Statistics Applied to Economics Degree in Economics

F.Tusell

Dpto. Economía Aplicada III (Estadística y Econometría)

Curso 2012-2013

i	1.5
Inc	dico.
HIL	JICE.

Hypothesis contrasts

Principles Implementation Most powerful tests H_0 vs. H_a

The χ^2 goodness-of-fit statistic

Completely specified distributions Partially specified distributions Contingency tables Fisher's exact test

Logically equivalent statements (I)

- ▶ "If an animal is a whale, it lives in the water."
- ▶ What can be inferred for animals which live in the water?
- ► And for animals which do **not** live in the water?
- $\underline{ \text{Is a whale}} \Longrightarrow \underline{ \text{Lives in the water}}$
- $\underbrace{ \text{Does not live in water}}_{\neg q} \Longrightarrow \underbrace{ \text{Is not a whale}}_{\neg p}$

Logically equivalent statements (II)

Quite generally,

- ▶ $p \Longrightarrow q$ and $\neg q \Longrightarrow \neg p$ are logically equivalent. (\neg above stands for negation:)
- ▶ Both are true or false.
- When testing hypothesis, we rely on a softened versions of this equivalence.

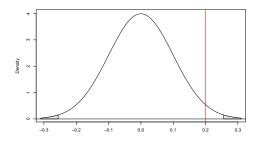
Notas			
Notas			
Notas			

Statements probabilistically related (I)	Notas
 Consider p ⇒ most of the time q. Then ¬q ⇒ ¬p is likely (or p is unlikely). Same structure, only now the implications are not required to hold all times. ¬q is no longer proof of ¬p, but can be taken as evidence in favour of it. 	
Statements probabilistically related (II)	Notas
 Example: Coin is regular ⇒ most of the time about 50% of heads. Far from 50% of heads ⇒ Coin not regular is likely. Far from 50% of head is taken as evidence in favour of ¬p (and therefore against p). 	
Hypothesis testing (I)	Notas
 A null hypothesis is an statement which we hold to be true. If it is indeed true (p), a given experiment should very likely produce a result in a certain range (q). If it so happens that the result is not observed in the very likely range (-q), either: Something very strange has happened (should not be the case very often) or else the null hypothesis is not true to begin with. As statisticians, we go with the second option. 	
Hypothesis testing (II)	Notas
 Empiricism! If the experiment does not quite agree with the hypothesis, we scrap the hypothesis. However, we cannot completely rule out the possibility that something strange happened. We are bound to make errors! But we try to keep those to a minimum. 	

The anatomy of a hypothesis test (I) Notas ▶ As already mentioned, a hypothesis is a conjecture. ► A **statistical hypothesis** is usually phrased in terms of the values of one or more parameters. 1. The mean of a distribution is m = 0, (one parameter). 2. Two distributions have the same mean: $m_1 = m_2$, (two 3. Two characters are independent: $p_{ij} = p_{i.} \times p_{.j}$. ▶ Equivalently, a hypothesis is phrased by stating that a parameter vector belongs to a subset Θ_0 of the entire feasible space Θ . How would you phrase the hypothesis in items 1 and 2 above? 1) $\Theta_0 = 0$, $\Theta = \mathcal{R}$. 2) $\Theta_0 = \{(x, y) : x = y\}$, $\Theta = \mathcal{R}^2$ The anatomy of a hypothesis test (II) Notas ▶ In order to test the *null hypothesis* H_0 , we use as evidence the information contained in a sample. We usually condense that information using a *test statistic*, $S = S(\vec{X})$. ▶ We better use a sufficient statistic! ► To be useful, that test statistic must have a known distribution under \mathcal{H}_0 . This is required, so that we can tell when a sampled value is "rare" under H_0 . ▶ The decision procedure then is: Reject H_0 if the sampled value of S is "rare", do not reject otherwise. ▶ What is "rare"? Problem dependent. The anatomy of a hypothesis test (III) Notas Example: • We believe the mean of a $N(m, \sigma^2 = 1)$ distribution to be zero (H_0). A sample of n = 100 observations gives $\overline{X} = 0.20$. ▶ We are willing to reject the hypothesis if the evidence found is among the 5% "rarest" events that could happen under H_0 . What will be our decission? ightharpoonup The events that we decide constitute evidence against H_0 is called the critical region. ▶ The probability of the critical region when H_0 is true, is called the significance level. The anatomy of a hypothesis test (IV) Notas At the stated level of significance (5%), we would reject H_0 .

The anatomy of a hypothesis test (V)

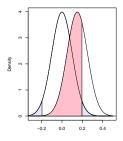
With a different level of significance (1%), we would **not** reject H_0 .

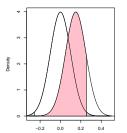


The trade-off between Type I and Type II errors

- \blacktriangleright The significance level α is the probability of unduly rejecting $\textit{H}_{0}.$
- \blacktriangleright We should choose α considering how "grave" or "costly" is such an error, called Type I error.
- ▶ If we make α very small (an hence the critical region very small also), we will almost never reject $H_0 \dots$
- ...even when we would like to, because it is false!
- ▶ Not rejecting H_0 when it is false is called *Type II* error, and its probability is denoted by β .

Trade-off between Type I and II errors - Ilustration





Pure significance tests

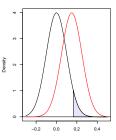
- ▶ We are only considering so far H_0 .
- \blacktriangleright We are looking at empirical evidence to see it it "contradicts" $\textit{H}_0.$
- ▶ When it does, we reject H_0 .
- Sometimes, we have a clear idea of what the "competing" hypothesis is, and in this case we want to use that information.

Notas	Notas			
Notas				
	Notas			
Notas	Notas			
Notas				
Notas				
lotas				
Notas	N			
	Notas	 	 	

Testing against an alternative H_a

If we test H_0 against an alternative H_a , a one-sided critical region makes more sense.





Notas

Optimal critical regions for H_0 vs. H_a

The usual procedure is:

- ▶ Fix α , the probability of unduly rejecting H_0 .
- Among all critical regions of size α , find the one which minimizes β (or, equivalently, maximizes $1 - \beta$, the *power*).
- ▶ When both H_0 and H_a are simple (= fix completely the distribution of the test statistic), a simple procedure exists, base on Neyman-Pearson's theorem.
- ▶ In other cases, a unique most powerful test may not exist.

The Neyman-Pearson theorem (I)

- \blacktriangleright After fixing the significance level α , what critical region would give better power against a simple alternative?
- ▶ Let's consider testing $H_0: \theta = \theta_0$ vs. $H_a: \theta = \theta_a$:

	Х	0	1	2	3	4	5
ĺ	$P(x;\theta_0)$	0.60	0.26	0.05	0.04	0.04	0.01
Ì	$P(x; \theta_a)$	0.10	0.15	0.10	0.25	0.30	0.10

How would you choose a critical region of size lpha= 0.05 with maximum power?

Picking x = 4 and x = 5, for a total power of 0.40.

The Neyman-Pearson theorem (II)

▶ The intuition is that we want our critical region to be made of points x with high ratio

$$\frac{f(x;\theta_a)}{f(x;\theta_0)}$$

where $f(x; \theta_0)$ is the density under the null and $f(x; \theta_a)$ is the density under the alternative.

▶ Neyman-Pearson theorem: The most powerful test of given size α for $\textit{H}_{\textrm{0}}$: $\theta=\theta_{\textrm{0}}$ against the alternative $\textit{H}_{\textrm{a}}$: $\theta=\theta_{\textrm{a}}$ has critical region of the form:

$$C_{\alpha} = \left\{ \vec{x} : \frac{f(\vec{x}; \theta_{a})}{f(\vec{x}; \theta_{0})} > k_{\alpha} \right\}$$

for a constant k_{α} which depends on α .

Notas		
INOLAS		
Notas		
Notas		
Notas		

The Neyman-Pearson theorem - Proof (I)

► Consider the critical region

$$C_{\alpha} = \left\{ \vec{x} : \frac{f(\vec{x}; \theta_{a})}{f(\vec{x}; \theta_{0})} > k_{\alpha} \right\}$$

and any other α -size region A_{α} .

▶ C_{α} and A_{α} will in general overlap. Dropping the α subscript:

$$\int_{C} f(\vec{x}; \theta_0) d\vec{x} = \int_{A} f(\vec{x}; \theta_0) d\vec{x} = \alpha$$

▶ Subtracting $\delta = \int_{C \cap A} f(\vec{x}; \theta_0) d\vec{x}$ in both sides:

$$\int_{C \cap A^c} f(\vec{x}; \theta_0) d\vec{x} = \int_{A \cap C^c} f(\vec{x}; \theta_0) d\vec{x} = \alpha - \delta \ge 0$$

How do we know $\alpha - \delta \ge 0$?
Because $C \cap A \subseteq C$.

Notas

The Neyman-Pearson theorem - Proof (II)

▶ The difference of powers of the two critical regions is:

$$\int_{C} f(\vec{x}; \theta_{a}) d\vec{x} - \int_{A} f(\vec{x}; \theta_{a}) d\vec{x}$$

▶ Inside C we have $f(\vec{x}; \theta_a) > kf(\vec{x}; \theta_0)$ and outside $f(\vec{x}; \theta_a) \leq kf(\vec{x}; \theta_0)$. The difference of powers is:

$$\int_{C} f(\vec{x}; \theta_{a}) d\vec{x} - \int_{A} f(\vec{x}; \theta_{a}) d\vec{x}
= \int_{C \cap A^{c}} f(\vec{x}; \theta_{a}) d\vec{x} - \int_{A \cap C^{c}} f(\vec{x}; \theta_{a}) d\vec{x}
\ge k \int_{C \cap A^{c}} f(\vec{x}; \theta_{0}) d\vec{x} - k \int_{A \cap C^{c}} f(\vec{x}; \theta_{0}) d\vec{x}
= k(\alpha - \delta) - k(\alpha - \delta) = 0$$

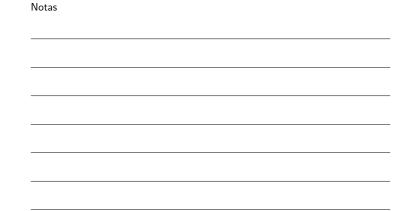
Notas

Neyman-Pearson example (I)

- ▶ In a large company, the number of workers not showing up for work is Poisson-distributed. Workers claim that $\lambda=1$, while management claims $\lambda=2$. They check four days and obtain 1, 0, 2, and 2 workers not showing up for work.
 - 1. Obtain the most powerful critical region to test the workers hypothesis (H_0) against the management's at a 0.05 significance level.
 - 2. What is the power of the test?
- ▶ We have:

$$f(\vec{x}; \lambda = 1) = \prod_{i=1}^{4} \frac{e^{-1}1^{x_i}}{x_i!} = \frac{e^{-4}}{\prod_{i=1}^{4} x_i!}$$

$$f(\vec{x}; \lambda = 2) = \prod_{i=1}^{4} \frac{e^{-2}2^{x_i}}{x_i!} = \frac{e^{-8}2^{\sum_{i=1}^{4} x_i!}}{\prod_{i=1}^{4} x_i!}$$



Neyman-Pearson example (II)

ightharpoonup From Neyman-Pearson, the most powerful critical region of size lpha is of the form:

$$C_{\alpha} = \left\{ \vec{x} : \frac{f(\vec{x}; \lambda = 2)}{f(\vec{x}; \lambda = 1)} > k_{\alpha} \right\}$$
$$= \left\{ \vec{x} : \frac{e^{-8} 2^{\sum_{i=1}^{4} x_{i}}}{e^{-4}} \right\}$$
$$= \left\{ \vec{x} : e^{-4} 2^{\sum_{i=1}^{4} x_{i}} > k_{\alpha} \right\}$$

lacktriangle Taking logs and bringing all constants into k_lpha' :

$$C_{\alpha} = \left\{ \vec{x} : \sum_{i=1}^{4} x_i > k'_{\alpha} \right\}$$

Notas			

Neyman-Pearson example (III)

• We now know the form of C_{α}

$$C_{\alpha} = \left\{ \vec{x} : \sum_{i=1}^{4} x_i > k_{\alpha}' \right\}$$

Notas

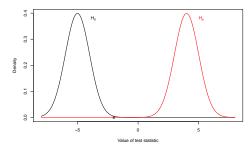
- ▶ Have no clue about what the value of k'_{α} is, but know $\sum_{i=1}^4 x_i \sim \mathcal{P}(\lambda=4)$ when H_0 is true.
- For C_{α} to have size $\alpha=0.05$, the constant must be a value exceeded with probability no greater than α when sampling a $\mathcal{P}(\lambda=4)$ distribution. Resorting to tables (or R) gives us:
 - > ppois(0:8, lambda = 4)
 - [1] 0.01832 0.09158 0.23810 0.43347 0.62884
 - [6] 0.78513 0.88933 0.94887 0.97864
- ▶ $[8,\infty)$ would be a critical region for $S=\sum_{i=1}^4 x_i$ quite close to $\alpha=0.05; [9,\infty)$ would have $\alpha=0.02136.$

Some quirks of hypothesis testing (I)

- ▶ Very non symmetric role of null and alternative hypothesis.
- Management could have replied the worker's representative: "Why don't we test as null our hypothesis and not yours?
- ► If evidence is not strong, the null is the surviving hypothesis, whichever it happens to be!
- ➤ The null should be provisionally established knowledge, put to test. How we arrive to that knowledge, there is no telling.
- Alternative approaches (like bayesian inference) treat conjectures in a more symmetric way.

Some quirks of hypothesis testing (II)

► That *H*₀ is rejected does not mean that *H*_a should be accepted.



► An observation at X is evidence against H₀ but much more so against H_a. In such situation, we should revise our hypothesis and admit that other possibilities might exist.

	_
-	_
	_
	_
-	
Notas	
	_
	_
	_
	_
	_
Notas	
Notas	_
Notas	
Notas	_
Notas	