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The man who started it all

I Plato, 428BC-348BC. Philosopher,
disciple of Socrates, bulwark of
extreme idealism.

I Ideas are the “true” reality, of which
we see “shadows”. Cave myth.

I Empirical experience and ideas live
in different worlds.

I Western philosophy “. . .and endless
footnote to the work of Plato”.
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Plato may not have been quite right, but. . .

I . . . he raised some very important points.

I We think in terms of models.

I Geometry is a model of physical reality. Geometrical shapes
are idealized real objects.

I Models are pretty much like platonic ideas.

I Probability theory supplies a model for random phenomena.

What do you think “probability” is the model of?

Relative frequency. (But alternative interpretations.)

We formulate problems in terms of models

I Do seat belts reduce mortality in traffic accidents?

I Relative frequencies of deaths within the seat belt users and
non seat belt users keeps changing; they are “fluid”.

I We expect them to stabilize around fixed, “solid” probabilities:
that’s our model.

I Now we can ask ourselves: is the probability of death among
seat belt users smaller than in the other group?

Turning questions into statistical inference problems (I)

I Our models will usually be distributions, some of whose
parameters are unknown.

I Our questions can usually be phrased in terms of values of
those parameters.

I What is the average mortality for seat belt users?
⇔ What is pUsers? (estimation problem)

I Do seat belts reduce mortality in traffic accidents?
⇔ Is pUsers < pNonUsers? (hypothesis test problem)

I Other problems not quite fitting in either category (e.g.,
serialization)

I If model is “good”, answering questions about the model will
enlighten us about the real world.

Is all this that new?

I No, it isn’t.

I If you think for a moment, many previous examples were
phrased in a manner suggesting inferential problems.

Can you think of some instances?

Problem regarding cancer incidence in a school was abnormally
high.

Estimating the proportion of people who would vote for a
candidate.
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Turning questions into statistical inference problems (II)

I Notions such as independence relate to models, not to data.

I For instance, if we have

Hair color
Eye color Blonde (p.1) Brown (p.2)

Blue (p1.) 430 p11 180 p12

Brown (p2.) 123 p21 108 p22

“independence” means pi . × p.j = pij for all i , j .

I This has an intuitive meaning in terms of what we expect to
see in the data but is stated in terms of the model.

We are platonic after all

I Parameters are dancers, we can only glance at shadows.

I Parameters pertain to the population.

I The “shadows” we observe are empirical evidence available:
samples.

I A sample is a collection of elements generated by the
population, usually through random sampling.

I From what we observe in the sample, we infer properties of
the population, the model.

Point and interval estimation

I Sometimes we are content with a value “close” to the
(unattainable) value of the true parameter. Then we have a
problem of point estimation.

I Sometimes we want an interval that most of the time (with
given confidence) will cover the true value of the parameter.
This is an interval estimation problem.

I Common sense will sometimes guide us in choosing an
estimator. . .

I . . .but a more principled approach is desirable.

Samples and statistics

I A sample is a randomly chosen set from the population.

I Capital letters denote random values the members of the
sample can yield: ~X = (X1,X2, . . . ,Xn).

I Lower case letters, ~x = (x1, x2, . . . , xn), denote the actual,
fixed values obtained in a concrete sample taken.

I A statistic is a function of the sample: S = S(~X ) or s = s(~x).
Before the sample is taken, it is a random variable; after the
sample is taken, it becomes a number (or vector of numbers)
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Estimators and estimates

I An statistic designed to be “close” to the value of a parameter
is an estimator.

I The value it takes is an estimate.

I Example: X = (X1 + X2 + . . .+ Xn)/n is a (usually good)
estimator of the mean of a distribution. Given a concrete
sample x1, . . . , xn, x = 5.8 is an estimate.

I With different samples, the same estimator will produce
different estimates each time.

Methods for choosing point estimators

I What we choose as an estimator depends on our goals and
loss function (= how much cost errors).

I For didactical reasons, we will look first at some recipes, then
study their properties.

I Two important estimators:
I Method of moments.
I Method of maximum likelihood.

I Least squares method is a particular case of the method of
moments.

Method of moments (I)

I Equate moments of the distribution (usually function of
parameters) to sample moments.

I Solve for the parameters.

I Need as many equations as there are parameters.

I Example: P(λ), sample of n observations.

m = λ =
X1 + X2 + . . .+ Xn

n
= X

I Could also use,

λ+ λ2 =
1

n

n∑
i=1

X 2
i

Usually lower order moments best (and simpler).

Method of moments (II)

I Example: estimate m and σ2 of N(m, σ2).

I Now we need two equations:

m =
X1 + X2 + . . .+ Xn

n

σ2 + m2 =
1

n

n∑
i=1

X 2
i

from which

m̂ = X

σ̂2 =
1

n

n∑
i=1

X 2
i − X

2
=

1

n

n∑
i=1

(Xi − X )2
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Method of moments (III)

I Example: estimate θ in a U(0, θ).

I The mean is m = θ/2. Therefore,

θ

2
=

X1 + X2 + . . .+ Xn

n

θ̂ = 2X

I Not a particularly good estimator, as we will see.

Method of moments (IV)

I Example: estimate λ in a exp(λ).

I The mean is m = 1/λ. Therefore,

1

λ
=

X1 + X2 + . . .+ Xn

n

λ̂ =
1

X

Method of moments (V)

I Example: estimate a and r in a γ(a, r).

I Remember that m = r/a and σ2 = r/a2. Therefore,

r

a
=

X1 + X2 + . . .+ Xn

n

r

a2
+

r 2

a2
=

1

n

n∑
i=1

X 2
i

I We can solve for a and r to obtain:

â = r/X

r̂ =
X

2

n−1
∑n

i=1 X 2
i − X

−2

Method of maximum likelihood (I)

X1

X2

X3

X4

X5
X6

X1

X2

X3X4

X5

X6

I We are allowed to sample one of the two urns, but we are not
told which one it is. We pick one ball which happens to be
grey

What would be your guess?

Right urn, as it can generate grey balls more easily.
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Method of maximum likelihood (II)

I Logic underlying previous choice is maximum likelihood logic.

When confronted to two or more states of
nature which may have produced a given
evidence, we choose the one(s) with optimal
capability to generate such evidence.

I Both urns could generate a grey ball, but the second one does
so much more easily.

I Why assume that something “strange” has happened if we can
see the evidence as the outcome of something “common”?

Method of maximum likelihood (III)

I If joint density of a given sample is f (~x ; θ), θ ∈ Θ, we call
likelihood function f (~x ; θ) seen as a funcion of θ for given ~x .

I To maximize the likelihood is tantamount to choosing the θ
which gives maximum density to the observed sample.

I Maximizing θ is maximum likelihood estimate, θ̂MLE .

I f (~x ; θ) and log f (~x ; θ) both achieve their maximum for the
same value of θ. Usually easier to maximize the second.

Likelihood example: binomial distribution (I)

> n <- 10 ; x <- 7

> binom <- function(p) {

l <- choose(n,x) * p^x *

(1-p)^(n-x)

return(l)

}

> curve(binom,from=0.00,

to=1,n=200,

ylab="Likelihood",

xlab="p",

main="Binomial likelihood")

> abline(v=x/n,col="red")
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What would happen with different values of x and n?

Maximum always at x/n, sharper peak as n grows.

Likelihood example: binomial (II)
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px(1 − p)(n−x)

x/n = 0.7

Are the likelihood functions like density functions?

Clearly not; areas below change, not always 1.
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Example: MLE of p with x1, x2, . . . , xn i.i.d. b(p)

f (~x ; p) =
n∏

i=1

pxi (1− p)1−xi

log f (~x ; p) =
n∑

i=1

xi log(p) +

(
n −

n∑
i=1

xi

)
log(1− p)

∂ log f (~x ; p)

∂p
=

∑n
i=1 xi
p

−
n −

∑n
i=1 xi

1− p
= 0

p̂MLE =

∑n
i=1 xi
n

Do we need to know all x1, . . . , xn in order to compute the MLE?

Only
∑n

i=1 xi is necessary to compute the MLE.

Example: MLE of λ with x1, x2, . . . , xn i.i.d. P(λ)

f (~x ;λ) =
n∏

i=1

e−λλxi

xi !

log f (~x ;λ) = −nλ+
n∑

i=1

xi log(λ)−
n∑

i=1

log(xi !)

∂ log f (~x ;λ)

∂λ
= −n +

∑n
i=1 xi
λ

= 0

λ̂MLE =

∑n
i=1 xi
n

= x

Do we need to know all x1, . . . , xn in order to compute the MLE?

Only
∑n

i=1 xi is necessary to compute the MLE.

Example: MLE of m, σ2 with x1, . . . , xn i.i.d. N(m, σ2)

f (~x ; m, σ2) =
n∏

i=1

1

σ
√

2π
e−(xi−m)2/2σ2

log f (~x ; m, σ2) = −n

2
log(σ2)− n

2
log(2π)−

n∑
i=1

(xi −m)2

2σ2

∂ log f (~x ; m, σ2)

∂m
=

∑n
i=1(xi −m)

σ2
= 0

∂ log f (~x ; m, σ2)

∂σ2
= − n

2σ2
+

∑n
i=1(xi −m)2

2σ4
= 0

whence

m̂MLE =

∑n
i=1 xi
n

= x σ̂2
MLE =

∑n
i=1(xi − x)2

n

Do we need to know all x1, . . . , xn in order to compute the MLE?

Only
∑n

i=1 xi and
∑n

i=1(xi − x)2 necessary.

Example: MLE of θ with X1, . . . ,Xn i.i.d. U(0, θ)

I Likelihood function not as usual.

I Not differentiable.

I Pick maximum by inspection.

I x(1), . . . , x(n) called “order
statistics”.
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θ̂ = x(n)

Do we need to know all x1, . . . , xn in order to compute the MLE?

Only one (x(n), the largest) is necessary!
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Unbiasedness (I)
I θ̂ unbiased for θ means that E [θ̂] = θ.

Unbiased estimator
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Unbiasedness (II)
I In principle a desirable property. . .
I . . .but sometimes we may prefer a biased estimator.
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Which one would you prefer?

If squared error loss, we might prefer θ̂1, even if biased.

Unbiasedness (III)

I In a P(λ), λ̂ = X is unbiased.

I In a N(m, σ2), m̂ = X is unbiased.

I In a N(m, σ2), σ̂2
MLE = 1

n

∑n
i=1(Xi − X )2 is biased.

I σ̂2
∗ = 1

n−1

∑n
i=1(Xi − X )2 is unbiased; σ̂2

MLE is asymptotically
unbiased.

I In a exp(λ), λ̂ = 1
X

is biased;

E [λ̂] = E

[
1

X

]
6= 1

E [X ]

Unbiasedness (IV)

I Among two unbiased estimators, we would prefer the one with
smaller variance.

I If any of both are biased, we have to take this into account.

I One way is to select the one with minimum mean squared
error (MSE).

MSE(ĉ) = E [(ĉ − c)2]

= E [(ĉ − E (ĉ) + E (ĉ)− c)2]

= E [ĉ − E (ĉ]2 + E [E (ĉ)− c)]2

= σ2
ĉ + (bias(ĉ))2

What implicit assumption does MSE about gravity of estimation error?

“Twice as large, four times as bad.” Arbitrary, mathematically
convenient.
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