- 1. Obtén razonadamente la expresión $\sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}$ para la matriz de covarianzas de los $\hat{\boldsymbol{\beta}}$.
- 2. Muestra que el estadístico

$$Q_h = \frac{(SSE_h - SSE)/q}{SSE/N - p}$$

se reduce, en el caso particular en que la hipótesis a contrastar es $H_0: \beta_1 = \beta_2 = \ldots = \beta_{p-1} = 0$, a:

$$\frac{N-p}{p-1} \times \frac{R^2}{1-R^2}$$

- 3. "Cuando una observación es muy influyente sobre uno o varios de los parámetros β , ello se manifiesta indefectiblemente en un residuo MCO grande." Comenta la afirmación anterior.
- 4. Los errores de especificación —ajustar modelos que no son el "correcto"— tienen efectos diversos: es diferente ajustar un modelo con parámetros "de más" que ajustar un modelo omitiendo algún regresor. Explica brevemente cuales son las consecuencias de ambos errores.

Estadística: Modelos Lineales

Final Enero 2.005, Tipo: A

Sección 1. Cuestiones de elección múltiple

- 1. ¿Qué efecto secundario nocivo tiene el incrementar *k* en regresión *ridge*?
 - (a) Todo falso.
 - (b) Aumentar las varianzas de los estimadores.
 - (c) Aumentar el sesgo de los estimadores.
 - (d) Hacer el cálculo más costoso.
- 2. ¿Cuando es inadecuada la inclusión de una columna de "unos" entre los regresores?
 - (a) Cuando el número de grados de libertad es relativamente elevado.
 - (b) Cuando las escalas de los regresores sean muy similares.
 - (c) Cuando *sabemos* que el hiperplano de regresión pasa por el origen.
 - (d) Cuando las escalas de los regresores sean muy diferentes.
- 3. ¿Cuando decimos que un modelo de Análisis de Varianza (ANOVA) con un tratamiento es equilibrado?
 - (a) Cuando no favorece a ninguna de las hipótesis estudiadas.
 - (b) Cuando cada nivel del único tratamiento considerado se ensaya el mismo número de veces..
 - (c) Cuando el número de replicaciones es superior a 1.
 - (d) Cuando la perturbación es momoscedástica.

Apellidos y Nombre:	
DNI:	
DNI:	
Grupo:	
Profesor ·	

- 4. ¿Cuál de los siguientes criterios es sustancialmente similar a la C_p de Mallows?
 - (a) Criterio GCV.
 - (b) Criterio AIC.
 - (c) Criterio OLS.
 - (d) Criterio R^2 corregida.
- Cuando añadimos una columna de "unos" como regresor a un modelo que no la tenía, en general:
 - (a) Se modificarán las estimaciones de todos los parámetros asociados a los restantes regresores.
 - (b) Los estimadores de los restantes parámetros permanecerán inalterados.
 - (c) $\hat{\sigma}^2$ no varía.
 - (d) SSE y SSR no varían, pero SST puede hacerlo.
- 6. Al estimar un modelo calculas N residuos externamente studentizados, que, como sabes, se distribuyen como t_{N-p-1} . Sea $t_{N-p-1}^{\alpha/2}$ el cuantil de dicha distribución dejando a su derecha una probabilidad de $\alpha/2$. La probabilidad de que uno de los residuos exceda en valor absoluto de dicho valor es:
 - (a) $\alpha/2$.
 - (b) α .
 - (c) Menor que $\alpha/2$.
 - (d) Mayor que α .
 - (e) Todo falso.

- 7. El teorema conocido como de Gauss-Markov asegura:
 - (a) Que de entre todos los estimadores lineales e insesgados de los β , ninguno proporciona varianzas menores que el $\hat{\beta}$ mínimo-cuadrático.
 - (b) Que de entre todos los estimadores lineales e insesgados de los β , ninguno proporciona varianzas menores que el $\hat{\beta}$ mínimo-cuadrático, con la única excepción del estimador ridge.
 - (c) Que no hay ningún estimador, ni siquiera no lineal, de domine en términos de ECM al MCO.
 - (d) Que de entre todos los estimadores lineales de los β , ninguno proporciona varianzas menores que el $\hat{\beta}$ mínimocuadrático.
- 8. La distancia de Cook se calcula:
 - (a) Para cada observación.
 - (b) Para el modelo estimado en su conjunto.
 - (c) Para cada regresor
 - (d) Nada de lo anterior.

- 9. El criterio C_p de Mallows calcula para cada modelo candidato el estadístico:
 - (a) SSE + 2p.
 - (b) $\frac{\text{SSE}}{\sigma^2} + 2p$.
 - (c) $\frac{\text{SSE}}{\hat{\sigma}^2} + 2p$.
 - (d) Todo falso.
- 10. Un modelo está jerárquicamente bien estructurado...
 - (a) Cuando el número de grados de libertad es máximo.
 - (b) Cuando incluye columna de "unos".
 - (c) Cuando verifica restricciones de marginalidad: la ausencia de un efecto implica la de todas las interacciones en las que dicho efecto tomaría parte.
 - (d) Cuando el diseño es ortogonal y equilibrado.

Respuestas al examen de tipo A

Sección 1. Cuestiones de elección múltiple

- 1. ¿Qué efecto secundario nocivo tiene el incrementar *k* en regresión *ridge*?
 - (a) Todo falso.
 - (b) Aumentar las varianzas de los estimadores
 - (c) Aumentar el sesgo de los estimadores.
 - (d) Hacer el cálculo más costoso.
- 2. ¿Cuando es inadecuada la inclusión de una columna de "unos" entre los regresores?
 - (a) Cuando el número de grados de libertad es relativamente elevado.
 - (b) Cuando las escalas de los regresores sean muy similares.
 - (c) Cuando *sabemos* que el hiperplano de regresión pasa por el origen.
 - (d) Cuando las escalas de los regresores sean muy diferentes.
- 3. ¿Cuando decimos que un modelo de Análisis de Varianza (ANOVA) con un tratamiento es equilibrado?
 - (a) Cuando no favorece a ninguna de las hipótesis estudiadas.
 - (b) Cuando cada nivel del único tratamiento considerado se ensaya el mismo número de veces..
 - (c) Cuando el número de replicaciones es superior a 1.
 - (d) Cuando la perturbación es momoscedástica.
- 4. ¿Cuál de los siguientes criterios es sustancialmente similar a la C_p de Mallows?
 - (a) Criterio GCV.
 - (b) Criterio AIC.
 - (c) Criterio OLS.
 - (d) Criterio R^2 corregida.

- Cuando añadimos una columna de "unos" como regresor a un modelo que no la tenía, en general:
 - (a) Se modificarán las estimaciones de todos los parámetros asociados a los restantes regresores.
 - (b) Los estimadores de los restantes parámetros permanecerán inalterados.
 - (c) $\hat{\sigma}^2$ no varía.
 - (d) SSE y SSR no varían, pero SST puede hacerlo.

- 6. Al estimar un modelo calculas N residuos externamente studentizados, que, como sabes, se distribuyen como t_{N-p-1} . Sea $t_{N-p-1}^{\alpha/2}$ el cuantil de dicha distribución dejando a su derecha una probabilidad de $\alpha/2$. La probabilidad de que uno de los residuos exceda en valor absoluto de dicho valor es:
 - (a) $\alpha/2$.
 - (b) α .
 - (c) Menor que $\alpha/2$.
 - (d) Mayor que α .
 - (e) Todo falso.

- 7. El teorema conocido como de Gauss-Markov asegura:
 - (a) Que de entre todos los estimadores lineales e insesgados de los β , ninguno proporciona varianzas menores que el $\hat{\beta}$ mínimo-cuadrático.
 - (b) Que de entre todos los estimadores lineales e insesgados de los β , ninguno proporciona varianzas menores que el $\hat{\beta}$ mínimo-cuadrático, con la única excepción del estimador ridge.
 - (c) Que no hay ningún estimador, ni siquiera no lineal, de domine en términos de ECM al MCO.
 - (d) Que de entre todos los estimadores lineales de los β , ninguno proporciona varianzas menores que el $\hat{\beta}$ mínimocuadrático.
- 8. La distancia de Cook se calcula:
 - (a) Para cada observación.
 - (b) Para el modelo estimado en su conjunto.
 - (c) Para cada regresor
 - (d) Nada de lo anterior.

- 9. El criterio C_p de Mallows calcula para cada modelo candidato el estadístico:
 - (a) SSE + 2p.
 - (b) $\frac{\text{SSE}}{\sigma^2} + 2p$.
 - (c) $\frac{\text{SSE}}{\hat{\sigma}^2} + 2p$.
 - (d) Todo falso.
- 10. Un modelo está jerárquicamente bien estructurado...
 - (a) Cuando el número de grados de libertad es máximo.
 - (b) Cuando incluye columna de "unos".
 - (c) Cuando verifica restricciones de marginalidad: la ausencia de un efecto implica la de todas las interacciones en las que dicho efecto tomaría parte.
 - (d) Cuando el diseño es ortogonal y equilibrado.