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Consistency (1) (reminder: probability limits)

» We say that the limit in probability of a sequence or random
variables {Z,} is Z if for any € > 0, 17 > 0 there is N such
that for n > N:

P(1Z, - Z|<e)>21-1

> In plain English: if taking sufficiently advanced terms of {Z,}
we can be within € of Z with probability as close to 1 as we
wish.

» Compare with usual notion of limit in mathematical analysis.

» Usual notation is Z, 2 Z or plim(Z,) = Z.
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Consistency (1)

> én denotes an estimator of 6 based on a sample of size n. For
instance, we might have

é‘ 7X1+X2+---+Xn
ne n

> én is consistent if é,, L]
» In plain English: if by increasing the sample size we can obtain
arbitrary precision with as close to 1 confidence as we choose.

> In general, consistency is the very least we ask for. (We want
to be rewarded for our effort in sampling!)

Consistency (I11)

> We can usually show consistency by using; i) The laws of large
numbers, or ii) Tchebycheb inequality, among other ways.

» Consistency does not imply unbiasedness.

Think of 9,, taking the true value 6 with probability 1 — % and the
value n with probability %

Consistency via Tchebychev inequality

Example: consistency of A = X as estimator of A of a P(A).

> We know E[A] = A and Var(}) = A/n.
» Then (Tchebycheff),

P(A =X < ky/A/n) >1—1/k?
N—— hl,_/
€ -n

» Make your pick of 1 — 7 as close to 1 as desired; whatever the
implied k, we only have to choose n large enough to make €
as small as we wish.

Unbiasedness + variance— 0 = consistency

» Again, simple application of Tchebychev's inequality.
Unbiasedness implies £(6,) = 6.

v

P(|6, — 6] < kop >1—1/k?
~— ~——

€ 1-7

v

Let 1 —n be as close to 1 as desired; whatever the implied k,
€ can be made small for large n, as o, — 0.

v

If both variance and bias decrease to zero, we also have
consistency.
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Consistency of moment estimators
Notas

» Moment estimators are usually consistent.

» Sketch of argument for a particular case:

m=a1(0) =X

> If a1(f) has a continuous inverse function, § = a7 (X).

» Now, convergence of X to m (law of large numbers) entails

convergence of 6 to 0:

plim(d) = a7} (plim(X)) = a7 (m) = 0

> Notice: if a;l() were not continuous, X could be very close

of m and az;!(X) not close to ag'(m) = 0.

Consistency is not everything!
Notas

» Consistency is an asymptotic property. It tells us what happen

when the sample size goes to infinity.

> In practice, we may be limited to small samples, and then the

consistency property offers little confort.
> Example: (artificial). In a P(}),

A 0 if n< 105
An=<_
X if n>10°.

would be consistent (but pretty bad for sample sizes n below
10%1).

» Consistency is reassuring, but we need to check for realistic
sample sizes (often through simulation).

Efficiency
Notas

» Among estimators which are both unbiased, it makes sense to
chose the one with smallest variance.

» For él and ég both unbiased estimators of 6, we define
efficiency of 01 relative to 0, as:

Var(f,)
Var(f1)

> Assume Var(f) were the lowest attainable. Then, any

estimator with efficiency 1 relative to él will be called
efficient.

» But, how do we find a f; which cannot be improved upon?

The Cramer-Rao bound
Notas

> |t turns out that we do have a universal yardstick, under
regularity conditions (more on that later)

» For any unbiased 6 based on n observations under regularity

conditions: )
Var(f) >

ni(6)

this is the celebrated Cramer-Rao lower bound.

> [(0) is the so-called Fisher information contained in one
observation, and is defined as:

MﬂzE(Q%%ﬁ@f




Intuition for Fisher information

v

Why is /(6) a measure of information?

> Imagine a given (fixed) x;

<8|og;’6(x; a)>2

measures how fast log f(x; 6) changes in response to changes
in 6.

> If log f(x; 6) were very flat, close values of # would have
similar likelihood, and we would be very uncertain about the
“true” 6.

> If log f(x; 6) changes fast, it gives much information about 6.

> |If we average the derivative over possible values of X we have
Fisher information.

Efficient estimators and the Cramer-Rao bound

> Under regularity conditions, if

Var() = ;
) =21
the Cramer-Rao lower bound implies the unbiased f cannot be
improved upon by any other unbiased estimator. It is then
called efficient.

» We know what the optimum is before we start.

» No fear that there is a better estimator that just didn't occur
to us!

The Cramer-Rao bound: historical notes

» Harald Cramef (1892-1985), swedish statistician, author of
the extremely influential Mathematical Methods of Statistics
(1946), still a good reading.

» C.R.Rao (1920-), a distinguished indian statistician. Aside
from the Cramer-Rao bound, other contributions like the
celebrated Rao-Blackwell theorem (in the same vein than the
Cramer-Rao bound, but more powerful).

> The original publications date of 1945 (Rao) and 1946
(Cramer).

What are those regularity conditions?

» Basically,
1. The support of the distribution does not depend on the
parameter. Example of violation: U(0,6).
2. The log likelihood function “sufficiently smooth™: differentiable
and order of integration and differentiation interchangeable:

fé] B Olog f(x,0)
%E(Iog f(x,0)) =E (T)

» Failure of these conditions render unusable the Cramer-Rao
bound.
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A trick to compute the Cramer-Rao bound.

Notas
> It turns out that
£ (21ogf(X.0) : E & log f(X,0)
00 N 062
» Either expression can be used to compute Fisher's information
(the denominator of the Cramer-Rao bound).
» Usually best the second derivative, but sometimes looking at
the first we can easily compute its mean value.
The Cramer-Rao bound: examples (1)
Notas
We know X is unbiased for A in a P(A). Its variance is A/n. Is
there anything better?
log f(X,\) = —X+ Xlog()\) — log(X!)
Olog f(X, ) X=X
— = 14+ X/ A= —
A X/ X
X -2\° 1
E - -
A A
The Cramer-Rao is
< 1
Var(\) > — = A
nx n
X
so X is optimal in the unbiased class.
The Cramer-Rao bound: examples (I1)
Notas
» We might have missed the fact that:
2
E X=X _ 1;
A A
> In that case, taking the second derivative of
X=X
A
would have readily given us 1/A.
The Cramer-Rao bound: examples (l11)
Notas

» Consider estimation of p in a binary distribution.
» Moment and MLE is p = X with variance p(1 — p)/n.

» We have,
log f(X,p) = Xlog(p)+ (1 —X)log(l~-p)
dlogf(X,p) _ X 1-X
ap p l-p

g (% - %)2 - F <P€<11l:7)>2 - p(llfp)

and p = X is efficient.



Some facts about the Cramer-Rao bound
Notas

» The CR bound may not be attainable.

» What it says is that we can do no better. ..

> ...not that we can do as well.

> Hence, estimators with efficiency 1 as defined previously, may
not exist.

> In general, the MLE reaches the CR lower bound, at least
asymptotically.

The concept of sufficiency (1) Not
otas

» To obtain estimators, we have made use of a statistic, a

function of the sample.

> Are we losing something?

> Or, could we do better looking individually at each sample
value, rather than to a summarizing function?

> Loose idea: when a statistic “squeezes all the juice” out of a
sample, it is sufficient.

» We have to formalize this “squeezing” property.

The concept of sufficiency (I1) Not
otas

> If given a statistic S = S(X) the conditional density (or
probability)

F(X|S) = 76;5(();: ;;)

is independent of 0, S(X) is said to be sufficient for 0.

» Motivation: if once we know S = S(X) the density (or
probability) of the sample values does not depend on 0,
knowing those individual sample values cannot be of help in

determining 6.
» All information about 6 is then contained in § = S(X).

The concept of sufficiency (I11) Not
otas

> Let X1,...,Xp ~P(N). Let S=Xg + -+ + X,. We know
S ~ P(nX). Then

[, e X9/ X!
e~ (n)\)5/S!

S! s
7177
X1 X! .. X!

> Therefore, S (or any other 1-1 function of S) is sufficient for

A




The concept of sufficiency (1V) Not
otas

» As a further example, let's consider the ordered sample

Xy Xy

> |If sampled values are i.i.d., values may arise in any order.

> Given X(y), ..., X(n), any order is equally likely, with
probability 1/n!, whichever the parameter(s) of the

distribution may be.

> Therefore, X(1),..., X(n) is always a sufficient statistic,

although of little interest (it doesn't “compact” information).

The factorization theorem (1) Not
otas

> |If we can decompose the joint density (or probability) as a
product, . . .
(X 1 6) = g(S(X):0) x h(X)

where h(X) does not depend on 6, then S is sufficient.

> Quite easy to prove.

» Quite practical; we only have to see which function (or

functions) of the sample “carry with them” the parameter 6.

The factorization theorem (I1) Not
otas

> Take the Poisson case again. We have,

(XA = J[eW/x:t
i=1

= e M\ S TTa/xi)
N———
&(S.\) = ,
h(X)

» Clearly, S = Xy + ...+ X, is sufficient.

The factorization theorem (111) Not
otas

» MLE have “built in" sufficiency.

» Using the factorization theorem, to maximize the left hand

side of . . .
(X - 6) = g(5(X); 0) x h(X)

as a function of 0, we only need g(S(X); 0);
> The term h(X) is just a constant in the likelihood function.




Some ill-behaved distributions
Notas

» Most distributions in common us have sufficient statistics for

their parameters.

> This is not always the case. Consider the Cauchy distribution

(aka t1) with location 6:

1 1

fX(X:e):;le(xfﬁ)z

> If you use the factorization theorem to look for sufficient
statistics,

£ (X : 0) = g(S(X); 0) x h(X)

hard as you may try, you will at least need the ordered sample

(which is always a sufficient statistic).

» No further reduction is possible.
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