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Consistency (1) (reminder: probability limits)

We say that the limit in probability of a sequence or random
variables {Z,} is Z if for any ¢ > 0, 7 > 0 there is N such
that for n > N:

P(|Zn_Z‘<€)21_n

In plain English: if taking sufficiently advanced terms of {Z,}
we can be within € of Z with probability as close to 1 as we
wish.

Compare with usual notion of limit in mathematical analysis.
Usual notation is Z, & Z or plim(Z,) = Z.



Consistency (II)

» 0, denotes an estimator of § based on a sample of size n. For
instance, we might have

X+ Xt + X,
n

b,

A

» 0, is consistent if én Ly

> In plain English: if by increasing the sample size we can obtain
arbitrary precision with as close to 1 confidence as we choose.

» In general, consistency is the very least we ask for. (We want
to be rewarded for our effort in sampling!)

Consistency via Tchebychev inequality

Example: consistency of A = X as estimator of A of a P(N).

» We know E[\] = X and Var(}) = \/n.
» Then (Tchebycheff),

P(IX = Al < ky/A/n) > 1—1/k?
N—— Hl,_/
€ -n

» Make your pick of 1 — 7 as close to 1 as desired; whatever the
implied k, we only have to choose n large enough to make ¢
as small as we wish.

Consistency (II1)

» We can usually show consistency by using; i) The laws of large
numbers, or ii) Tchebycheb inequality, among other ways.

» Consistency does not imply unbiasedness.

Think of 6, taking the true value 6 with probability 1 — % and the
value n with probability %

Unbiasedness + variance— 0 = consistency

» Again, simple application of Tchebychev's inequality.

Unbiasedness implies E(6,) = 6.

v

P(|6, — 0| < ko, >1—1/k?
M~ N—~—

€ 1-n

v

Let 1 — 7 be as close to 1 as desired; whatever the implied k,
€ can be made small for large n, as o, — 0.

v

If both variance and bias decrease to zero, we also have
consistency.



Consistency of moment estimators

v

Moment estimators are usually consistent.

Sketch of argument for a particular case:

m=a () =X

If 1(d) has a continuous inverse function, = a7 (X).

Now, convergence of X to m (law of large numbers) entails
convergence of 8 to 6:

plim(8) = a7 (plim(X)) = ag*(m) = 6

Notice: if a;'() were not continuous, X could be very close
of m and o, *(X) not close to ag'(m) = 0.

Efficiency

Among estimators which are both unbiased, it makes sense to
chose the one with smallest variance.

For HAl and §2 both unbiased estimators of 8, we define
efficiency of 01 relative to 6, as:

Assume Var(f1) were the lowest attainable. Then, any
estimator with efficiency 1 relative to 8; will be called
efficient.

But, how do we find a f; which cannot be improved upon?

Consistency is not everything!

Consistency is an asymptotic property. It tells us what happen
when the sample size goes to infinity.

In practice, we may be limited to small samples, and then the
consistency property offers little confort.

Example: (artificial). In a P()),

« 0 if n<10°.
Ap =<
X if n> 10°.

would be consistent (but pretty bad for sample sizes n below
10°%1).

Consistency is reassuring, but we need to check for realistic
sample sizes (often through simulation).

The Cramer-Rao bound

> It turns out that we do have a universal yardstick, under

regularity conditions (more on that later)

» For any unbiased 0 based on n observations under regularity

conditions: 1
0) > :
Var(6) = nl(0)’

this is the celebrated Cramer-Rao lower bound.

» /(0) is the so-called Fisher information contained in one

observation, and is defined as:

I(0) = E (6'°g56(><:9))2



Intuition for Fisher information

v

Why is /(#) a measure of information?

» Imagine a given (fixed) x;

<8|og(;0(x; 9))2

measures how fast log f(x; 8) changes in response to changes
in 6.

> If log f(x; 6) were very flat, close values of § would have
similar likelihood, and we would be very uncertain about the
“true” 6.

» If log f(x; 0) changes fast, it gives much information about 6.

v

If we average the derivative over possible values of X we have
Fisher information.

The Cramer-Rao bound: historical notes

» Harald Cramef (1892-1985), swedish statistician, author of
the extremely influential Mathematical Methods of Statistics
(1946), still a good reading.

» C.R.Rao (1920-), a distinguished indian statistician. Aside
from the Cramer-Rao bound, other contributions like the
celebrated Rao-Blackwell theorem (in the same vein than the
Cramer-Rao bound, but more powerful).

» The original publications date of 1945 (Rao) and 1946
(Cramer).

Efficient estimators and the Cramer-Rao bound

> Under regularity conditions, if

Var(f) = n/(H);

the Cramer-Rao lower bound implies the unbiased 6 cannot be
improved upon by any other unbiased estimator. It is then
called efficient.

» We know what the optimum is before we start.

» No fear that there is a better estimator that just didn’t occur
to us!

What are those regularity conditions?

> Basically,
1. The support of the distribution does not depend on the
parameter. Example of violation: U(0,6).
2. The log likelihood function “sufficiently smooth™: differentiable
and order of integration and differentiation interchangeable:

0 Olog f(x,0)
%E(Iog f(x,0))=E (39>

» Failure of these conditions render unusable the Cramer-Rao
bound.



A trick to compute the Cramer-Rao bound. The Cramer-Rao bound: examples (1)

We know X is unbiased for A in a P(\). Its variance is A/n. Is

there anything better?
> It turns out that

log f(X,\) = —A+ Xlog(\)— log(X!)
£ dlog f(X,0) 2:—E 0% log f(X,0) dlog F(X, \) X — )\
» Either expression can be used to compute Fisher's information £ X —2\? 1
(the denominator of the Cramer-Rao bound). A D)

» Usually best the second derivative, but sometimes looking at

. . . The Cramer-Rao is
the first we can easily compute its mean value.

2 1
Var(A) > — = A
nx n
so X is optimal in the unbiased class.
The Cramer-Rao bound: examples (1) The Cramer-Rao bound: examples (I11)

» Consider estimation of p in a binary distribution.
» Moment and MLE is p = X with variance p(1 — p)/n.
» We might have missed the fact that: > We have,

E(X—AY_J_ log f(X,p) = Xlog(p)+ (1 —X)log(1— p)

A A dlog F(X, p) X 1-X

op p 1l-p
2 2
(-2 - G-
p 1-p p(1—p) p(1—p)

» The CR bound is then,

» In that case, taking the second derivative of

()

would have readily given us 1/\.

Var(p) > -

and p = X is efficient.



Some facts about the Cramer-Rao bound

» The CR bound may not be attainable.
» What it says is that we can do no better. ..
> ...not that we can do as well.

» Hence, estimators with efficiency 1 as defined previously, may
not exist.

> In general, the MLE reaches the CR lower bound, at least
asymptotically.

The concept of sufficiency (II)

> If given a statistic S = S(X) the conditional density (or
probability)
q fo(X : 6)
FX|S) = 2=
(X]5) 5(5.0)

is independent of 6, 5()?) is said to be sufficient for 6.

> Motivation: if once we know S = S(X) the density (or
probability) of the sample values does not depend on 6,
knowing those individual sample values cannot be of help in
determining 0.

» All information about @ is then contained in § = S(X).

The concept of sufficiency (1)

» To obtain estimators, we have made use of a statistic, a
function of the sample.

> Are we losing something?

> Or, could we do better looking individually at each sample
value, rather than to a summarizing function?

» Loose idea: when a statistic “squeezes all the juice” out of a
sample, it is sufficient.

» We have to formalize this “squeezing” property.

The concept of sufficiency (III)

> Let Xq,..., X, ~P(N). Let S = X; + -+ + X,. We know
S ~P(nX). Then
. fo(X - X)
f(X|S) = X5
)= s
[T/, e N/ X!
e—"(n\)>/S!
s s
XiIXo! oo X!

» Therefore, S (or any other 1-1 function of S) is sufficient for
A



The concept of sufficiency (V) The factorization theorem (1)

> As a further example, let's consider the ordered sample > If we can decompose the joint density (or probability) as a
X(l), R aX(n)- product,

» If sampled values are i.i.d., values may arise in any order. (X :0) = g(S(X);0) x h(X)

> Given Xq), ..., X(n), any order is equally likely, with where h()_f) does not depend on 6, then S is sufficient.

probability 1/n!, whichever the parameter(s) of the

distribution may be. > Quite easy to prove.

» Quite practical; we only have to see which function (or

> Therefore, X1y, ..., X(n) is always a sufficient statistic, i >
functions) of the sample “carry with them” the parameter 6.

although of little interest (it doesn't “compact” information).

The factorization theorem (1) The factorization theorem (I11)

» Take the Poisson case again. We have,
» MLE have "built in" sufficiency.

f;(()?; A) = H e X/ X! » Using the factorization theorem, to maximize the left hand
pale side of B . .

1 fo(X :0) =g(5(X);0) x h(X

2(S.)) i=1 as a function of ¢, we only need g(5(X);0);

N——— -
h(%) » The term h(X) is just a constant in the likelihood function.

» Clearly, S = Xy + ...+ X, is sufficient.



Some ill-behaved distributions

» Most distributions in common us have sufficient statistics for
their parameters.

» This is not always the case. Consider the Cauchy distribution
(aka t1) with location 6:

1 1

X 0) = = oe

» If you use the factorization theorem to look for sufficient

statistics, B . .
fx (X 0) = g(S(X);0) x h(X)

hard as you may try, you will at least need the ordered sample
(which is always a sufficient statistic).

» No further reduction is possible.
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