

- 1. Correctly answered questions give one point. There is only one correct answer to each question. Questions not correctly answered carry a penalty of -0.20 points, so it is better to leave a question unanswered rather than giving a wrong answer.
- 2. Our goal is to gauge your understanding and command of concepts learned during the course, not your visual sharpness. It is a fact, though, that in a multiple choice exam great attention has to be paid to the details. It is quite common that knowledgeable students waste their chances of a good grade because they do not pay sufficient attention to the precise wording of questions.

Please, do yourself a favour and read carefully before you answer!

- 3. It will probably help you to discard first answers that are clearly inadequate.
- 4. Students scoring 12 points or better in this exam will earn a full 0.75 points of their final grade.
- 5. The time scheduled for this exam is 1h.

Statistics Applied to Economics

Second Quiz, April, 27, 2012, Exam version: 1

Section 1. Multiple choice questions

- 1. Consider a χ^2 goodness-of-fit test to a two-parameter distribution which is totally specified (the parameters are known). If we have k classes, the null hypothesis of fit will be rejected at the α significance level if the test statistic Z verifies:
 - (a) $Z > \chi^2_{k-2+1, \alpha}$.
 - (b) $Z > \chi^2_{k-2-1, \alpha}$.
 - (c) $Z > \chi^2_{k+1, \alpha}$.
 - (d) $Z > \chi^2_{k-1, \alpha}$.
 - (e) All other answers are false.
- 2. You have two completely specifed hypothesis, H_0 y H_1 . When using a hypothesis test of H_0 versus H_1 , you might incur in two different kinds of error, whose probabilities are denoted by α and β . If the incorrect rejection of H_0 is very costly, and the non rejection of H_0 when H_1 is true has only a moderate cost, you would design a test: diseñarías un contraste:
 - (a) With very small α
 - (b) With very small β
 - (c) With very small 1β
 - (d) With $\alpha \approx 1$
 - (e) Using Neyman-Pearson's theorem, which automatically chooses the optimal combination of α and β

Last name:
First name:
DNI:
Group:
Instructor:

- 3. What is the mean and variance of \overline{X} obtained from a sample of n independent observations of a Poisson-distributed random variable $X \sim \mathcal{P}(\lambda)$?:
 - (a) $E(\overline{X}) = \lambda$ and $Var(\overline{X}) = \frac{\lambda}{n}$.
 - (b) $E(\overline{X}) = Var(\overline{X}) = \lambda.$
 - (c) $E(\overline{X}) = Var(\overline{X}) = \frac{\lambda}{n}$.
 - (d) $E(\overline{X}) = Var(\overline{X}) = n\lambda.$
- 4. The variance of an estimator is equal to its mean square error if:
 - (a) The estimator is unbiased
 - (b) The estimator is efficient (and only in this case).
 - (c) All other answers are false.
 - (d) The variance is equal to the square of the bias of the estimator
 - (e) The mean square error is equal to the square of the bias of the estimator

START OF A QUESTION BLOCK

- 5. The maximum likelihood estimation of p is:
 - (a) 0.8
 - (b) 0.2
 - (c) All other answers are false
 - (d) 0.5
 - $(e) \quad 0.1$
- 6. The moment estimator of p is:
 - (a) 0.8
 - (b) 0.2
 - (c) All other answers are false
 - (d) 0.5
 - $(e) \quad 0.1$
- 7. Let n_1 and n_2 be, respectively, the number of zeros and ones in an independent random sample of values of X. The maximum likelihood estimator of p is:
 - (a) $\frac{n_2}{n_1+n_2}$
 - (b) $\frac{n_1}{n_1+n_2}$
 - (c) $\frac{n_1+n_2}{m_1}$
 - (c) $\frac{1}{n_1}$

(d)
$$\frac{n_1 + n_2}{n_2}$$

(e) All other answers are false

END OF A QUESTION BLOCK

- 8. The capital city of Spain is:
 - (a) Paris.
 - (b) Pekín.
 - (c) Madrid.
 - (d) Kuala Lumpur.

- 9. You have two completely specified hypothesis, H_0 and H_1 . The most powerful test of H_0 versus H_1 with $\alpha = 0.03$ has an associated β (probability of type II error) of 0.18. In order to obtain a new test (with the same sample size) giving a power of 0.85, we will have to:
 - (a) Tolerate an increase of α .
 - (b) Tolerate a decrease of α .
 - (c) Fix $\beta = 0.85$
 - (d) Fix $\alpha + \beta = 0.85$
 - (e) All other answers are false.

START OF A QUESTION BLOCK

Let X be a random variable normally distributed, $X \sim N(m, \sigma^2)$, of unknown mean and variance. Consider the following two estimators, based on a sample of independent values fo size n:

$$\hat{m}_1 = \frac{X_1 + X_2 + \dots + X_n}{n - 1}$$

$$\hat{m}_2 = \frac{X_1 + X_2 + \dots + X_n}{n+1}$$

- 10. Which among \hat{m}_1 and \hat{m}_2 will be chosen, if our goal is to minimize $E(\hat{m}-m)^2$?
 - (a) \hat{m}_1 because it has smaller variance than \hat{m}_2
 - (b) \hat{m}_2 because it has smaller variance than \hat{m}_1
 - (c) \hat{m}_1 because its mean squared error is smaller than that of \hat{m}_2
 - (d) \hat{m}_2 because its mean squared error is smaller than that of \hat{m}_1
 - (e) All other answers are false

- 11. Which of the following is true:
 - (a) Both \hat{m}_1 and \hat{m}_2 are unbiased
 - (b) \hat{m}_1 is asimptotically unbiased and \hat{m}_2 is asimptotically biased
 - (c) Both \hat{m}_1 and \hat{m}_2 are asimptotically biased
 - (d) Both \hat{m}_1 are \hat{m}_2 consistent
 - (e) All other answers are false

12. It is though that the monthly number of units of a certain product consumed by a family follows the distribution specified in the table next:

A sample is taken providing 100 independent observations from such distribution. The sample mean and variance are 1.38 and 0.85. Using this information, the moment estimate of θ is:

- (a) 1.38
- (b) 0.15
- (c) 0.162
- (d) 0.85
- (e) All other answers are false
- 13. The sample mean, \bar{X} :
 - (a) Is an unbiased estimator of the population mean, m
 - (b) Is an biased estimator of the population mean, m
 - (c) All other answers are false
 - (d) It is not an estimator
 - (e) It is un unbiased estimator of the standard deviation, σ

- 14. We have two completely specified hypothesis, H_0 y H_1 , and using the Neyman-Pearson's theorem we design the most powerful test of size $\alpha = 0.01$ for a sample of size *n*. When we use it:
 - (a) The probability that H_0 is true is 0.01
 - (b) The probability of rejecting H_0 when, in fact, it is true, is 0.01.
 - (c) The power is 0.99.
 - (d) The probability of selecting H_1 when, in fact, H_1 is true, is 0.99.
 - (e) All other answers are false.
- 15. Let X be a random variable whose distributions depends on a unique parameter θ . We obtain the maximum likelihood estimation equating to zero:
 - (a) The likelihood function
 - (b) The log of the likelihood function
 - (c) The derivative of the log of the likelihood function with respect to θ
 - (d) The derivative of the log of the likelihood function with respect to X

START OF A QUESTION BLOCK

Let X a random variable whose probability density function is:

$$f(x,\theta) = \theta x^{\theta}, \quad 0 \le x \le 1, \quad \theta > 0$$

We wish to test $H_0: \theta = 1$ versus $H_1: \theta = 0.5$ using a sample of size 1.

- 16. The highest power critical region of a given size is of the form:
 - (a) [C, 1]
 - (b) [0, C]
 - (c) $(-\infty, 0]$
 - (d) $[C_1, C_2]$ with $0 < C_1 < C_2 < 1$
 - (e) All other answers are false

- 17. For a significance level of 5%, the most powerful critical region is:
 - (a) [0, 0.3162]
 - (b) $(-\infty, 0.5783]$
 - (c) [0, 0.5783]
 - (d) $[0.5783, +\infty)$
 - (e) $[0.3162, +\infty)$

- 18. The sample variance, $S^2 = \frac{\sum (x_i \overline{x})^2}{n}$:
 - (a) Is a biased estimator of the population variance, σ^2
 - (b) Is a unbiased estimator of the population variance, σ^2
 - (c) All other answers are false
 - (d) It is not an estimator
 - (e) It is un unbiased estimator of the standard deviation, σ
- 19. Which of the following things would be enough to know, in order to compute the α associated to a contrast of H_0 versus H_1 using a test statistic $S = S(\vec{X})$ and critical region C?
 - (a) The value of β .
 - (b) The distribution $F_X(x; H_1)$
 - (c) The distribution of S under H_0 .
 - (d) The distribution of S under H_1 .
 - (e) All other answers are false.

- 20. Which of the following statements is true regarding the moments and maximum like-lihood methods of estimation?
 - (a) Both give interval estimates, and may give the same result
 - (b) Both produce point estimates, and may give the same result
 - (c) Both produce point estimates, which are always different
 - (d) Both produce interval estimates, which are always different
 - (e) All other answers are false.
- 21. Which, if any, of the following equalities is **always** true? (Note: MSE = "mean square error", ECM in Spanish.)
 - (a) $MSE(\hat{\theta}) \leq Var(\hat{\theta})$
 - (b) $MSE(\hat{\theta}) = Var(\hat{\theta})$
 - (c) $MSE(\hat{\theta}) \ge Var(\hat{\theta})$
 - (d) All other answers are false.
- 22. An estimator $\hat{\theta}$ unbiased for θ , has variance 0.33/n (*n* is the sample size). It so happens that the Cramer-Rao lower bound for θ is 0.25/n. Clearly, $\hat{\theta}$ is:
 - (a) Consistent
 - (b) Efficient
 - (c) Of minimal MSE (mean square error)
 - (d) Of minimal MSE (mean square error), but not efficient
 - (e) Efficient, but not consistent

- 1. Correctly answered questions give one point. There is only one correct answer to each question. Questions not correctly answered carry a penalty of -0.20 points, so it is better to leave a question unanswered rather than giving a wrong answer.
- 2. Our goal is to gauge your understanding and command of concepts learned during the course, not your visual sharpness. It is a fact, though, that in a multiple choice exam great attention has to be paid to the details. It is quite common that knowledgeable students waste their chances of a good grade because they do not pay sufficient attention to the precise wording of questions.

Please, do yourself a favour and read carefully before you answer!

- 3. It will probably help you to discard first answers that are clearly inadequate.
- 4. Students scoring 12 points or better in this exam will earn a full 0.75 points of their final grade.
- 5. The time scheduled for this exam is 1h.

Answers for the exam of type $|\mathbf{1}|$

Section 1. Multiple choice questions

- 1. Consider a χ^2 goodness-of-fit test to a two-parameter distribution which is totally specified (the parameters are known). If we have k classes, the null hypothesis of fit will be rejected at the α significance level if the test statistic Z verifies:
 - (a) $Z > \chi^2_{k-2+1, \alpha}$.
 - (b) $Z > \chi^2_{k-2-1, \alpha}$.
 - (c) $Z > \chi^2_{k+1, \alpha}$.
 - (d) $Z > \chi^2_{k-1, \alpha}$.
 - (e) All other answers are false.
- 2. You have two completely specifed hypothesis, H_0 y H_1 . When using a hypothesis test of H_0 versus H_1 , you might incur in two different kinds of error, whose probabilities are denoted by α and β . If the incorrect rejection of H_0 is very costly, and the non rejection of H_0 when H_1 is true has only a moderate cost, you would design a test: diseñarías un contraste:
 - (a) With very small α
 - (b) With very small β
 - (c) With very small 1β
 - (d) With $\alpha \approx 1$
 - (e) Using Neyman-Pearson's theorem, which automatically chooses the optimal combination of α and β
- 3. What is the mean and variance of \overline{X} obtained from a sample of *n* independent observations of a Poisson-distributed random variable $X \sim \mathcal{P}(\lambda)$?:
 - (a) $\mathbf{E}(\overline{X}) = \lambda$ and $\operatorname{Var}(\overline{X}) = \frac{\lambda}{n}$.
 - (b) $E(\overline{X})=Var(\overline{X})=\lambda.$

(c)
$$E(\overline{X}) = Var(\overline{X}) = \frac{\lambda}{n}$$

(d) $E(\overline{X})=Var(\overline{X})=n\lambda.$

- 4. The variance of an estimator is equal to its mean square error if:
 - (a) The estimator is unbiased
 - (b) The estimator is efficient (and only in this case).
 - (c) All other answers are false.
 - (d) The variance is equal to the square of the bias of the estimator
 - (e) The mean square error is equal to the square of the bias of the estimator

START OF A QUESTION BLOCK

- 5. The maximum likelihood estimation of p is:
 - **(a)** 0.8
 - (b) 0.2
 - (c) All other answers are false
 - (d) 0.5
 - (e) 0.1
- 6. The moment estimator of p is:
 - (a) 0.8
 - (b) 0.2
 - (c) All other answers are false
 - (d) 0.5
 - (e) 0.1

- 7. Let n_1 and n_2 be, respectively, the number of zeros and ones in an independent random sample of values of X. The maximum likelihood estimator of p is:
 - (a) $\frac{n_2}{n_1+n_2}$
 - (b) $\frac{n_1}{n_1+n_2}$
 - (c) $\frac{n_1+n_2}{n_1}$
 - (d) $\frac{n_1 + n_2}{n_2}$
 - (α) n_2
 - (e) All other answers are false END OF A QUESTION BLOCK
- 8. The capital city of Spain is:
 - (a) Paris.
 - (b) Pekín.
 - (c) Madrid.
 - (d) Kuala Lumpur.
- 9. You have two completely specified hypothesis, H_0 and H_1 . The most powerful test of H_0 versus H_1 with $\alpha = 0.03$ has an associated β (probability of type II error) of 0.18. In order to obtain a new test (with the same sample size) giving a power of 0.85, we will have to:
 - (a) Tolerate an increase of α .
 - (b) Tolerate a decrease of α .
 - (c) Fix $\beta = 0.85$
 - (d) Fix $\alpha + \beta = 0.85$
 - (e) All other answers are false.

Let X be a random variable normally distributed, $X \sim N(m, \sigma^2)$, of unknown mean and variance. Consider the following two estimators, based on a sample of independent values fo size n:

$$\hat{m}_1 = \frac{X_1 + X_2 + \dots + X_n}{n-1}$$
$$\hat{m}_2 = \frac{X_1 + X_2 + \dots + X_n}{n+1}$$

- 10. Which among \hat{m}_1 and \hat{m}_2 will be chosen, if our goal is to minimize $E(\hat{m}-m)^2$?
 - (a) \hat{m}_1 because it has smaller variance than \hat{m}_2
 - (b) \hat{m}_2 because it has smaller variance than \hat{m}_1
 - (c) \hat{m}_1 because its mean squared error is smaller than that of \hat{m}_2
 - (d) \hat{m}_2 because its mean squared error is smaller than that of \hat{m}_1
 - (e) All other answers are false
- 11. Which of the following is true:
 - (a) Both \hat{m}_1 and \hat{m}_2 are unbiased
 - (b) \hat{m}_1 is asimptotically unbiased and \hat{m}_2 is asimptotically biased
 - (c) Both \hat{m}_1 and \hat{m}_2 are asimptotically biased
 - (d) Both \hat{m}_1 are \hat{m}_2 consistent
 - (e) All other answers are false

END OF A QUESTION BLOCK

12. It is though that the monthly number of units of a certain product consumed by a family follows the distribution specified in the table next:

A sample is taken providing 100 independent observations from such distribution. The sample mean and variance are 1.38 and 0.85. Using this information, the moment estimate of θ is:

- (a) 1.38
- (b) 0.15
- (c) 0.162
- $(d) \quad 0.85$
- (e) All other answers are false

- 13. The sample mean, \bar{X} :
 - (a) Is an unbiased estimator of the population mean, m
 - (b) Is an biased estimator of the population mean, m
 - (c) All other answers are false
 - (d) It is not an estimator
 - (e) It is un unbiased estimator of the standard deviation, σ
- 14. We have two completely specified hypothesis, H_0 y H_1 , and using the Neyman-Pearson's theorem we design the most powerful test of size $\alpha = 0.01$ for a sample of size *n*. When we use it:
 - (a) The probability that H_0 is true is 0.01
 - (b) The probability of rejecting H_0 when, in fact, it is true, is 0.01.
 - (c) The power is 0.99.
 - (d) The probability of selecting H_1 when, in fact, H_1 is true, is 0.99.
 - (e) All other answers are false.
- 15. Let X be a random variable whose distributions depends on a unique parameter θ . We obtain the maximum likelihood estimation equating to zero:
 - (a) The likelihood function
 - (b) The log of the likelihood function
 - (c) The derivative of the log of the likelihood function with respect to θ
 - (d) The derivative of the log of the likelihood function with respect to X

Let X a random variable whose probability density function is:

$$f(x,\theta) = \theta x^{\theta}, \quad 0 \le x \le 1, \quad \theta > 0$$

We wish to test $H_0: \theta = 1$ versus $H_1: \theta = 0.5$ using a sample of size 1.

- 16. The highest power critical region of a given size is of the form:
 - (a) [C, 1]
 - (b) [0, C]
 - (c) $(-\infty, 0]$
 - (d) $[C_1, C_2]$ with $0 < C_1 < C_2 < 1$
 - (e) All other answers are false
- 17. For a significance level of 5%, the most powerful critical region is:
 - (a) [0, 0.3162]
 - (b) $(-\infty, 0.5783]$
 - (c) [0, 0.5783]

(e)

- (d) $[0.5783, +\infty)$
 - $[0.3162, +\infty)$ END OF A QUESTION BLOCK
- 18. The sample variance, $S^2 = \frac{\sum (x_i \overline{x})^2}{n}$:
 - (a) Is a biased estimator of the population variance, σ^2
 - (b) Is a unbiased estimator of the population variance, σ^2
 - (c) All other answers are false
 - (d) It is not an estimator
 - (e) It is un unbiased estimator of the standard deviation, σ
- 19. Which of the following things would be enough to know, in order to compute the α associated to a contrast of H_0 versus H_1 using a test statistic $S = S(\vec{X})$ and critical region C?
 - (a) The value of β .
 - (b) The distribution $F_X(x; H_1)$
 - (c) The distribution of S under H_0 .
 - (d) The distribution of S under H_1 .
 - (e) All other answers are false.

- 20. Which of the following statements is true regarding the moments and maximum like-lihood methods of estimation?
 - (a) Both give interval estimates, and may give the same result
 - (b) Both produce point estimates, and may give the same result
 - (c) Both produce point estimates, which are always different
 - (d) Both produce interval estimates, which are always different
 - (e) All other answers are false.

- 21. Which, if any, of the following equalities is **always** true? (Note: MSE = "mean square error", ECM in Spanish.)
 - (a) $MSE(\hat{\theta}) \leq Var(\hat{\theta})$
 - (b) $MSE(\hat{\theta}) = Var(\hat{\theta})$
 - (c) $MSE(\hat{\theta}) \ge Var(\hat{\theta})$
 - (d) All other answers are false.
- 22. An estimator $\hat{\theta}$ unbiased for θ , has variance 0.33/n (*n* is the sample size). It so happens that the Cramer-Rao lower bound for θ is 0.25/n. Clearly, $\hat{\theta}$ is:
 - (a) Consistent
 - (b) Efficient
 - (c) Of minimal MSE (mean square error)
 - (d) Of minimal MSE (mean square error), but not efficient
 - (e) Efficient, but not consistent

- 1. Correctly answered questions give one point. There is only one correct answer to each question. Questions not correctly answered carry a penalty of -0.20 points, so it is better to leave a question unanswered rather than giving a wrong answer.
- 2. Our goal is to gauge your understanding and command of concepts learned during the course, not your visual sharpness. It is a fact, though, that in a multiple choice exam great attention has to be paid to the details. It is quite common that knowledgeable students waste their chances of a good grade because they do not pay sufficient attention to the precise wording of questions.

Please, do yourself a favour and read carefully before you answer!

- 3. It will probably help you to discard first answers that are clearly inadequate.
- 4. Students scoring 12 points or better in this exam will earn a full 0.75 points of their final grade.
- 5. The time scheduled for this exam is 1h.

Statistics Applied to Economics

Second Quiz, April, 27, 2012, Exam version: 2

Section 1. Multiple choice questions

- 1. Which of the following statements is true regarding the moments and maximum likelihood methods of estimation?
 - (a) Both give interval estimates, and may give the same result
 - (b) Both produce point estimates, and may give the same result
 - (c) Both produce point estimates, which are always different
 - (d) Both produce interval estimates, which are always different
 - (e) All other answers are false.
- 2. Consider a χ^2 goodness-of-fit test to a two-parameter distribution which is totally specified (the parameters are known). If we have k classes, the null hypothesis of fit will be rejected at the α significance level if the test statistic Z verifies:
 - (a) $Z > \chi^2_{k-2+1, \alpha}$.
 - (b) $Z > \chi^2_{k-2-1, \alpha}$.
 - (c) $Z > \chi^2_{k+1, \alpha}$.
 - (d) $Z > \chi^2_{k-1, \alpha}$.
 - (e) All other answers are false.

Last name:
First name:
DNI:
Group:
Instructor:

3. It is though that the monthly number of units of a certain product consumed by a family follows the distribution specified in the table next:

x_i	0	1	2	3
$P(x_i)$	θ	2θ	3θ	$1-6\theta$

A sample is taken providing 100 independent observations from such distribution. The sample mean and variance are 1.38 and 0.85. Using this information, the moment estimate of θ is:

- (a) 1.38
- (b) 0.15
- (c) 0.162
- (d) 0.85
- (e) All other answers are false

- 4. Let X be a random variable whose distributions depends on a unique parameter θ.
 We obtain the maximum likelihood estimation equating to zero:
 - (a) The likelihood function
 - (b) The log of the likelihood function
 - (c) The derivative of the log of the likelihood function with respect to θ
 - (d) The derivative of the log of the likelihood function with respect to X

- 5. You have two completely specified hypothesis, H_0 and H_1 . The most powerful test of H_0 versus H_1 with $\alpha = 0.03$ has an associated β (probability of type II error) of 0.18. In order to obtain a new test (with the same sample size) giving a power of 0.85, we will have to:
 - (a) Tolerate an increase of α .
 - (b) Tolerate a decrease of α .
 - (c) Fix $\beta = 0.85$
 - (d) Fix $\alpha + \beta = 0.85$
 - (e) All other answers are false.
- 6. The sample mean, \bar{X} :
 - (a) Is an unbiased estimator of the population mean, m
 - (b) Is an biased estimator of the population mean, m
 - (c) All other answers are false
 - (d) It is not an estimator
 - (e) It is un unbiased estimator of the standard deviation, σ

- 8. The moment estimator of p is:
 - (a) 0.8
 - (b) 0.2
 - (c) All other answers are false
 - (d) 0.5
 - (e) 0.1
- 9. Let n_1 and n_2 be, respectively, the number of zeros and ones in an independent random sample of values of X. The maximum likelihood estimator of p is:
 - (a) $\frac{n_2}{n_1+n_2}$
 - (b) $\frac{n_1}{n_1+n_2}$
 - (c) $\frac{n_1 + n_2}{n_1}$
 - (c) n_1
 - (d) $\frac{n_1 + n_2}{n_2}$
 - (e) All other answers are false

START OF A QUESTION BLOCK

- 7. The maximum likelihood estimation of p is:
 - (a) 0.8
 - (b) 0.2
 - (c) All other answers are false
 - (d) 0.5
 - (e) 0.1

- 10. The capital city of Spain is:
 - (a) Paris.
 - (b) Pekín.
 - (c) Madrid.
 - (d) Kuala Lumpur.
- 11. What is the mean and variance of \overline{X} obtained from a sample of n independent observations of a Poisson-distributed random variable $X \sim \mathcal{P}(\lambda)$?:
 - (a) $E(\overline{X}) = \lambda$ and $Var(\overline{X}) = \frac{\lambda}{n}$.
 - (b) $E(\overline{X})=Var(\overline{X})=\lambda$.
 - (c) $E(\overline{X}) = Var(\overline{X}) = \frac{\lambda}{n}$.
 - (d) $E(\overline{X}) = Var(\overline{X}) = n\lambda.$

- 12. The variance of an estimator is equal to its mean square error if:
 - (a) The estimator is unbiased
 - (b) The estimator is efficient (and only in this case).
 - (c) All other answers are false.
 - (d) The variance is equal to the square of the bias of the estimator
 - (e) The mean square error is equal to the square of the bias of the estimator

Let X a random variable whose probability density function is:

$$f(x,\theta) = \theta x^{\theta}, \quad 0 \le x \le 1, \quad \theta > 0$$

We wish to test $H_0: \theta = 1$ versus $H_1: \theta = 0.5$ using a sample of size 1.

- 13. The highest power critical region of a given size is of the form:
 - (a) [C, 1]
 - (b) [0, C]
 - (c) $(-\infty, 0]$
 - (d) $[C_1, C_2]$ with $0 < C_1 < C_2 < 1$
 - (e) All other answers are false
- 14. For a significance level of 5%, the most powerful critical region is:
 - (a) [0, 0.3162]
 - (b) $(-\infty, 0.5783]$
 - (c) [0, 0.5783]
 - (d) $[0.5783, +\infty)$

(e)
$$[0.3162, +\infty)$$

END OF A QUESTION BLOCK

- 15. Which, if any, of the following equalities is **always** true? (Note: MSE = "mean square error", ECM in Spanish.)
 - (a) $MSE(\hat{\theta}) \leq Var(\hat{\theta})$
 - (b) $MSE(\hat{\theta}) = Var(\hat{\theta})$
 - (c) $MSE(\hat{\theta}) \ge Var(\hat{\theta})$
 - (d) All other answers are false.

START OF A QUESTION BLOCK

Let X be a random variable normally distributed, $X \sim N(m, \sigma^2)$, of unknown mean and variance. Consider the following two estimators, based on a sample of independent values fo size n:

$$\hat{m}_1 = \frac{X_1 + X_2 + \dots + X_n}{n-1}$$
$$\hat{m}_2 = \frac{X_1 + X_2 + \dots + X_n}{n+1}$$

- 16. Which among \hat{m}_1 and \hat{m}_2 will be chosen, if our goal is to minimize $E(\hat{m}-m)^2$?
 - (a) \hat{m}_1 because it has smaller variance than \hat{m}_2
 - (b) \hat{m}_2 because it has smaller variance than \hat{m}_1
 - (c) \hat{m}_1 because its mean squared error is smaller than that of \hat{m}_2
 - (d) \hat{m}_2 because its mean squared error is smaller than that of \hat{m}_1
 - (e) All other answers are false
- 17. Which of the following is true:
 - (a) Both \hat{m}_1 and \hat{m}_2 are unbiased
 - (b) \hat{m}_1 is asimptotically unbiased and \hat{m}_2 is asimptotically biased
 - (c) Both \hat{m}_1 and \hat{m}_2 are asimptotically biased
 - (d) Both \hat{m}_1 are \hat{m}_2 consistent
 - (e) All other answers are false END OF A QUESTION BLOCK

- 18. You have two completely specifed hypothesis, H_0 y H_1 . When using a hypothesis test of H_0 versus H_1 , you might incur in two different kinds of error, whose probabilities are denoted by α and β . If the incorrect rejection of H_0 is very costly, and the non rejection of H_0 when H_1 is true has only a moderate cost, you would design a test: diseñarías un contraste:
 - (a) With very small α
 - (b) With very small β
 - (c) With very small 1β
 - (d) With $\alpha \approx 1$
 - (e) Using Neyman-Pearson's theorem, which automatically chooses the optimal combination of α and β

- 19. An estimator $\hat{\theta}$ unbiased for θ , has variance 0.33/n (*n* is the sample size). It so happens that the Cramer-Rao lower bound for θ is 0.25/n. Clearly, $\hat{\theta}$ is:
 - (a) Consistent
 - (b) Efficient
 - (c) Of minimal MSE (mean square error)
 - (d) Of minimal MSE (mean square error), but not efficient
 - (e) Efficient, but not consistent

- 20. The sample variance, $S^2 = \frac{\sum (x_i \overline{x})^2}{n}$:
 - (a) Is a biased estimator of the population variance, σ^2
 - (b) Is a unbiased estimator of the population variance, σ^2
 - (c) All other answers are false
 - (d) It is not an estimator
 - (e) It is un unbiased estimator of the standard deviation, σ
- 21. We have two completely specified hypothesis, H_0 y H_1 , and using the Neyman-Pearson's theorem we design the most powerful test of size $\alpha = 0.01$ for a sample of size *n*. When we use it:
 - (a) The probability that H_0 is true is 0.01
 - (b) The probability of rejecting H_0 when, in fact, it is true, is 0.01.
 - (c) The power is 0.99.
 - (d) The probability of selecting H_1 when, in fact, H_1 is true, is 0.99.
 - (e) All other answers are false.
- 22. Which of the following things would be enough to know, in order to compute the α associated to a contrast of H_0 versus H_1 using a test statistic $S = S(\vec{X})$ and critical region C?
 - (a) The value of β .
 - (b) The distribution $F_X(x; H_1)$
 - (c) The distribution of S under H_0 .
 - (d) The distribution of S under H_1 .
 - (e) All other answers are false.

- 1. Correctly answered questions give one point. There is only one correct answer to each question. Questions not correctly answered carry a penalty of -0.20 points, so it is better to leave a question unanswered rather than giving a wrong answer.
- 2. Our goal is to gauge your understanding and command of concepts learned during the course, not your visual sharpness. It is a fact, though, that in a multiple choice exam great attention has to be paid to the details. It is quite common that knowledgeable students waste their chances of a good grade because they do not pay sufficient attention to the precise wording of questions.

Please, do yourself a favour and read carefully before you answer!

- 3. It will probably help you to discard first answers that are clearly inadequate.
- 4. Students scoring 12 points or better in this exam will earn a full 0.75 points of their final grade.
- 5. The time scheduled for this exam is 1h.

Answers for the exam of type 2

Section 1. Multiple choice questions

3. It is though that the monthly number of units of a certain product consumed by a family follows the distribution specified in the table next:

x_i	0	1	2	3
$P(x_i)$	θ	2θ	3θ	$1\text{-}6\theta$

A sample is taken providing 100 independent observations from such distribution. The sample mean and variance are 1.38 and 0.85. Using this information, the moment estimate of θ is:

- (a) 1.38
- (b) 0.15
- (c) 0.162
- (d) 0.85
- (e) All other answers are false
- 1. Which of the following statements is true regarding the moments and maximum likelihood methods of estimation?
 - (a) Both give interval estimates, and may give the same result
 - (b) Both produce point estimates, and may give the same result
 - (c) Both produce point estimates, which are always different
 - (d) Both produce interval estimates, which are always different
 - (e) All other answers are false.
- 2. Consider a χ^2 goodness-of-fit test to a two-parameter distribution which is totally specified (the parameters are known). If we have k classes, the null hypothesis of fit will be rejected at the α significance level if the test statistic Z verifies:
 - (a) $Z > \chi^2_{k-2+1, \alpha}$.
 - (b) $Z > \chi^2_{k-2-1, \alpha}$.
 - (c) $Z > \chi^2_{k+1, \alpha}$.
 - (d) $Z > \chi^2_{k-1, \alpha}$.
 - (e) All other answers are false.

- 4. Let X be a random variable whose distributions depends on a unique parameter θ.
 We obtain the maximum likelihood estimation equating to zero:
 - (a) The likelihood function
 - (b) The log of the likelihood function
 - (c) The derivative of the log of the likelihood function with respect to θ
 - (d) The derivative of the log of the likelihood function with respect to X

- 5. You have two completely specified hypothesis, H_0 and H_1 . The most powerful test of H_0 versus H_1 with $\alpha = 0.03$ has an associated β (probability of type II error) of 0.18. In order to obtain a new test (with the same sample size) giving a power of 0.85, we will have to:
 - (a) Tolerate an increase of α .
 - (b) Tolerate a decrease of α .
 - (c) Fix $\beta = 0.85$
 - (d) Fix $\alpha + \beta = 0.85$
 - (e) All other answers are false.
- 6. The sample mean, \bar{X} :
 - (a) Is an unbiased estimator of the population mean, m
 - (b) Is an biased estimator of the population mean, m
 - (c) All other answers are false
 - (d) It is not an estimator
 - (e) It is un unbiased estimator of the standard deviation, σ

- 8. The moment estimator of p is:
 - (a) 0.8
 - (b) 0.2
 - (c) All other answers are false
 - (d) 0.5
 - (e) 0.1
- 9. Let n_1 and n_2 be, respectively, the number of zeros and ones in an independent random sample of values of X. The maximum likelihood estimator of p is:
 - (a) $\frac{n_2}{n_1+n_2}$
 - (b) $\frac{n_1}{n_1+n_2}$
 - (c) $\frac{n_1 + n_2}{n_1}$
 - (C) n_1
 - (d) $\frac{n_1 + n_2}{n_2}$
 - (e) All other answers are false

START OF A QUESTION BLOCK

- 7. The maximum likelihood estimation of p is:
 - **(a)** 0.8
 - (b) 0.2
 - (c) All other answers are false
 - (d) 0.5
 - (e) 0.1

- 10. The capital city of Spain is:
 - (a) Paris.
 - (b) Pekín.
 - (c) Madrid.
 - (d) Kuala Lumpur.
- 11. What is the mean and variance of \overline{X} obtained from a sample of n independent observations of a Poisson-distributed random variable $X \sim \mathcal{P}(\lambda)$?:
 - (a) $\mathbf{E}(\overline{X}) = \lambda$ and $\operatorname{Var}(\overline{X}) = \frac{\lambda}{n}$.
 - (b) $E(\overline{X})=Var(\overline{X})=\lambda$.
 - (c) $E(\overline{X}) = Var(\overline{X}) = \frac{\lambda}{n}$.
 - (d) $E(\overline{X}) = Var(\overline{X}) = n\lambda.$

- 12. The variance of an estimator is equal to its mean square error if:
 - (a) The estimator is unbiased
 - (b) The estimator is efficient (and only in this case).
 - (c) All other answers are false.
 - (d) The variance is equal to the square of the bias of the estimator
 - (e) The mean square error is equal to the square of the bias of the estimator

Let X a random variable whose probability density function is:

$$f(x,\theta) = \theta x^{\theta}, \quad 0 \le x \le 1, \quad \theta > 0$$

We wish to test $H_0: \theta = 1$ versus $H_1: \theta = 0.5$ using a sample of size 1.

- 13. The highest power critical region of a given size is of the form:
 - (a) [C, 1]
 - (b) [0, C]
 - (c) $(-\infty, 0]$
 - (d) $[C_1, C_2]$ with $0 < C_1 < C_2 < 1$
 - (e) All other answers are false
- 14. For a significance level of 5%, the most powerful critical region is:
 - (a) [0, 0.3162]
 - (b) $(-\infty, 0.5783]$
 - (c) [0, 0.5783]
 - (d) $[0.5783, +\infty)$

(e)
$$[0.3162, +\infty)$$

END OF A QUESTION BLOCK

- 15. Which, if any, of the following equalities is **always** true? (Note: MSE = "mean square error", ECM in Spanish.)
 - (a) $MSE(\hat{\theta}) \leq Var(\hat{\theta})$
 - (b) $MSE(\hat{\theta}) = Var(\hat{\theta})$
 - (c) $MSE(\hat{\theta}) \ge Var(\hat{\theta})$
 - (d) All other answers are false.

START OF A QUESTION BLOCK

Let X be a random variable normally distributed, $X \sim N(m, \sigma^2)$, of unknown mean and variance. Consider the following two estimators, based on a sample of independent values fo size n:

$$\hat{m}_1 = \frac{X_1 + X_2 + \dots + X_n}{n-1}$$
$$\hat{m}_2 = \frac{X_1 + X_2 + \dots + X_n}{n+1}$$

- 16. Which among \hat{m}_1 and \hat{m}_2 will be chosen, if our goal is to minimize $E(\hat{m}-m)^2$?
 - (a) \hat{m}_1 because it has smaller variance than \hat{m}_2
 - (b) \hat{m}_2 because it has smaller variance than \hat{m}_1
 - (c) \hat{m}_1 because its mean squared error is smaller than that of \hat{m}_2
 - (d) \hat{m}_2 because its mean squared error is smaller than that of \hat{m}_1
 - (e) All other answers are false
- 17. Which of the following is true:
 - (a) Both \hat{m}_1 and \hat{m}_2 are unbiased
 - (b) \hat{m}_1 is asimptotically unbiased and \hat{m}_2 is asimptotically biased
 - (c) Both \hat{m}_1 and \hat{m}_2 are asimptotically biased
 - (d) Both \hat{m}_1 are \hat{m}_2 consistent
 - (e) All other answers are false END OF A QUESTION BLOCK

- 18. You have two completely specifed hypothesis, H_0 y H_1 . When using a hypothesis test of H_0 versus H_1 , you might incur in two different kinds of error, whose probabilities are denoted by α and β . If the incorrect rejection of H_0 is very costly, and the non rejection of H_0 when H_1 is true has only a moderate cost, you would design a test: diseñarías un contraste:
 - (a) With very small α
 - (b) With very small β
 - (c) With very small 1β
 - (d) With $\alpha \approx 1$
 - (e) Using Neyman-Pearson's theorem, which automatically chooses the optimal combination of α and β

- 19. An estimator $\hat{\theta}$ unbiased for θ , has variance 0.33/n (*n* is the sample size). It so happens that the Cramer-Rao lower bound for θ is 0.25/n. Clearly, $\hat{\theta}$ is:
 - (a) Consistent
 - (b) Efficient
 - (c) Of minimal MSE (mean square error)
 - (d) Of minimal MSE (mean square error), but not efficient
 - (e) Efficient, but not consistent

- 20. The sample variance, $S^2 = \frac{\sum (x_i \overline{x})^2}{n}$:
 - (a) Is a biased estimator of the population variance, σ^2
 - (b) Is a unbiased estimator of the population variance, σ^2
 - (c) All other answers are false
 - (d) It is not an estimator
 - (e) It is un unbiased estimator of the standard deviation, σ
- 21. We have two completely specified hypothesis, H_0 y H_1 , and using the Neyman-Pearson's theorem we design the most powerful test of size $\alpha = 0.01$ for a sample of size *n*. When we use it:
 - (a) The probability that H_0 is true is 0.01
 - (b) The probability of rejecting H_0 when, in fact, it is true, is 0.01.
 - (c) The power is 0.99.
 - (d) The probability of selecting H_1 when, in fact, H_1 is true, is 0.99.
 - (e) All other answers are false.
- 22. Which of the following things would be enough to know, in order to compute the α associated to a contrast of H_0 versus H_1 using a test statistic $S = S(\vec{X})$ and critical region C?
 - (a) The value of β .
 - (b) The distribution $F_X(x; H_1)$
 - (c) The distribution of S under H_0 .
 - (d) The distribution of S under H_1 .
 - (e) All other answers are false.