INSTRUCTIONS

- 1. The exam contains multiple choice questions that must be answered in the orange code sheet we have provided you with, together with three exercises that must be answered in detail in separate sheets of paper.
- 2. To select an answer, all you need to do is mark in the orange code sheet, filling the rectangle over which the selected answer is located appropriately. Please make sure you know the answer you wish to mark before doing it. Even though you can always erase your mark if you have used a pencil (number 2 or similar), any mark that has not been completely erased could be read by the machine. Therefore, we advice you to first mark your selected answers in the exam and to use only the last ten minutes or so from the time assigned to the multiple choice questions-part of the exam to copy them into the code sheet.
- 3. In the multiple choice questions-part of the exam there is always **only one correct answer** for every question. Every question correctly answered is worth 1 point, while each question incorrectly answered will penalize your grade by 0.2 points. Questions that have not been answered do not penalize your grade in any form.
- 4. Each one of the exercises, A, B and C, must be answered in a separate sheet of paper. We will collect the different parts of the exam at the indicated times and in this order: first, we will collect the code sheet for the multiple choice questions part of the exam and, then, and in this order, exercises A, B and C will be collected.
- 5. The exam has six numbered sheets, going from 0.1 to 0.6. Please make sure that you have all sheets and contact your professor if this is not the case. There are different exam types. This exam is of type 0. Mark a 0 in the column labelled with I in your code sheet, just as is illustrated in the example.
- 6. The maximum final grade for each of the parts of the exam (i.e., the multiple choice questions part and the exercises part) is 30 points.
- 7. Please fill in your personal information in the appropriate places both in the code sheet and in the sheets provided for the exercises. In "Resit" (column II) you will write the number of times you have registered for an exam in this course not including this one.

Example: Exam type 0 PEREZ, Ernesto 12545 Resit CUESTION NUMERO D.N.L./N.A.N NUMERO / ZENBAKIA DEL ALUMNO കിക **a** • σ**ρ** σφο Ф Ф. a Ð of the 1 Φ o co 0 **a** 4 Ф Ф Ф ф d) ф Ф Ф 4 фl Ф Ф 4 ф Ф 2 2 2 **2**0 2 2 **2** 卆 ආ **2 2** 2 **2 ್ತಾ 2** 2 3 යු 3 3 3 3 3 30 c**g**p 3 \$ 3 3 3 3 3 ENSEÑANZA **⊄**⊅ æ **4** OFICIAL 4 op o **4**0 **4 4** LIBRE **4** 4 **4** 4 **4** ZΦ. **α**‡ο **4 4 5** 5 **ජා** ජා **5** ් **\$** ඡ 3 5⊃ **\$ 45** \$ \$ **(5**) \$ **5 o**\$⊃ **® ® ®** o**6**⊳ 460 6 96 **\$**⊃ ₫≎ o⊚ o⊕ œ d6 d6⊃ 4 **6 4 ₽** ➾ æ Þ 4 Ф ⊅ 4 ⊅ ⊅ ⊅ ⊅ 7 7 7 æ oservaciones 8 **a**∌⊳ \$₽ 480 **&** ණ 480 **d**₽ æ 480 **\$**₽ 40 **®** 48⊃ **æ ₫** o**8**o 4 c go **d** ф. 9 90 **\$** æ 9 **@ .g**o QΦ

MULTIPLE CHOICE QUESTIONS (Time: 1 hour and 45 minutes)

1. FREE-QUESTION. The capital of Spain is:

(A) Paris

(B) Sebastopol

(C) Madrid

(D) London

(E) Pekin

Questions 2 to 5 refer to the following exercise:

The weight in kilograms for calves that are sold in a given farm follows a normal $N(250, \sigma^2 = 36)$ distribution. Calves weighing at least 257.68 kilograms are considered suitable to be sold in the farm. We assume independence between the weights for the different calves. Remark: When computing the probability of a calf being suitable to be sold in the farm, you should round this probability up to one decimal place.

2. If a random sample of 15 calves is taken from that farm, the probability that at least 4 of them are suitable to be sold in the farm is:

(A) 0.9873

(B) 0.9444

(C) 0.0556

(D) 0.1285

(E) 0.0127

3. In the same sample of 15 calves, the probability that exactly 11 calves are not suitable to be sold in the farm is:

(A) 0.0429

(B) 0.9873

(C) 0

(D) 1

(E) 0.0127

4. If we now take a random sample of 50 calves from that farm, the approximate probability that at most 6 of them are suitable to be sold in the farm is:

(A) 0.3840

(B) 0.6160

(C) 0.7622

(D) 0.8666

(E) 0.2378

5. If we now take a random sample of 200 calves from that farm, the approximate probability that at least 25 of them are suitable to be sold in the farm is:

(A) 0.5793

(B) 0.8810

(C) 0.4207

(D) 0.1446

(E) 0.8554

Questions 6 and 7 refer to the following exercise:

Let X_1, \ldots, X_{20} be independent and identically distributed r.v. having a Poisson distribution and such that their modes are 4 and 5.

6. $P(X_1 > 6)$ is equal to:

(A) 0.2378

(B) 0.8893

(C) 0.6160

(D) 0.1107

(E) 0.7622

7. If we define the random variable $Y = \sum_{i=1}^{20} X_i$, then P(Y < 110) is, approximately equal to:

(A) 0.17

(B) 1

(C) 0.83

(D) 0.68

(E) 0.32

8. If we have a r.v. X having a Poisson distribution with variance equal to 6, we have that:

(A) P(X = 6) = P(X = 7) (B) P(X = 6) < P(X = 7)

(D) P(X = 5) > P(X = 6)

(E) P(X = 6) = P(X = 5)

Questions 9 and 10 refer to the following exercise:

Let X and Y be independent r.v. such that $X \in \chi_5^2$ and $Y \in \chi_{15}^2$.

	(A) 0.95	(B) 0.50	(C) 0.90	(D) 0.75	(E) 0.25	
10. If w	we define the r.v. $V =$	$=\frac{Y}{2N}$. The value of	k such that $P(V)$	> k) = 0.90 is equa	l to:	
				(D) 0.31	(E) 0.44	
	X be a random variet $P(t_{\overline{n} 1-\frac{\alpha}{2}} < X < t_{\overline{n}})$		ent's t distribution	on with n degrees o	of freedom, $t_{\overline{n} }$. We	have
	(A) $1-2\alpha$	(B) $1 - 3\alpha$	(C) 2α	(D) $1 - \alpha$	(E) α	
	X be a normal randoqual to:	om variable with me	ean zero and varia	ance equal to 2. We	have that $P(X^2 <$	7.68)
	(A) 0.05	(B) 0.75	(C) 0.995	(D) 0.005	(E) 0.95	
Quest	tions 13 to 17 refer	r to the following	exercise:			
Let	X_1, \ldots, X_n be a r.s.	taken from a popu	lation with proba	ability mass function	a given by:	
		P(X=1) = P(X=1)	$X = 2) = 2\theta, P($	$(X=3) = 1 - 4\theta$		
13. The	e method of moments		_	o 		
	(A) $\frac{X+3}{6}$	(B) $\frac{2\overline{X}-3}{6}$	(C) X	(D) $\frac{3-X}{6}$	(E) All false	
14. Is t	his an unbiased estim	nator of θ ?				
	(A) Yes	(B) -	(C) -	(D) -	(E) No	
15 Ta 4	hia a consistent ostin	estan of 02				
10. IS t.	his a consistent estim		(0)	(D) W	(D) N	
	(A) -	(B) -	(C) -	(D) Yes	(E) No	
	order to be able to obtailts: 1, 1, 1, 2, 2, 2, 3					owing
	(A) 0.10	(B) 0.85	(C) 0.20	(D) 0.25	(E) 0.15	
17. For	the same sample in	the previous questic	on, a maximum li	ikelihood estimate o	f θ is equal to:	
	(A) 0.15	(B) 0.85	(C) 0.10	(D) 0.25	(E) 0.20	
Quest	ions 18 to 21 refe	r to the following	exercise:			
-	X be a r.v. having ϵ			t its probability den	sity function is give	en by
		$f(x,\theta) =$	$\begin{cases} \frac{x^3}{6\theta^4} e^{-\frac{x}{\theta}} & \text{if } x \ge 0 \\ 0 & \text{other} \end{cases}$	rwise		

9. The probability that the r.v. Z = X + Y takes on values smaller than 23.8 is:

We wish to estimate the parameter θ and, thus, a r.s. of size n, X_1, X_2, \dots, X_n , has been taken.

21. Is the	method of mome	ents estimator a con	sistent estimator o	f θ ?	
	(A) -	(B) -	(C) -	(D) Yes	(E) No
Question	ns 22 and 23 r	efer to the follow	ing exercise:		
Let X	be a r.v. with p	robability density fu	unction given by:		
		$f(x,\theta)$	$= \frac{1}{\theta} e^{-\frac{x}{\theta}}, x \ge 0,$	$\theta > 0$	
		tion provided by a alternative hypothe		X_1 , we wish to te	est the null hypothesis
22. The m	ost powerful crit	cical region for this	sest, and for X_1 , w	ill be of the form:	
	(A) $[C, \infty)$	(B) $[C_1, C_2]^C$	(C) All false	(D) $[C_1, C_2]$	(E) $[0, C]$
23. At the	$\alpha = 0.05 \text{ significant } $	cance level, the pow	er for this test is, a	approximately equal	to:
	(A) 0.7764	(B) 0.9512	(C) 0.2236	(D) 0.0488	(E) 0.3678
Question	ns 2 4 and 2 5 r	efer to the follow	ing exercise:		
				er λ . In order to test t statistic $Z = \sum_{i=1}^{8}$	$H_0: \lambda = 0.50$ against X_i is used.
24. At the	$\alpha = 0.10 \text{ significant } \alpha = 0.10 sign$	cance level, the test	will reject the null	hypothesis if:	
	(A) $Z \ge 6$	(B) $Z \ge 8$	(C) $Z \ge 7$	(D) $Z \le 7$	(E) $Z \le 8$
25. For th	e previous critica	al region and $\lambda = 1$,	the power for this	test is equal to:	
	(A) 0.4075	(B) 0.3134	(C) 0.5925	(D) 0.4530	(E) 0.5470
Question	ns 26 and 27 r	efer to the follow	ing exercise:		
studen taken for ma	ats are different from and average gradules $(n_M = 16)$: δ e normality for the state of the	or males and female less tudents obtained $\bar{x}_M = 5.2$ and $s_M = 5.2$	s. In order to do so d in that course are 0.8, whereas for fe	o, two r.s. of student e computed, providin males $(n_F=16)$: \bar{x}_F	ades obtained by their s from each gender are generated the following results: $= 5.8$ and $s_F = 1$. We obtained by males and
			$-\ 0.4\ -$		

18. The maximum likelihood estimator of $\theta,\,\hat{\theta}_{ML},$ will be:

19. The method of moments estimator of $\theta,\,\hat{\theta}_{MM},$ will be:

(B) $\frac{\overline{X}}{4}$

20. Is the method of moments estimator an unbiased estimator of θ ?

(B) -

(A) \overline{X}

(A) $4\overline{X}$

(A) Yes

(B) $\frac{\overline{X}}{4}$

(C) $\frac{\overline{X}}{2}$

(C) \overline{X}

(C) -

(D) $4n\overline{X}$

(D) $4n\overline{X}$

(D) -

(E) $4\overline{X}$

(E) $\frac{\overline{X}}{2}$

(E) No

Ų٠	iestions 28 and 29 re	efer to the following	ng exercise:		
:	behave in a different wa prices are homogeneous	by for different neighbors. Let A and B be two is, $N_A = N_B$. In a	oorhoods and the vo specific neigh ddition, it is kn	at, within each of the borhoods under stud own that, from infor	e that this variable may se neighborhoods, house y, each having the same mation obtained from a
28.	If we use proportional a	allocation, the sample	e sizes n_A and r	n_B will be such that:	
	(A) $n_A < n_B$	(B) All false	(C) No	decision can be adop	oted
	(D) n	$n_A > n_B$	(E	$(2) n_A = n_B$	
29.	If we use <i>n</i> -optimal allo	ocation, the sample s	izes n_A and n_B	will be such that:	
	(A) $n_A = n_B$	(B) Al	l false	(C) $n_A < n_B$	
	(D) $n_A > n_A$	B	(E) No decision	n can be adopted	
•	would be interested in b this proportion with a 9 number of libraries tha	buying a new dictional 95% confidence level at would need to be set	ry of specialized and an absolute elected if simple	Economic terms. The error of ± 0.03 . What random sampling wi	e firm wishes to estimate would be the minimum th replacement is used?
	(A) 880	(B) 543	(C) 1068	(D) 733	(E) 147

-0.5 -

26. A 90% confidence interval for the ratio of variances σ_M^2/σ_F^2 is:

(D) (0.1538, 1.0456)

(A) Do not reject H_0

(B) (0.1818, 2.2528)

obtained by males and females are equal, the decision for the test will be:

(B) -

27. If, at the 10% significance level, we wish to test the null hypothesis that the variances for the grades

(C) (0.4456, 1.7565)

(D) -

(E) -

(E) (0.3249, 1.2608)

(C) Reject H_0

(A) (0.2667, 1.5360)

EXERCISES (Time: 75 minutes)

A. (10 points, 25 minutes)

Let X_1, \ldots, X_n be a r.s. of size n taken from a r.v. X having probability density function given by:

$$f(x, \alpha, \theta) = \frac{\alpha}{4\theta^{\frac{\alpha}{4}}} x^{\frac{\alpha}{4} - 1} \qquad 0 < x \le \theta, \qquad \theta, \alpha > 0,$$

and such that its mean is $m = \frac{\theta \alpha}{(\alpha + 4)}$.

- i) If it is assumed that θ is known, obtain, **providing all relevant details**, the method of moments estimator of the parameter α .
- ii) If it is assumed that θ is known, obtain, **providing all relevant details**, the maximum likelihood estimator of the parameter α .
- iii) If it is assumed that α is known, obtain, **providing all relevant details**, the maximum likelihood estimator of the parameter θ .

B. (10 points, 25 minutes)

A sample of 500 firms has been classified according to the time they have been in business (more than 10 years and 10 or fewer years) and their size (number of employees smaller than or equal to 50 and larger than 50), providing the following information:

	≤ 50 employees	> 50 employees	
≤ 10 years > 10 years	100 95	105 200	

Based on this information, and at the 5% significance level, carry out a test of independence between the variables time in business and firm size.

C. (10 points, 25 minutes)

The following table includes information on the probability mass function a discrete r.v. X has under the null hypothesis $(P_0(x))$ and under the alternative hypothesis $(P_1(x))$.

X	1	2	3	4	5	6
$P_0(x)$	0.05	0.45	0	0.10	0.40	0
$P_1(x)$	0.15	0	0.35	0.20	0	0.30

A random sample of size n = 1 will be used to test the null hypothesis $H_0: P(x) = P_0(x)$ against the alternative hypothesis $H_1: P(x) = P_1(x)$.

- i) Would you include the points $X = \{3, 6\}$ in the critical region? Explain why or why not.
- ii) Would you include the points $X = \{2, 5\}$ in the critical region? Explain why or why not.
- iii) At the 10% significance level and providing all relevant details used to obtain the requires response, find the most powerful critical region for this test. **Remark**: Before providing an answer to this item, take into account your responses to the previous items in this exercise.

SOLUTIONS TO MULTIPLE CHOICE QUESTIONS (exam type 0)

1: C	11: A	21: D
2: C	12: E	22: A
3: A	13: D	23: C
4: C	14: A	24: B
5: D	15: D	25: E
6: A	16: E	26: A
7: C	17: A	27: A
8: E	18: B	28: E
9: D	19: B	29: D
10: E	20: A	30: C

SOLUTIONS TO EXERCISES

Exercise A

The probability density function for the r.v. X is:

$$f(x, \alpha, \theta) = \frac{\alpha}{4\theta^{\frac{\alpha}{4}}} x^{\frac{\alpha}{4} - 1} \qquad 0 < x \le \theta, \qquad \theta, \alpha > 0,$$

i) If θ is known, in order to be able to obtain the method of moments estimator of the parameter α , we need to equate the first population moment $\alpha_1 = \mathrm{E}(X) = m = \frac{\theta \alpha}{(\alpha + 4)}$ to the first sample moment. That is,

$$\alpha_1 = \mathrm{E}(X) = a_1 \Longrightarrow \frac{\alpha \theta}{(\alpha + 4)} = \overline{X} \Longrightarrow \alpha(\theta - \overline{X}) = 4\overline{X} \Longrightarrow \hat{\alpha}_{\mathrm{MM}} = \frac{4\overline{X}}{(\theta - \overline{X})}$$

ii) If θ is known, in order to be able the maximum likelihood estimator of the parameter α , we have that likelihood function is given by:

$$L(\vec{x},\alpha) = f(x_1,\alpha) \dots f(x_n,\alpha) = \left(\frac{\alpha}{4\theta^{\frac{\alpha}{4}}} x_1^{\frac{\alpha}{4}-1}\right) \cdots \left(\frac{\alpha}{4\theta^{\frac{\alpha}{4}}} x_n^{\frac{\alpha}{4}-1}\right) = \frac{\alpha^n}{4^n \theta^{\frac{n\alpha}{4}}} \left(\prod_{i=1}^n x_i\right)^{\frac{\alpha}{4}-1}$$

If we take its natural logarithm, we have that:

$$\ln L(\vec{x}, \alpha) = n \ln(\alpha) - n \ln(4) - \left(\frac{n\alpha}{4}\right) \ln(\theta) + \left(\frac{\alpha}{4} - 1\right) \ln \left[\prod_{i=1}^{n} x_i\right]$$

If we take derivatives with respect to α and make it equal to zero, we have that:

$$\frac{\partial \ln L(\vec{x}, \alpha)}{\partial \alpha} = \frac{n}{\alpha} - \frac{n}{4} \ln(\theta) + \frac{\ln \left[\prod_{i=1}^{n} x_i \right]}{4} = 0$$

so that,

$$\frac{n}{\alpha} = \left(\frac{n}{4}\right) \ln(\theta) - \frac{\ln\left[\prod_{i=1}^{n} x_i\right]}{4} \Longrightarrow \hat{\alpha}_{\mathrm{ML}} = \frac{4n}{\left\{n \ln(\theta) - \ln\left[\prod_{i=1}^{n} x_i\right]\right\}}$$

iii) If α is known, in order to be able to obtain the maximum likelihood estimator of the parameter θ , we have that the likelihood function is given by:

$$L(\vec{x},\theta) = f(x_1,\theta) \dots f(x_n,\theta) = \left(\frac{\alpha}{4\theta^{\frac{\alpha}{4}}} x_1^{\frac{\alpha}{4}-1}\right) \dots \left(\frac{\alpha}{4\theta^{\frac{\alpha}{4}}} x_n^{\frac{\alpha}{4}-1}\right) = \frac{\alpha^n}{4^n \theta^{\frac{n\alpha}{4}}} \left(\prod_{i=1}^n x_i\right)^{\frac{\alpha}{4}-1},$$

for $0 < x_i \le \theta$, i = 1, ..., n. From this, we have that, for the likelihood function to be different from zero, we must have that, for all i = 1, ..., n, $0 < x_i \le \theta$, and this holds if $0 < \max(x_i) \le \theta$. Therefore, the maximum likelihood estimator of θ should satisfy the condition $\hat{\theta}_{\text{MV}} \ge \max(x_i)$, so that the minimum value that it can take for this condition to hold is equal to $\max(x_i)$. Thus, the maximum likelihood estimator of θ will be $\hat{\theta}_{\text{ML}} = \max(x_i)$.

Exercise B

The information available for this exercise is included in the following table:

	≤ 50 employees	> 50 employees	
≤ 10 years > 10 years	100 95	105 200	205 295
	195	305	n = 500

We should perform a test of independence. More specifically, we have to test the null H_0 : the time the firms have been in business and their size are independent variables, against the alternative hypothesis H_1 : They are not. First of all, we have to estimate the probabilities for each one of the classes for each one of the two variables whose independence we wish to test. That is:

$$P(\le 10) = 205/500 = 0.41, \ P(>10) = 295/500 = 0.59$$

$$P(\le 50) = 195/500 = 0.39, \ P(> 50) = 305/500 = 0.61$$

Under the null hypothesis of independence, we have that the joint probability will be equal to the product of its corresponding marginal probabilities. That is, $H_0: p_{ij} = p_{i\bullet} \times p_{\bullet j}$. Therefore, with the information provided by the sample and the estimated marginal probabilities above, we build the table that will allow us to perform the test.

Class	n_{ij}	\hat{p}_{ij}	$n\hat{p}_{ij}$	$rac{(n_{ij}\!-\!n\hat{p}_{ij})^2}{n\hat{p}_{ij}}$
$(\leq 10 \text{ years}, \leq 50 \text{ employees})$	100	$0.41 \times 0.39 = 0.1599$	79.95	5.0282
$(\leq 10 \text{ years}, > 50 \text{ employees})$	105	$0.41 \times 0.61 = 0.2501$	125.05	3.2147
$(> 10 \text{ years}, \le 50 \text{ employees})$	95	$0.59 \times 0.39 = 0.2301$	115.05	3.4942
(> 10 years, > 50 employees)	200	$0.59 \times 0.61 = 0.3599$	179.95	2.2340
	n = 500	1	n = 500	z = 13.9711

We know that, under the null hypothesis, the test statistic Z converges to a $\chi^2_{(I-1)(J-1)}$ distribution, where I is the number of rows in the table (i.e., I=2) and J is the number of columns in the table (i.e., J=2). At the 5% significance level, the decision will be to reject the null hypothesis if

$$z > \chi^2_{1,0.05}$$

Given that

$$z = 13.9711 > \chi^2_{1.0.05} = 3.84,$$

we reject the null hypothesis and, thus, the time firms have been in business and their size are not independent variables.

Exercise C

We wish to test the null hypothesis that X is a discrete r.v. with probability mass function $P_0(x)$ against the alternative hypothesis that its probability mas function is $P_1(x)$:

X	1	2	3	4	5	6
$P_0(x)$	0.05	0.45	0	0.10	0.40	0
$P_1(x)$	0.15	0	0.35	0.20	0	0.30

We have taken a r.s. of size n = 1; that is, we observe X.

i) Would you include the points $X \in \{3, 6\}$ in the critical region?

Given that, for the probability mass function $P_0(x)$ under the null hypothesis, these points have probability zero, the r.v. can not take on these values under the null hypothesis. Therefore, the points $X \in \{3,6\}$ are points that lead to the rejection of H_0 and, thus, they should **always** be included in the critical region.

ii) Would you include the points $X \in \{2,5\}$ in the critical region?

Given that, for the probability mass function $P_1(x)$ under the alternative hypothesis, these points have probability zero, the r.v. can not take on these values under the alternative hypothesis, but it can take on them under the null hypothesis. Therefore, the points $X \in \{2,5\}$ are points that lead to the no rejection of H_0 and, thus, they should **never** be included in the critical region.

iii) At the $\alpha = 0.10$ significance level and using the conclusions we have arrived at in the previous items of this exercise, we have that the two possible critical regions for this test are $CR_1 = \{1, 3, 6\}$ and $CR_2 = \{3, 4, 6\}$. This is because, for the type I error for each of them, we have that:

$$P(X \in CR_1|P_0) = P(X = 1, 3, 6|P_0) = 0.05 + 0 + 0 = 0.05 \le \alpha = 0.10$$

 $P(X \in CR_2|P_0) = P(X = 3, 4, 6|P_0) = 0 + 0.10 + 0 = 0.10 \le \alpha = 0.10$

In order to see which one of these two critical regions is the most powerful one for this test, we compute their corresponding powers:

Power₁ =
$$P(X \in CR_1|P_1) = P(X = 1, 3, 6|P_1) = 0.15 + 0.35 + 0.30 = 0.80$$

Power₂ = $P(X \in CR_2|P_1) = P(X = 3, 4, 6|P_1) = 0.35 + 0.20 + 0.30 = 0.85$

From the above, we conclude that, at the $\alpha = 0.10$ significance level, the critical region CR₂ is the most powerful one for this test.