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Goodness-of fit problems

I Quite common hypothesis.

1. Do winning numbers in the Loteŕıa Primitiva appear to come
from a discreet uniform distribution over {1,2,. . . ,49} ? (no
parameters estimated, fully especified distribution)

2. Does the number of dead people by horse (or mule) kick in the
Prusian army follow a Poisson distribution (plausible; small
probability, many people at risk). (one parameter to be
estimated)

3. Do intervals between accidents at work appear to follow an
exponential distribution? (one parameter to be estimated)

I In all these cases, we have data and we want to test adequacy
of a given distribution, possibly not fully especified (= some
parameter has to be estimated).

Test statistic

I Break down the range of the random variable in k classes.
Call Oi the number of observations in class i , i = 1, 2, . . . , k.

I Call Ei the number of expected observations in class i under
the null hypothesis (i.e., if the assumed distribution for the
data is “true”).

I Then,

Z =
k∑

i=1

(Oi − Ei )
2

Ei

Ho∼ χ2
k−p−1

I k is the number of classes, p the number of parameter
estimated, if any.



The gory details

I Where does this come from? Proof not trivial, distribution
valid only as an approximation for “large” samples.

I How large is “large”? No class should have an expected value
less than, say, 5. If it does, merge classes.

I How to choose k? Reasonably large, but keeping classes “well
peopled”.

I Howto choose the class boundaries? Good question.

I Usually no particular alternative: a pure significance test.

I Critical region: right tail.

Example - I

> primitiva[1:3,1:8]

Fecha Semana N1 N2 N3 N4 N5 N6

1 01/01/2009 1 4 8 12 25 34 46

2 03/01/2009 1 9 11 21 30 31 44

3 08/01/2009 2 7 17 27 28 29 44

> nums <- as.matrix(primitiva[,3:8])

> freq <- table(nums)

> sum(freq) # How many numbers seen?

[1] 1314

> e <- sum(freq) / 49 # Expected each under H0

> e

[1] 26.81633

Example -II

The absolute frequencies of each number are:

> plot(freq)

> abline(h = e, col = "red")
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Example -III

I Question is now to decide whether the departures from the
expected number of appearances is enough to reject H0 (=”all
numbers equally likely”).

I We can use a χ2-test where each “class” I is made of one
number, Oi are the observed occurrences and Ei = 26.81633.

> Z <- sum((freq - e)^2/e)

> Z

[1] 33.68645

> 1 - pchisq(Z, df = 49 - 1)

[1] 0.9415792

I The probability in the tail is quite large; H0 gives a very good
fit and is not rejected.



Example - IV

I R has a standard function which does the same at once.

> result <- chisq.test(x=freq,p=rep(1/49,49))

> result

Chi-squared test for given probabilities

data: freq

X-squared = 33.6865, df = 48, p-value = 0.9416

I So, in conclusion, no evidence of “lucky” numbers.

Example - V

I If you have to do it manually, your best bet is to arrange
computations in a small table.

I For instance, you might have in the case shown:

Oi Ei (Oi − Ei ) (Oi − Ei )
2 (Oi − Ei )

2/Ei

27 26.81633 0.183673 0.03373 0.001258
34 26.81633 7.183673 51.60516 1.924394

...
...

...
...

...
25 26.81633 -1.816327 3.29904 0.123023

Z = 33.6865

Chi square test with estimated parameters (I)

I Data: deaths by horse kick in 200 army corps years.

Deaths Observed cases

0 109
1 65
2 22
3 3
4 1

I Is the Poisson distribution a good model for these data?

I The hypothesis does not uniquely fix the distribution.

I The MLE of λ is:

λ̂ =
0× 109 + 1× 65 + 2× 22 + 3× 3 + 4× 1

200
= 0.61

Chi square test with estimated parameters (II)

I We have estimated one parameer (λ).

I We do as before, only the Ei are compute from the
P(λ = 0.61) distribution.

I For instance, since

P(x = 0;λ = 0.61) =
e−0.61(0.61)0

0!
= 0.5433509

we would compute E1 (the expected number of cases with 0
deaths) as: 200× 0.5433509 = 108.67.

I Likewise for the remaining Ei cells.



Chi square test with estimated parameters (III)

I Now we have:

Oi Ei (Oi − Ei ) (Oi − Ei )
2 (Oi−Ei )

2

Ei

109 108.67017 0.32983 0.10879 0.00100
65 66.28881 -1.28881 1.66102 0.02505
22 20.21809 1.78191 3.17522 0.15704

3 4.11101 -1.11101 1.23434 0.30025
1 0.62693 0.37307 0.13918 0.22200

Z = 0.70537

Chi square test with estimated parameters (IV)

I We now compare Z with a chi-square with 3 degrees of
freedom (k − p − 1 = 5− 1− 1 = 3):

> 1 - pchisq(0.70537, df = 3)

[1] 0.8719401

I The tail is 0.87194; there is no reason to reject the Poisson
distribution hypothesis.

I One might question the use of the test in that some classes
are very sparsely populated.

Contingency table analysis

I A two-dimensional contingency table is an array which
classifies observations according to two variables, one
occurring in rows, the other in columns.

I Definition can be generalized to different number of
dimensions

I For example, we may have:

Gender Right-handed Left-handed Total

Male 43 9 52
Female 44 4 48

Total 87 13 100

I The row and column totals are referred as the margins.

Sampling schemes (I)

I We may fix only the total number of cases we
cross-tabulate. . .

I . . .or we may fix the row margin or the column margin.

I In the first case we speak of multinomial sampling, in the
second of product multinomial sampling.

I Why should we care? Marginal probabilities can only be
estimated from “free” margins.



Sampling schemes (II)

I Consider the following case: we pick a sample of 1000 persons
and cross-classify them according to ethnic origin and whether
they suffered in the last winter from common cold. Want to
test relative vulnerability.

Race Had cold Didn’t have cold Total

Whites 801 104 905
Non-whites 83 12 95

Total 884 116 1000

I We may estimate the proportion of whites as 905/1000 =
0.905 and the overall prevalence of cold as 0.884

Sampling schemes (III)

I Suppose though we are sampling a population with a tiny
proportion of non-whites. We might end up with a table such
as:

Race Had cold Didn’t have cold Total

Whites 891 108 999
Non-whites 1 0 1

Total 892 108 1000

I We end up with a table in which non-whites are almost (or
totally) absent.

I Non-white sample far too small to investigate the matter of
interest.

Sampling schemes (IV)

I What we need instead is to sample both races separately, say
500 each:

Race Had cold Didn’t have cold Total

Whites 398 102 500
Non-whites 403 97 500

Total 801 199 1000

I Then we are assured to have enough observations in each
group.

I Marginal totals do not estimate anything now: the row totals
are fixed by design.

Sampling schemes (V)

I If we fix only the total, we are sampling one population. The
hypothesis of interest is independence in that population.

I If we fix the row totals, we are in effect sampling two
populations. The hypothesis of interest is homogeneity of both
populations with respect to the character coded in columns.

I Both hypothesis are tested conditional on the margins, and
the results are exactly the same for a given table, no matter
how it was sampled.

I Why conditionally on the margins? It is the distribution of
counts inside the table what is indicative of independence (or
homogeneity), not how many people of each race we look at.



Testing independence (I)

I Consider,

Race Had cold Didn’t have cold Total

Whites 801 104 905
Non-whites 83 12 95

Total 884 116 1000

and assume it was obtained fixing only N = 1000.

I The hypothesis of interest is H0 : pij = pi . × p.j
I p̂11 = 0.884× 0.905, and E11 = 1000× 0.884× 0.905.

Similarly for the rest.

Testing independence (II)

Race Had cold Didn’t have cold Total

Whites 801 104 905
Non-whites 83 12 95

Total 884 116 1000

I Apparently, we estimate 4 parameters pij for the 4 cells.

I Conditionally on the margins, only two parameters are free,
and need to be counted.

Testing independence (III)

Oij Eij (Oij − Eij) (Oij − Eij)
2 (Oij−Eij )

2

Eij

801 800.02 -0.98 0.9604 0.00120
83 83.98 0.98 0.9604 0.01144

104 104.98 0.98 0.9604 0.00915
12 11.02 -0.98 0.9604 0.08715

Z = 0.10894

I The expected values are computed as Eij = Npij = Npi .p.j .

I For instance, 800.02 = 1000× 0.884× 0.905.

I Degrees of freedom are k − p− 1 = 4− 2− 1 = 1. So we have
to compare 0.10894 with the quantiles of a χ2

1 distribution.

Testing independence (IV)

I We can easily construct the table:

> ColdRace <- matrix(c(801, 83, 104, 12), 2,

2)

> ColdRace <- as.table(ColdRace)

> colnames(ColdRace) <- c("Cold", "Not-Cold")

> rownames(ColdRace) <- c("Whites", "Non-whites")

> ColdRace

Cold Not-Cold

Whites 801 104

Non-whites 83 12



Testing independence (V)

Function loglin fits, among many other things, the independence
model:

> result <- loglin(ColdRace, margin = list(1,

2), fit = TRUE)

2 iterations: deviation 0

> result$pearson

[1] 0.1089356

> result$df

[1] 1

Testing independence (VI)

I The Eij approach quite well Oij :

> result$fit

Cold Not-Cold

Whites 800.02 104.98

Non-whites 83.98 11.02

I We can now test the independence hypothesis:

> 1 - pchisq(result$pearson, df = result$df)

[1] 0.7413592

I The tail is 0.7414; there is no reason to reject the
independence hypothesis.

Testing homogeneity (I)

I Consider again,

Observed counts (= Oi)

Race Had cold Didn’t have cold Total

Whites 801 104 905
Non-whites 83 12 95

Total 884 116 1000

but this time assuming we have fixed the row marginal.

I We are testing the hypothesis H0 : p1j = p2j for all j .

I Under H0, p̂.j = n.j/n.. is a sensible estimate of p.j , common
to all i .

Testing homogeneity (II)

I The results are exactly the same, only they are arrived at in a
different manner.

Expected counts (= Ei)

Race Had cold Didn’t have cold Total

Whites 800.02 104.98 905
Non-whites 83.98 11.02 95

Total 884 116 1000

I The E1j in the first row are computed as 905× p̂.j
I The E2j in the second row are computed as 95× p̂.j



Testing homogeneity (III)

I

Z1 =
2∑

j=1

(O1j − E1j)
2

E1j

for the cells in the first row would be distributed as χ2
k−1 = χ2

1

if no parameters were estimated and the p.j used were the
correct p1j .

I Likewise,

Z2 =
2∑

j=1

(O2j − E2j)
2

E2j

woud be χ2
1.

I Z = Z1 + Z2 would be distributed as a χ2
2, but we have to

subtract 1 parameter p.1 estimated (why not also p.2?).

I The same statistic Z follows the same distribution under H0

than in the case of independence.

General rule

I When testing either independence or homogeneity in an r × s
contingency table, in both cases we form

Z =
2∑
i ,j

(Oij − Eij)
2

Eij
.

I The resulting value of Z is (under the null hypothesis of
independence or homogeneity) distributed as:

χ2
(r−1)(s−1)

I H0 should be rejected if Z falls in the α right tail of said
distribution (alternatively: if the probability to the right of Z
in a χ2

(r−1)(s−1) is “small”).

Fisher’s exact test (I)

I Consider again our table,

Race Had cold Didn’t have cold Total

Whites n11 n12 n1.

Non-whites n21 n22 n2.

Total n.1 n.2 N = n..

I For given p11, p21, p12, p22 its probability would be:

N!

n11!n12!n21!n22!
pn11

11 pn21
21 pn12

12 pn22
22

Fisher’s exact test (II)

I The probabilities that N is distributed as it is in the row and
column margins are respectively:

N!

n1.!n2.!
pn1.

1. pn2.
2.

N!

n.1!n.1!
pn.1
.1 pn.2

.2

I Conditional on the margins, the probability of a given table is:(
N!

n11!n12!n21!n22!
pn11

11 pn21
21 pn12

12 pn22
22

)
(

N!

n1.!n2.!
pn1.

1. pn2.
2.

)(
N!

n.1!n.2!
pn.1
.1 pn.2

.2

)
I Under the null hypothesis pij = pi .p.j all nuisance parameters

cancel!



Fisher’s exact test (III)

I All we are left with for the probability of a given table is:(
N!

n11!n12!n21!n22!

)
(

N!

n1.!n2.!

)(
N!

n.1!n.2!

)
I The denominator is always the same.

I Can compute the probability of each table under the null
H0 : pij = pi .p.j and check whether what we have observed is
very unlikely.

I Unfeasible for large tables.

Fisher’s exact test (IV)

I Function to do it in R. Useful for small tables; no
approximations. Will fail for large tables.

> fisher.test(ColdRace)

Fisher's Exact Test for Count Data

data: ColdRace

p-value = 0.7363

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.5345751 2.1400287

sample estimates:

odds ratio

1.113439

Introduction

I Normal distribution is a useful model in many situations.

I Why? Central Limit Theorem.

I Even when the the distribution of a random variable is not
normal, normal theory based tests are surprisingly adequate.

I By “adequate” is meant that significance levels (α) and power
(1− β) are close to theoretical values.

H0 : m = m0 with X ∼ N(m, σ2) and σ2 known (I)

I We have X ∼ N(m0, σ
2/n) and therefore:

T =
X −m0

σ/
√

n
∼ N(0, 1)

I T can be computed because σ2 is known.

I Hence,
Prob

{
−zα/2 ≤ T ≤ zα/2

}
= 1− α

I We would reject H0 at the significance level α if |T | > |zα/2|.



H0 : m = m0 with X ∼ N(m, σ2) and σ2 known (II)

I If we expect departures from H0 to be of the form m > m0 or
m < m0 we would adjust the critical region accordingly:

m > m0 =⇒ Reject if T > zα

m < m0 =⇒ Reject if T < −zα

I Makes sense when looking at the test statistic T =
X −m0

σ/
√

n
;

would also be the answer given by the Neyman and Pearson
theorem for a simple alternative.

I “Reject if |T | > |zα/2|” is just a compromise when no clear
alternative.

A digression: confidence intervals

I When testing H0 with no given alternative, the “unlikely”
region is the critical region.

I The “likely” region is the confidence interval.

I This does not extend to tests with a prescribed alternative Ha.

I When we have a Ha, the critical region may be one-sided, not
the complement of the confidence interval.

H0 : m = m0 with X ∼ N(m, σ2) and σ2 known (III)

I What is the payoff of a larger sample size n?

I The test statistic always is N(0, 1) distributed under the null
H0.

I However, under an alternative m 6= m0,

T =

√
n(X −m0)

σ

has mean
√

n(m −m0)/σ.

I For given m, the greater n, the farther away from 0 is the
mean of the test statistic.

H0 : m = m0 with X ∼ N(m, σ2) and σ2 known (IV)
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H0 : m = m0 with X ∼ N(m, σ2) and σ2 unknown (I)

I Now, T =
X −m0

σ/
√

n
cannot be computed, for σ2 is not known.

I Replacing σ2 by its estimate s2 = n−1
∑n

i=1(xi − x)2 gives an
estimator whose distribution under H0 is no longer N(0, 1).

I Key fact:
nS2

σ2
∼ χ2

n−1

and is independent of X .

I This paves the way to eliminating the nuisance parameter σ2

by studentization.

H0 : m = m0 with X ∼ N(m, σ2) and σ2 unknown (II)

I The ratio,

T =

√
n(X−m0)

σ√
nS2/σ2

n−1

=
(X −m0)

S

√
n − 1 ∼ N(0, 1)√

χ2
n−1

n−1

when H0 : m = m0 is true.

I Therefore we can compare the values of the test statistic T to
a tn−1 (Student’s t with n − 1 degrees of freedom).

I Decision rule: ”Reject H0 if |T | > tα/2;n−1.”

I Again, we take critical regions of full α size to the right or to
the left, if alternative is one-sided.

Example: H0 : m0 = 2, σ2 = 1 known

I Let the sample be:

> x <- c(2.2, 3.4, 2.9, 3, 1.6, 3, 3.1, 3.6,

1.9)

> length(x)

[1] 9

> T <- sqrt(9) * (mean(x) - 2)/1

> T

[1] 2.233333

> qnorm(0.975)

[1] 1.959964

I In this case, we would reject.

Example: H0 : m0 = 2, σ2 = 1 unknown

I Now, we would compute

> T <- sqrt(9 - 1) * (mean(x) - 2)/sqrt(8 *

var(x)/9)

> T

[1] 3.256689

> qt(0.975, df = 8)

[1] 2.306004

> var(x)

[1] 0.4702778

> sum((x - mean(x))^2)/9

[1] 0.4180247

> (8 * var(x)/9)

[1] 0.4180247



H0 : σ2 = σ2
0 with X ∼ N(m, σ2)

I Under the null hypothesis,

T =
nS2

σ2
0

∼ χ2
n−1

I Therefore,

Prob

{
χ2
n−1;1−α/2 ≤

nS2

σ2
0

≤ χ2
n−1;α/2

}
= 1− α

I Critical region [0, χ2
n−1;1−α/2] ∪ [χ2

n−1;α/2,∞), unless we have

an alternative Ha : σ2 < σ2
0 or Ha : σ2 > σ2

0

I In the first case the critical region would be [0, χ2
n−1;1−α], in

the second [χ2
n−1;α,∞)

H0 : m1 −m2 = m∗1 −m∗2 with X , Y normal, variances
known (I)

I The commonest test by far is that of H0 : m1 −m2 = 0, but
we present the test generally.

I We have,

X − Y ∼ N

(
m1 −m2,

σ2
1

n1
+
σ2

2

n2

)

I Hence, under H0,

X − Y − (m∗1 −m∗2)√
σ2

1
n1

+
σ2

2
n

∼ N(0, 1)

H0 : m1 −m2 = m∗1 −m∗2 with X , Y normal, variances
known (II)

I Therefore, under H0,

Prob

−zα/2 ≤
X − Y − (m∗1 −m∗2)√

σ2
1

n1
+

σ2
2

n2

≤ zα/2

 = 1− α

I The critical region for the test statistic is made of the two
α/2 tails, unless we have reason to expect the deviance to be
one-sided.

H0 : m1 −m2 = m∗1 −m∗2 with X , Y normal, variances
σ2

1 = σ2
2 unknown (I)

I We have,

X − Y ∼ N

(
m1 −m2,

σ2
1

n1
+
σ2

2

n2

)
n1S2

1

σ2
1

+
n2S2

2

σ2
2

∼ χ2
n1+n2−2

I Using the crucial assumption that σ2
1 = σ2

2 = σ2 we can
construct a test statistic which does not depend on σ2 .



H0 : m1 −m2 = m∗1 −m∗2 with X , Y normal, variances
σ2

1 = σ2
2 unknown (II)

I Using σ2
1 = σ2

2 = σ2

X−Y−(m1−m2)

σ
√

1
n1

+ 1
n2

1
σ

√
n1S2

1 +n2S2
2

n1+n2−2

∼ tn1+n2−2

I Cancelling the nuisance parameter σ we end up with:

X − Y − (m1 −m2)√
1
n1

+ 1
n2

√
n1S2

1 +n2S2
2

n1+n2−2

∼ tn1+n2−2

I Assumption σ2
1 = σ2

2 crucial, otherwise an open question
(so-called Behrens-Fisher problem).

H0 : σ2
1/σ

2
2 = σ2

1∗/σ
2
2∗ with X , Y normal (I)

I With respective sample sizes n1 and n2, we have:

n1S2
1

σ2
1

∼ χ2
n1−1

n2S2
2

σ2
2

∼ χ2
n2−1

I Clearly both statistics are independent, so

n1S2
1σ

2
2(n2 − 1)

n2S2
2σ

2
1(n1 − 1)

∼ Fn1−1,n2−1

I It the hypothesis H0 is true, replacing σ2
1, σ2

2 by their
hypothetical values would give a test statistic with the
distribution shown.

General ideas

I Tests for a mean or the difference of means are remarkably
robust to deviations from normality; however, to play safe we
might use tests to be described next.

I Tests for the difference of means are quite sensitive to different
variances: the requirement σ2

1 = σ2
2 cannot be dispensed with.

Permutation tests (I)

I Easy alternative when distribution cannot be assumed and we
can use a computer.

I Want to test x1, . . . , xn1 and y1, . . . , yn2 are indeed samples
form the same population, the alternative being that the
means are different.

I Our test statistic is x − y . Need something to compare to.

I If we arrange the observations as:

x1, . . . , xn1 , y1, . . . , yn2

x − y is just the difference of the averages of the first n1 and
subsequent n2 observations.



Permutation tests (II)

I If observations come indeed from the same population, the
difference between the n1 and n2 observations in each group
should be of similar magnitude than that among any other set
of n1 and n2 observations.

I Idea: sample repeatedly the whose set of observations in
random subsets of n1 and n2, and compute each time (x − y)j
(j = 1, . . . ,N).

I Compare the observed x − y to (x − y)j (j = 1, . . . ,N) and
reject H0 if it is in an extreme position.

I Sampling is usually done by permuting the original sample,
hence the name.

Testing H0 : m = m0 with no normality (I)

I For “large” n (=sample size), use normal theory tests. “Large”
is n ≥ 30 (if σ2 is known) and n ≥ 100 (if it is not).

I For smaller n, remember Tchebycheff inequality:

Prob {|X −m| < kσ} ≥ 1− 1

k2

I For the particular case of X we have:

Prob

{
|X −m| < kσ√

n

}
≥ 1− 1

k2

Testing H0 : m = m0 with no normality (II)

I Therefore, replacing k by 1/
√
α we have:

Prob

{
|X −m| < σ√

nα

}
≥ 1− α

I This gives as a basis for a confidence interval for m and a test:
“Reject H0 at the α significance level if |X −m0| > σ/

√
nα.”

I If σ2 is unknown, replace it by its estimate s2 to have an
approximate test.

I This distribution-free method gives tests less powerful (and
confidence intervals wider) than the normal theory tests.

Testing H0 : m = m0 with no normality (III)

I If the sample size n is large enough, the statistics

X −m

σ/
√

n

X −m

s/
√

n

have approximate N(0, 1) distributions, even if X is not
normal.

I “Large” means n ≥ 30 if σ is known and n ≥ 100 if we are
forced to use s instead.

I The approximation is usually quite good, and can be checked
by simulation (e.g., repeatedly generate samples of size n
from, say, the uniform distribution, and plot the histogram of
values of the test statistic; except in pathological cases, it will
approach a normal bell curve shape).



The case of a proportion (I)
I One case of particular interest is that of a proportion. Variable

X the value 0 or 1 (“yes” or “no”, or similar dichotomous
values coded to 1/0).

I We are interested in the probability of 1, p.
I Clearly X = n−1(X1 + . . .+ Xn) is an unbiased estimate of p.
I How to test hypothesis on p or estimate it by interval? We

know that for large n approximately,

X − p

s/
√

n
≈ N(0, 1)

I We can estimate s2 by p̂(1− p̂) or (conservatively) by 0.25.
I However we estimate p, approximately, for large n,

X −m

s/
√

n
≈ N(0, 1)

How would we construct a confidence interval for p

(X ± zα/2s/
√

n)

The case of a proportion (II)

Example:
I In a sample of 500 parts from a very large batch, 33 are found

to be defective. Would the hypothesis H0 : p = 0.04 be
rejected against an alternative Ha : p > 0.04? (α = 0.05).

I The estimate of p would be 33/500 = 0.0666 and
s2 = pq = 0.04× 0.96 = 0.0384. Under H0,

(X − 0.04)√
0.0384/

√
500
≈ N(0, 1);

the critical region would be to the right.

I Replacing X by 33/500 we get a value for the test statistic of
3.04, well inside a critical region of size α = 0.01. So we
would reject H0 at said level of significance.

The case of a proportion (III)

Example (continued):
I If we were asked to estimate by interval the true p with

confidence 1− α = 0.99, we could use:

(X − p)√
0.0667× 0.9333

500

≈ N(0, 1)

I Then,

Prob

{
X − 2.5758

√
0.06222

500
≤ p ≤ X + 2.5758

√
0.06222

500

}
≈ 0.99

I The confidence interval would thus be (0.0666± 0.0287)

I Replacing s2 by the upper bound of p(1− p) = 0.25 would be
very conservative here.

Testing differences of means

I We state without proof the following approximate results:

X − Y − (m1 −m2)√
σ2

1
n1

+ σ2
2

n2

≈ N(0, 1) (n1 ≥ 30, n2 ≥ 30)

X − Y − (m1 −m2)√
s2

1
n1

+
s2

2
n2

≈ N(0, 1) (n1 ≥ 100, n2 ≥ 100)

I Those approximate distributions can be used in the
construction of test statistics or confidence intervals.



Testing differences of proportions

I The results in the previous slide can be specialized to the case
of two proportions. In that case,

X =
Z1

n1
m1 = p1

Y =
Z2

n2
m2 = p2

Z1
n1
− Z2

n2
− (p1 − p2)√

p1q1
n1

+ p2q2
n2

≈ N(0, 1)

I Again, sample sizes should be large.

How would we construct a confidence interval for (p1 − p2)?(
Z1
n1
− Z2

n2

)
± zα/2

√
p1q1
n1

+ p2q2
n2

The OC (“operating characteristic”) curve (I)

I The performance of a test of H0 against a set of alternatives
usually described by the OC curve: it gives the probability of
non-rejection of H0 for both the null and a range of
alternatives.

I Common in specification of industrial quality sampling
protocols.

I The conflicting interests ob buyer and seller are specified in
two points, through which the the curve is forced to pass.

The OC (“operating characteristic”) curve (II)
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