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Consistency (I) (reminder: probability limits)

I We say that the limit in probability of a sequence or random
variables {Zn} is Z if for any ε > 0, η > 0 there is N such
that for n > N:

P(|Zn − Z | < ε) ≥ 1− η

I In plain English: if taking sufficiently advanced terms of {Zn}
we can be within ε of Z with probability as close to 1 as we
wish.

I Compare with usual notion of limit in mathematical analysis.

I Usual notation is Zn
p→ Z or plim(Zn) = Z .



Consistency (II)

I θ̂n denotes an estimator of θ based on a sample of size n. For
instance, we might have

θ̂n =
X1 + X2 + . . .+ Xn

n

I θ̂n is consistent if θ̂n
p→ θ

I In plain English: if by increasing the sample size we can obtain
arbitrary precision with as close to 1 confidence as we choose.

I In general, consistency is the very least we ask for. (We want
to be rewarded for our effort in sampling!)

Consistency (III)

I We can usually show consistency by using; i) The laws of large
numbers, or ii) Tchebycheb inequality, among other ways.

I Consistency does not imply unbiasedness.

How can we have consistency and not unbiasedness?

Think of θ̂n taking the true value θ with probability 1− 1
n and the

value n with probability 1
n .

Consistency v́ıa Tchebychev inequality

Example: consistency of λ̂ = X as estimator of λ of a P(λ).

I We know E [λ̂] = λ and Var(λ̂) = λ/n.

I Then (Tchebycheff),

P(|λ̂− λ| < k
√
λ/n︸ ︷︷ ︸
ε

) ≥ 1− 1/k2︸ ︷︷ ︸
1−η

I Make your pick of 1− η as close to 1 as desired; whatever the
implied k, we only have to choose n large enough to make ε
as small as we wish.

Unbiasedness + variance→ 0 =⇒ consistency

I Again, simple application of Tchebychev’s inequality.

I Unbiasedness implies E (θ̂n) = θ.

P(|θ̂n − θ| < kσn︸︷︷︸
ε

≥ 1− 1/k2︸ ︷︷ ︸
1−η

I Let 1− η be as close to 1 as desired; whatever the implied k,
ε can be made small for large n, as σn → 0.

I If both variance and bias decrease to zero, we also have
consistency.



Consistency of moment estimators

I Moment estimators are usually consistent.

I Sketch of argument for a particular case:

m = α1(θ̂) = X

I If α1(θ̂) has a continuous inverse function, θ̂ = α−1
1 (X ).

I Now, convergence of X to m (law of large numbers) entails
convergence of θ̂ to θ:

plim(θ̂) = α−1
1 (plim(X )) = α−1

1 (m) = θ

I Notice: if α−1
q () were not continuous, X could be very close

of m and α−1
q (X ) not close to α−1

q (m) = θ.

Consistency is not everything!

I Consistency is an asymptotic property. It tells us what happen
when the sample size goes to infinity.

I In practice, we may be limited to small samples, and then the
consistency property offers little confort.

I Example: (artificial). In a P(λ),

λ̂n =

{
0 if n < 105.

X if n ≥ 105.

would be consistent (but pretty bad for sample sizes n below
105!).

I Consistency is reassuring, but we need to check for realistic
sample sizes (often through simulation).

Efficiency

I Among estimators which are both unbiased, it makes sense to
chose the one with smallest variance.

I For θ̂1 and θ̂2 both unbiased estimators of θ, we define
efficiency of θ̂1 relative to θ̂2 as:

Var(θ̂2)

Var(θ̂1)

I Assume Var(θ1) were the lowest attainable. Then, any
estimator with efficiency 1 relative to θ̂1 will be called
efficient.

I But, how do we find a θ̂1 which cannot be improved upon?

The Cramer-Rao bound

I It turns out that we do have a universal yardstick, under
regularity conditions (more on that later)

I For any unbiased θ̂ based on n observations under regularity
conditions:

Var(θ̂) ≥ 1

nI (θ)
;

this is the celebrated Cramer-Rao lower bound.

I I (θ) is the so-called Fisher information contained in one
observation, and is defined as:

I (θ) = E

(
∂ log f (x ; θ)

∂θ

)2



Intuition for Fisher information

I Why is I (θ) a measure of information?

I Imagine a given (fixed) x ;(
∂ log f (x ; θ)

∂θ

)2

measures how fast log f (x ; θ) changes in response to changes
in θ.

I If log f (x ; θ) were very flat, close values of θ would have
similar likelihood, and we would be very uncertain about the
“true”θ.

I If log f (x ; θ) changes fast, it gives much information about θ.

I If we average the derivative over possible values of X we have
Fisher information.

Efficient estimators and the Cramer-Rao bound

I Under regularity conditions, if

Var(θ̂) =
1

nI (θ)
;

the Cramer-Rao lower bound implies the unbiased θ̂ cannot be
improved upon by any other unbiased estimator. It is then
called efficient.

I We know what the optimum is before we start.

I No fear that there is a better estimator that just didn’t occur
to us!

The Cramer-Rao bound: historical notes

I Harald Cramér (1892-1985), swedish statistician, author of
the extremely influential Mathematical Methods of Statistics
(1946), still a good reading.

I C.R.Rao (1920-), a distinguished indian statistician. Aside
from the Cramer-Rao bound, other contributions like the
celebrated Rao-Blackwell theorem (in the same vein than the
Cramer-Rao bound, but more powerful).

I The original publications date of 1945 (Rao) and 1946
(Cramer).

What are those regularity conditions?

I Basically,

1. The support of the distribution does not depend on the
parameter. Example of violation: U(0, θ).

2. The log likelihood function “sufficiently smooth”: differentiable
and order of integration and differentiation interchangeable:

∂

∂θ
E (log f (x , θ)) = E

(
∂ log f (x , θ)

∂θ

)

I Failure of these conditions render unusable the Cramer-Rao
bound.



A trick to compute the Cramer-Rao bound.

I It turns out that

E

(
∂ log f (X , θ)

∂θ

)2

= −E

(
∂2 log f (X , θ)

∂θ2

)
I Either expression can be used to compute Fisher’s information

(the denominator of the Cramer-Rao bound).

I Usually best the second derivative, but sometimes looking at
the first we can easily compute its mean value.

The Cramer-Rao bound: examples (I)

We know X is unbiased for λ in a P(λ). Its variance is λ/n. Is
there anything better?

log f (X , λ) = −λ+ X log(λ)− log(X !)

∂ log f (X , λ)

∂λ
= −1 + X/λ =

(
X − λ
λ

)
E

(
X − λ
λ

)2

=
1

λ

The Cramer-Rao is

Var(λ̂) ≥ 1

n 1
λ

=
λ

n

so X is optimal in the unbiased class.

The Cramer-Rao bound: examples (II)

I We might have missed the fact that:

E

(
X − λ
λ

)2

=
1

λ
;

I In that case, taking the second derivative of(
X − λ
λ

)
would have readily given us 1/λ.

The Cramer-Rao bound: examples (III)

I Consider estimation of p in a binary distribution.

I Moment and MLE is p̂ = X with variance p(1− p)/n.

I We have,

log f (X , p) = X log(p) + (1− X ) log(1− p)

∂ log f (X , p)

∂p
=

X

p
− 1− X

1− p

E

(
X

p
− 1− X

1− p

)2

= E

(
X − p

p(1− p)

)2

=
1

p(1− p)

I The CR bound is then,

Var(p̂) ≥ 1

n 1
p(1−p)

=
p(1− p)

n

and p̂ = X is efficient.



Some facts about the Cramer-Rao bound

I The CR bound may not be attainable.

I What it says is that we can do no better. . .

I . . .not that we can do as well.

I Hence, estimators with efficiency 1 as defined previously, may
not exist.

I In general, the MLE reaches the CR lower bound, at least
asymptotically.

The concept of sufficiency (I)

I To obtain estimators, we have made use of a statistic, a
function of the sample.

I Are we losing something?

I Or, could we do better looking individually at each sample
value, rather than to a summarizing function?

I Loose idea: when a statistic “squeezes all the juice” out of a
sample, it is sufficient.

I We have to formalize this “squeezing” property.

The concept of sufficiency (II)

I If given a statistic S = S(~X ) the conditional density (or
probability)

f (~X |S) =
f~X (~X : θ)

fS(S ; θ)

is independent of θ, S(~X ) is said to be sufficient for θ.

I Motivation: if once we know S = S(~X ) the density (or
probability) of the sample values does not depend on θ,
knowing those individual sample values cannot be of help in
determining θ.

I All information about θ is then contained in S = S(~X ).

The concept of sufficiency (III)

I Let X1, . . . ,Xn ∼ P(λ). Let S = X1 + · · ·+ Xn. We know
S ∼ P(nλ). Then

f (~X |S) =
f~X (~X : λ)

fS(S ;λ)

=

∏n
i=1 e−λλXi/X1!

e−nλ(nλ)S/S!

=
S!

X1!X2! . . .Xn!
n−S

I Therefore, S (or any other 1-1 function of S) is sufficient for
λ.



The concept of sufficiency (IV)

I As a further example, let’s consider the ordered sample
X(1), . . . ,X(n).

I If sampled values are i.i.d., values may arise in any order.

I Given X(1), . . . ,X(n), any order is equally likely, with
probability 1/n!, whichever the parameter(s) of the
distribution may be.

I Therefore, X(1), . . . ,X(n) is always a sufficient statistic,
although of little interest (it doesn’t “compact” information).

The factorization theorem (I)

I If we can decompose the joint density (or probability) as a
product,

f~X (~X : θ) = g(S(~X ); θ)× h(~X )

where h(~X ) does not depend on θ, then S is sufficient.

I Quite easy to prove.

I Quite practical; we only have to see which function (or
functions) of the sample “carry with them” the parameter θ.

The factorization theorem (II)

I Take the Poisson case again. We have,

f~X (~X ;λ) =
n∏

i=1

e−λλXi/Xi !

= e−nλλX1+...+Xn︸ ︷︷ ︸
g(S,λ)

×
n∏

i=1

(1/Xi !)︸ ︷︷ ︸
h(~X )

I Clearly, S = X1 + . . .+ Xn is sufficient.

The factorization theorem (III)

I MLE have “built in” sufficiency.

I Using the factorization theorem, to maximize the left hand
side of

f~X (~X : θ) = g(S(~X ); θ)× h(~X )

as a function of θ, we only need g(S(~X ); θ);

I The term h(~X ) is just a constant in the likelihood function.



Some ill-behaved distributions

I Most distributions in common us have sufficient statistics for
their parameters.

I This is not always the case. Consider the Cauchy distribution
(aka t1) with location θ:

fX (x : θ) =
1

π

1

1 + (x − θ)2

I If you use the factorization theorem to look for sufficient
statistics,

f~X (~X : θ) = g(S(~X ); θ)× h(~X )

hard as you may try, you will at least need the ordered sample
(which is always a sufficient statistic).

I No further reduction is possible.
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