\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notas
Statistics Applied to Economics
Degree in Economics
F.Tusell

Dpto. Economía Aplicada III (Estadística y Econometría)
Curso 2011-2012

$\begin{array}{cc}\text { Universidad } & \begin{array}{l}\text { Euskal Heriko } \\ \text { del }\end{array} \text { Pais Vasco } \\ \text { Unibertsititea }\end{array}$

Índice I
Consistency
Efficiency
Suficiency

Consistency (I) (reminder: probability limits)

- We say that the limit in probability of a sequence or random variables $\left\{Z_{n}\right\}$ is Z if for any $\epsilon>0, \eta>0$ there is N such that for $n>N$:

$$
P\left(\left|Z_{n}-Z\right|<\epsilon\right) \geq 1-\eta
$$

- In plain English: if taking sufficiently advanced terms of $\left\{Z_{n}\right\}$ we can be within ϵ of Z with probability as close to 1 as we wish.
- Compare with usual notion of limit in mathematical analysis.
- Usual notation is $Z_{n} \xrightarrow{p} Z$ or $\operatorname{plim}\left(Z_{n}\right)=Z$.

Notas

- $\hat{\theta}_{n}$ denotes an estimator of θ based on a sample of size n. For instance, we might have

$$
\hat{\theta}_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

- $\hat{\theta}_{n}$ is consistent if $\hat{\theta}_{n} \xrightarrow{p} \theta$
- In plain English: if by increasing the sample size we can obtain arbitrary precision with as close to 1 confidence as we choose.
- In general, consistency is the very least we ask for. (We want to be rewarded for our effort in sampling!)

Consistency (III)

- We can usually show consistency by using; i) The laws of large numbers, or ii) Tchebycheb inequality, among other ways.
- Consistency does not imply unbiasedness.

Think of $\hat{\theta}_{n}$ taking the true value θ with probability $1-\frac{1}{n}$ and the value n with probability $\frac{1}{n}$.

Consistency vía Tchebychev inequality

Example: consistency of $\hat{\lambda}=\bar{X}$ as estimator of λ of a $\mathcal{P}(\lambda)$.

- We know $E[\hat{\lambda}]=\lambda$ and $\operatorname{Var}(\hat{\lambda})=\lambda / n$.
- Then (Tchebycheff),

$$
P(|\hat{\lambda}-\lambda|<\underbrace{k \sqrt{\lambda / n}}_{\epsilon}) \geq \underbrace{1-1 / k^{2}}_{1-\eta}
$$

- Make your pick of $1-\eta$ as close to 1 as desired; whatever the implied k, we only have to choose n large enough to make ϵ as small as we wish.

Unbiasedness + variance $\rightarrow 0 \Longrightarrow$ consistency

- Again, simple application of Tchebychev's inequality.
- Unbiasedness implies $E\left(\hat{\theta}_{n}\right)=\theta$.

$$
P(\left|\hat{\theta}_{n}-\theta\right|<\underbrace{k \sigma_{n}}_{\epsilon} \geq \underbrace{1-1 / k^{2}}_{1-\eta}
$$

- Let $1-\eta$ be as close to 1 as desired; whatever the implied k, ϵ can be made small for large n, as $\sigma_{n} \rightarrow 0$.
- If both variance and bias decrease to zero, we also have consistency.
- Moment estimators are usually consistent.
- Sketch of argument for a particular case:

$$
m=\alpha_{1}(\hat{\theta})=\bar{X}
$$

- If $\alpha_{1}(\hat{\theta})$ has a continuous inverse function, $\hat{\theta}=\alpha_{1}^{-1}(\bar{X})$.
- Now, convergence of \bar{X} to m (law of large numbers) entails convergence of $\hat{\theta}$ to θ :

$$
\operatorname{plim}(\hat{\theta})=\alpha_{1}^{-1}(\operatorname{plim}(\bar{X}))=\alpha_{1}^{-1}(m)=\theta
$$

- Notice: if $\alpha_{q}^{-1}()$ were not continuous, \bar{X} could be very close of m and $\alpha_{q}^{-1}(\bar{X})$ not close to $\alpha_{q}^{-1}(m)=\theta$

Consistency is not everything!

- Consistency is an asymptotic property. It tells us what happen when the sample size goes to infinity.
- In practice, we may be limited to small samples, and then the consistency property offers little confort
- Example: (artificial). In a $\mathcal{P}(\lambda)$,

$$
\hat{\lambda}_{n}= \begin{cases}0 & \text { if } n<10^{5} \\ \bar{X} & \text { if } n \geq 10^{5}\end{cases}
$$

would be consistent (but pretty bad for sample sizes n below 10^{5} !).

- Consistency is reassuring, but we need to check for realistic sample sizes (often through simulation).

Efficiency

- Among estimators which are both unbiased, it makes sense to chose the one with smallest variance.
- For $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ both unbiased estimators of θ, we define efficiency of $\hat{\theta}_{1}$ relative to $\hat{\theta}_{2}$ as:

$$
\frac{\operatorname{Var}\left(\hat{\theta}_{2}\right)}{\operatorname{Var}\left(\hat{\theta}_{1}\right)}
$$

- Assume $\operatorname{Var}\left(\theta_{1}\right)$ were the lowest attainable. Then, any estimator with efficiency 1 relative to $\hat{\theta}_{1}$ will be called efficient.
- But, how do we find a $\hat{\theta}_{1}$ which cannot be improved upon?

The Cramer-Rao bound

- It turns out that we do have a universal yardstick, under regularity conditions (more on that later)
- For any unbiased $\hat{\theta}$ based on n observations under regularity conditions:

$$
\operatorname{Var}(\hat{\theta}) \geq \frac{1}{n l(\theta)}
$$

this is the celebrated Cramer-Rao lower bound.

- $I(\theta)$ is the so-called Fisher information contained in one observation, and is defined as:

$$
I(\theta)=E\left(\frac{\partial \log f(x ; \theta)}{\partial \theta}\right)^{2}
$$

Intuition for Fisher information

- Why is $I(\theta)$ a measure of information?
- Imagine a given (fixed) x;

$$
\left(\frac{\partial \log f(x ; \theta)}{\partial \theta}\right)^{2}
$$

measures how fast $\log f(x ; \theta)$ changes in response to changes in θ.

- If $\log f(x ; \theta)$ were very flat, close values of θ would have similar likelihood, and we would be very uncertain about the "true" θ.
- If $\log f(x ; \theta)$ changes fast, it gives much information about θ.
- If we average the derivative over possible values of X we have Fisher information.

Efficient estimators and the Cramer-Rao bound

- Under regularity conditions, if

$$
\operatorname{Var}(\hat{\theta})=\frac{1}{n l(\theta)}
$$

the Cramer-Rao lower bound implies the unbiased $\hat{\theta}$ cannot be improved upon by any other unbiased estimator. It is then called efficient.

- We know what the optimum is before we start.
- No fear that there is a better estimator that just didn't occur to us!

The Cramer-Rao bound: historical notes

- Harald Crameŕ (1892-1985), swedish statistician, author of the extremely influential Mathematical Methods of Statistics (1946), still a good reading.
- C.R.Rao (1920-), a distinguished indian statistician. Aside from the Cramer-Rao bound, other contributions like the celebrated Rao-Blackwell theorem (in the same vein than the Cramer-Rao bound, but more powerful).
- The original publications date of 1945 (Rao) and 1946 (Cramer).

What are those regularity conditions?

- Basically,

1. The support of the distribution does not depend on the parameter. Example of violation: $U(0, \theta)$.
2. The log likelihood function "sufficiently smooth": differentiable and order of integration and differentiation interchangeable:

$$
\frac{\partial}{\partial \theta} E(\log f(x, \theta))=E\left(\frac{\partial \log f(x, \theta)}{\partial \theta}\right)
$$

- Failure of these conditions render unusable the Cramer-Rao bound.

Notas

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notas

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notas

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- It turns out that

$$
E\left(\frac{\partial \log f(X, \theta)}{\partial \theta}\right)^{2}=-E\left(\frac{\partial^{2} \log f(X, \theta)}{\partial \theta^{2}}\right)
$$

- Either expression can be used to compute Fisher's information (the denominator of the Cramer-Rao bound).
- Usually best the second derivative, but sometimes looking at the first we can easily compute its mean value.

The Cramer-Rao bound: examples (I)

We know \bar{X} is unbiased for λ in a $\mathcal{P}(\lambda)$. Its variance is λ / n. Is there anything better?

$$
\begin{aligned}
\log f(X, \lambda) & =-\lambda+X \log (\lambda)-\log (X!) \\
\frac{\partial \log f(X, \lambda)}{\partial \lambda} & =-1+X / \lambda=\left(\frac{X-\lambda}{\lambda}\right) \\
E\left(\frac{X-\lambda}{\lambda}\right)^{2} & =\frac{1}{\lambda}
\end{aligned}
$$

The Cramer-Rao is

$$
\operatorname{Var}(\hat{\lambda}) \geq \frac{1}{n \frac{1}{\lambda}}=\frac{\lambda}{n}
$$

so \bar{X} is optimal in the unbiased class.

The Cramer-Rao bound: examples (II)

- We might have missed the fact that:

$$
E\left(\frac{X-\lambda}{\lambda}\right)^{2}=\frac{1}{\lambda}
$$

- In that case, taking the second derivative of

$$
\left(\frac{x-\lambda}{\lambda}\right)
$$

would have readily given us $1 / \lambda$.

The Cramer-Rao bound: examples (III)

- Consider estimation of p in a binary distribution.
- Moment and MLE is $\hat{p}=\bar{X}$ with variance $p(1-p) / n$.
- We have,

$$
\begin{aligned}
\log f(X, p) & =X \log (p)+(1-X) \log (1-p) \\
\frac{\partial \log f(X, p)}{\partial p} & =\frac{X}{p}-\frac{1-X}{1-p} \\
E\left(\frac{X}{p}-\frac{1-X}{1-p}\right)^{2} & =E\left(\frac{X-p}{p(1-p)}\right)^{2}=\frac{1}{p(1-p)}
\end{aligned}
$$

- The CR bound is then,

$$
\operatorname{Var}(\hat{p}) \geq \frac{1}{n \frac{1}{p(1-p)}}=\frac{p(1-p)}{n}
$$

and $\hat{p}=\bar{X}$ is efficient.

- The CR bound may not be attainable.
- What it says is that we can do no better...
- . . . not that we can do as well.
- Hence, estimators with efficiency 1 as defined previously, may not exist.
- In general, the MLE reaches the CR lower bound, at least asymptotically.

The concept of sufficiency (I)

- To obtain estimators, we have made use of a statistic, a function of the sample.
- Are we losing something?
- Or, could we do better looking individually at each sample value, rather than to a summarizing function?
- Loose idea: when a statistic "squeezes all the juice" out of a sample, it is sufficient.
- We have to formalize this "squeezing" property.

The concept of sufficiency (II)

- If given a statistic $S=S(\vec{X})$ the conditional density (or probability)

$$
f(\vec{X} \mid S)=\frac{f_{\vec{X}}(\vec{X}: \theta)}{f_{S}(S ; \theta)}
$$

is independent of $\theta, S(\vec{X})$ is said to be sufficient for θ.

- Motivation: if once we know $S=S(\vec{X})$ the density (or probability) of the sample values does not depend on θ, knowing those individual sample values cannot be of help in determining θ.
- All information about θ is then contained in $S=S(\vec{X})$.

The concept of sufficiency (III)

- Let $X_{1}, \ldots, X_{n} \sim \mathcal{P}(\lambda)$. Let $S=X_{1}+\cdots+X_{n}$. We know $S \sim \mathcal{P}(n \lambda)$. Then

$$
\begin{aligned}
f(\vec{X} \mid S) & =\frac{f_{\vec{X}}(\vec{X}: \lambda)}{f_{S}(S ; \lambda)} \\
& =\frac{\prod_{i=1}^{n} e^{-\lambda} \lambda^{X_{i}} / X_{1}!}{e^{-n \lambda}(n \lambda)^{S} / S!} \\
& =\frac{S!}{X_{1}!X_{2}!\ldots X_{n}!} n^{-S}
\end{aligned}
$$

- Therefore, S (or any other 1-1 function of S) is sufficient for λ.
- As a further example, let's consider the ordered sample $X_{(1)}, \ldots, X_{(n)}$.
- If sampled values are i.i.d., values may arise in any order.
- Given $X_{(1)}, \ldots, X_{(n)}$, any order is equally likely, with probability $1 / n!$, whichever the parameter(s) of the distribution may be.
- Therefore, $X_{(1)}, \ldots, X_{(n)}$ is always a sufficient statistic, although of little interest (it doesn't "compact" information).

The factorization theorem (I)

- If we can decompose the joint density (or probability) as a product,

$$
f_{\vec{X}}(\vec{X}: \theta)=g(S(\vec{X}) ; \theta) \times h(\vec{X})
$$

where $h(\vec{X})$ does not depend on θ, then S is sufficient.

- Quite easy to prove.
- Quite practical; we only have to see which function (or functions) of the sample "carry with them" the parameter θ.

The factorization theorem (II)

- Take the Poisson case again. We have,

$$
\begin{aligned}
f_{\vec{X}}(\vec{X} ; \lambda) & =\prod_{i=1}^{n} e^{-\lambda} \lambda^{X_{i}} / X_{i}! \\
& =\underbrace{e^{-n \lambda} \lambda^{X_{1}+\ldots+X_{n}}}_{g(S, \lambda)} \times \underbrace{\prod_{i=1}^{n}\left(1 / X_{i}!\right)}_{h(\vec{X})}
\end{aligned}
$$

- Clearly, $S=X_{1}+\ldots+X_{n}$ is sufficient.

The factorization theorem (III)

Notas

- MLE have "built in" sufficiency.
- Using the factorization theorem, to maximize the left hand side of

$$
f_{\vec{X}}(\vec{X}: \theta)=g(S(\vec{X}) ; \theta) \times h(\vec{X})
$$

as a function of θ, we only need $g(S(\vec{X}) ; \theta)$;

- The term $h(\vec{X})$ is just a constant in the likelihood function.

Notas

\qquad

Notas

- Most distributions in common us have sufficient statistics for their parameters.
- This is not always the case. Consider the Cauchy distribution (aka t_{1}) with location θ :

$$
f_{X}(x: \theta)=\frac{1}{\pi} \frac{1}{1+(x-\theta)^{2}}
$$

- If you use the factorization theorem to look for sufficient statistics,

$$
f_{\vec{X}}(\vec{X}: \theta)=g(S(\vec{X}) ; \theta) \times h(\vec{X})
$$

hard as you may try, you will at least need the ordered sample (which is always a sufficient statistic).

- No further reduction is possible.

Notas

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notas

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notas

