributed as γ( 1

2 ,
n
2 ).

I Mimic the method used to derive the square-normal density to
find the log-normal density, i.e., the density of Y such that
loge(Y ) is normal.

The χ2
n distribution

I It is just the γ(a = 1
2 , r = n

2 ) obtained in last lecture. . .

I . . .or, if you prefer, the distribution of the sum of n
independent N(0, 1) squared, each of which is γ(a = 1

2 , r = 1
2 )

I As particular case of a γ(a, r) we know:

m = n σ2 = 2n ϕY (u) = (1− 2u)−
n
2

m = r/a σ2 = r/a2 ϕY (u) =
(
1− u

a

)−r
I n usually called “degrees of freedom”.

What does it look like? (I)

I The density is,

fX (x) =

(
1
2

) n
2

Γ(n2 )
x

n
2
−1e−x/2

I As it is a γ(a = 1
2 , r = n

2 ), will be monotone decreasing for
r ≤ 1 (⇒ n ≤ 2).

I For n > 2 a single maximum and a long right tail
(right-skewed).

I Becomes closer to symmetric as n grows.

What do you think the χ2
n converges to as n → ∞?

χ2
n

d→ N(n, 2n) by the CLT.

What does it look like? (II)

> chisqn <- function(x) {

dchisq(x,df=n)

}

> n <- 5

> curve(chisqn,

from=0.0,to=30,n=200,

ylab="f(x)",xlab="x",

main=expression(chi[n]^2))

> n <- 10

> curve(chisqn,from=0.0,col="red",

to=30,n=200,add=TRUE)

> n <- 20

> curve(chisqn,from=0.0,col="blue",

to=30,n=200,add=TRUE)

> text(6,0.14,"n=5")

> text(13,0.08,"n=10",col="red")

> text(21,0.07,"n=20",col="blue")
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Non-central χ2
n variables

I The ordinary or “central”χ2
n is the sum of n independent

N(0, 1) squared.

I If the squared normal variables have non-zero mean, we have
instead the “non central” chi square.

I If Y = X 2
1 + . . .+ X 2

n with Xi ∼ N(mi , 1), then Y ∼ χ2
n(δ)

(the “non central” chi square).

I δ = m2
1 + . . .+ m2

n is the so-called “non-centrality parameter”.

I Some tables/books define the non-centrality parameter as
δ = 1

2 (m2
1 + . . .+ m2

n), so check.

χ2
n in R

Usual set of functions: {d,p,q,r}chisq.

> dchisq(15.3,12)

[1] 0.05196885

> pchisq(15.3,12)

[1] 0.7745611

> qchisq(0.99,12)

[1] 26.21697

> qchisq(0.99,12,ncp=15)

[1] 52.15618

Snedecor’s Fm,n

I The ratio of two χ2
m and χ2

n independent of each other each
divided by their degrees of freedom,

χ2
m/m

χ2
n/n

follows a distribution named “Snedecor’s Fm,n” (after George
W. Snedecor (1882 -1974)).

I Fairly complex density,

fX (x) =
m

m
2 n

n
2 Γ
(
m+n

2

)
Γ
(
m
2

)
Γ
(
n
2

) xm/2−1(n + mx)−(n+n)/2

I For n > 2, m = n/(n − 2) if n > 2 and for n > 4,

σ2 =
2n2(m + n − 2)

m(n − 2)2(n − 4)

Use of tables for Fm,n

I Same as we did not need tables of b(p, n) for p > 0.5, we can
do with tables for the Fm,n for α < 0.5 and obtain the rest
indirectly.

I If X ∼ Fm,n, trick is to use

1− α = P(X < Fαm,n) = P

(
χ2
m/m

χ2
n/n

< Fαm,n
)

= P

(
χ2
n/n

χ2
m/m

>
1

Fαm,n

)
This shows,

1

Fαm,n
= F1−α

n,m
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Non-central versions of Fm,n

I If the χ2 in the numerator has non-centrality parameter δ, the
resulting Fm,n is called non-central with the same
non-centrality parameter.

I If both numerator and denominator are non-central χ2, the
ratio is a doubly non-central Fm,n.

I Tables in general for only the ordinary or central case.

Fm,n in R

As usual, {d,p,q,r}f functions.

> pf(3.23, 5, 12) # Prob left 3.23 in F(5;12)

[1] 0.9554027

> qf(0.95, 5, 12) # Value leaving a tail of 0.05

[1] 3.105875

> qf(0.99, 5, 12) # Id. for tail of 0.01

[1] 5.064343

> qf(0.99, 5, 12, 8) # Id. for a non-central F

[1] 11.62582

> # with ncp=8

What does the Fm,n look like? (I)

I If n not too small, shape close to scaled χ2
m.

I If both m and n large, closely concentrated around 1.

I Right-skewed.

What does the Fm,n look like? (II)

> sned <- function(x) {

df(x,m,n)

}

> m <- 8 ; n <- 20

> curve(sned,

from=0.0,to=6,n=200,

ylab="f(x)",xlab="x",

main="Snedecor's F")

> m <- 1 ; n <- 8

> curve(sned,from=0.0,col="red",

to=6,n=200,add=TRUE)

> m <- 8 ; n <- 2

> curve(sned,from=0.0,col="blue",

to=6,n=200,add=TRUE)

> text(3.5,0.11,"m=8,n=2",col="blue")

> text(2.3,0.25,"m=8,n=20",col="black")

> text(1.0,0.11,"m=1,n=8",col="red")
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Student’s tn distribution

I Distribution of the ratio of independent N(0, 1) and
√
χ2
n/n

random variables:

tn =
N(0, 1)√
χ2
n/n

I Named after W. Gosset (1876-1937), who usually signed his
work as “Student”.

I Has density,

fX (x) =
Γ
(
n+1

2

)
√
nπΓ

(
n
2

) (1 +
x2

n

)− 1
2

(n+1)

What does Student’s tn look like?

> tx <- function(x) {

dt(x,n)

}

> n <- 20

> curve(tx,

from=-6,to=6,n=200,

ylab="f(x)",xlab="x",

main="Student's t with n d.f.")

> n <- 5

> curve(tx,from=-6,col="red",

to=6,n=200,add=TRUE)

> n <- 1

> curve(tx,from=-6,col="blue",

to=6,n=200,add=TRUE)

> text(0.15,0.12,"n=1",col="blue")

> text(2.3,0.25,"n=20",col="black")

> text(2.1,0.11,"n=5",col="red")
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Moments of the tn distribution

I Not all moments exist for all n.

I As an striking example, when n = 1,

fX (x) =
Γ
(
n+1

2

)
√
nπΓ

(
n
2

) (1 +
x2

n

)− 1
2

(n+1)

=
1

π

1

1 + x2

is the Cauchy distribution, and has no mean!

I For greater n, higher order moments are non existent.

Some useful relationships

I t2
n = F1,n

I tn approaches a N(0, 1) as n→∞.

I Fm,n approaches a χ2
m as n→∞.

I If X ∼ γ(a, r) then cX ∼ γ(a/c, r).

I In particular, sum of exponentials, = γ(λ, 1), can be turned
into a χ2

2n multiplying by a constant.
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