INSTRUCCIONES

- 1. El examen consta de cuestiones, que se responden sobre la hoja de codificación proporcionada, y problemas, que se responden en papel aparte.
- 2. Para escoger una respuesta, basta efectuar una marca rellenando debidamente el rectángulo sobre el que está la letra escogida en la hoja de codificación. Piénsalo antes; aunque puedes borrar si escribes con lápiz (número 2 o similar), marcas que no estén perfectamente borradas pueden ser leídas. Te aconsejamos que señales sobre el formulario de examen las respuestas que te parezcan adecuadas, y emplees los últimos diez minutos del tiempo asignado en transcribirlas a la hoja de codificación.
- 3. Hay siempre, en las preguntas de elección múltiple, una **única** respuesta correcta. Todas las cuestiones correctamente resueltas valen 1 punto mientras que las fallidas suponen una penalización de 0.2 puntos. Las preguntas no contestadas no suponen penalización.
- 4. Cada uno de los problemas, A, B y C debe responderse en una hoja de papel diferente. La recogida se producirá escalonadamente, en los momentos que constarán en la pizarra; primero, la hoja de codificación, y luego los problemas A, B, y C en este orden.
- 5. El formulario de examen tiene seis hojas numeradas correlativamente al pie (del 0.1 al 0.6). Cerciórate de recibirlas todas, y reclama si tu formulario fuera incompleto. Hay distintos tipos de examen. Este es del tipo 0; marca un 0 en la columna I de tu hoja de codificación, como en el ejemplo.
- 6. Los puntos obtenibles en cuestiones y problemas son 30 y 30 respectivamente. Son precisos 15 y 15 para superar el examen. Cuestionarios con puntuaciones iguales o superiores a 14 pueden en algún caso ser compensados por una buena nota en los problemas.
- 7. Rellena tus datos en la hoja de codificación y pliegos de papel suministrados. En "Convocatorias" (columna II) pondrás el número de convocatorias consumidas *incluyendo ésta*.

emp	

2545 PEREZ, Ernesto

Examen tipo 0 Convocatorias

CUESTIONES (Duración: 1 hora 30 minutos)

	1. PREGUNTA-REGALO. La capital de España es:								
	(A) París	(B) Sebastopol	(C) Madrie	d (D) Londre	s (E) Pekín				
-									
	s cuestiones 2 a 4		_						
					ribución $N(10, \sigma^2 = 4)$. Se en el intervalo (8,12).				
	Si en un periodo det aceptables es:	erminado se han pr	oducido 100 pieza	as, la distribución ex	acta del número de piezas				
	(A) $b(0.6826, 100)$	(B) $P(\lambda = 68.26)$	(C) Todo falso	(D) $N(1000, \sigma^2 = 4$	(E) $b(0.3174, 100)$				
3.	En ese periodo de tie	empo, el número esp	perado de piezas a	ceptables producida	s por el taller es:				
	(A) 31.74	(B) 50.34	(C) 68.26	(D) 84.13	(E) 15.87				
4.	La probabilidad apro	oximada de que en e	ese periodo de tier	npo se rechacen má	ás de 20 piezas es:				
	(A) 0.01	(B) 0.50	(C) 0.76	(D) 0.99	(E) 0.24				
La	s cuestiones 5 a 8	haaan nafananaia	1	• 1					
	s cuestiones o a o	nacen referencia	al siguiente eni	ıncıado:					
		es que acuden por r	ninuto a una det		sigue una distribución de				
	El número de cliente Poisson con media ig	es que acuden por r gual a 0.80. Se asum	minuto a una det ne independencia.		sigue una distribución de				
	El número de cliente Poisson con media ig La(s) moda(s) de est	es que acuden por r gual a 0.80. Se asum a distribución es (se	minuto a una det ne independencia.	erminada gasolinera					
	El número de cliente Poisson con media ig La(s) moda(s) de est	es que acuden por r gual a 0.80. Se asum	minuto a una det ne independencia.		sigue una distribución de ${\rm (E)}~2~{\rm y}~3$				
5.	El número de cliente Poisson con media ig La(s) moda(s) de est (A) 0 y 1	es que acuden por r gual a 0.80. Se asum a distribución es (so (B) 1	minuto a una det ne independencia. on): (C) 0	erminada gasolinera (D) 1 y 2	(E) 2 y 3				
5.	El número de cliente Poisson con media ig La(s) moda(s) de est (A) 0 y 1 La probabilidad de q	es que acuden por r gual a 0.80. Se asum a distribución es (so (B) 1	minuto a una det de independencia. (C) 0 udan a la gasolino	erminada gasolinera (D) 1 y 2 era más de dos client	(E) 2 y 3 ses es:				
5.	El número de cliente Poisson con media ig La(s) moda(s) de est (A) 0 y 1	es que acuden por r gual a 0.80. Se asum a distribución es (so (B) 1	minuto a una det ne independencia. on): (C) 0	erminada gasolinera (D) 1 y 2	(E) 2 y 3				
5. 16. 1	El número de cliente Poisson con media ig La(s) moda(s) de est (A) 0 y 1 La probabilidad de q (A) 0.0474	es que acuden por regual a 0.80. Se asum a distribución es (so (B) 1 que en un minuto ac (B) 0.1912	minuto a una det de independencia. (C) 0 udan a la gasolino (C) 0.4493	erminada gasolinera (D) 1 y 2 era más de dos client (D) 0.8088	(E) 2 y 3 ses es: (E) 0.9526				
5. 16. 1	El número de cliente Poisson con media ig La(s) moda(s) de est (A) 0 y 1 La probabilidad de q (A) 0.0474	es que acuden por regual a 0.80. Se asum a distribución es (so (B) 1 que en un minuto ac (B) 0.1912 que en el transcurso	minuto a una det de independencia. (C) 0 udan a la gasolino (C) 0.4493 de 10 minutos ac	erminada gasolinera (D) 1 y 2 era más de dos client (D) 0.8088 udan como mucho 5	(E) 2 y 3 ses es: (E) 0.9526 clientes es:				
5. 16. 1	El número de cliente Poisson con media ig La(s) moda(s) de est (A) 0 y 1 La probabilidad de q (A) 0.0474	es que acuden por regual a 0.80. Se asum a distribución es (so (B) 1 que en un minuto ac (B) 0.1912	minuto a una det de independencia. (C) 0 udan a la gasolino (C) 0.4493	erminada gasolinera (D) 1 y 2 era más de dos client (D) 0.8088	(E) 2 y 3 ses es: (E) 0.9526				
5. 16. 17. 1	El número de cliente Poisson con media ig La(s) moda(s) de est (A) 0 y 1 La probabilidad de q (A) 0.0474 La probabilidad de q (A) 0.8088	es que acuden por regual a 0.80. Se asum a distribución es (se (B) 1 que en un minuto ac (B) 0.1912 que en el transcurso (B) 0.3841	minuto a una det de independencia. (C) 0 udan a la gasolina (C) 0.4493 de 10 minutos ac (C) 0.0996	erminada gasolinera (D) 1 y 2 era más de dos client (D) 0.8088 udan como mucho 5 (D) 0.1912	(E) 2 y 3 see es: (E) 0.9526 clientes es: (E) 0.6159				
5. 16. 17. 1	El número de cliente Poisson con media ig La(s) moda(s) de est (A) 0 y 1 La probabilidad de q (A) 0.0474 La probabilidad de q (A) 0.8088	es que acuden por regual a 0.80. Se asum a distribución es (so (B) 1 que en un minuto ac (B) 0.1912 que en el transcurso (B) 0.3841 eximada de que en un	minuto a una det de independencia. (C) 0 udan a la gasolino (C) 0.4493 de 10 minutos ac (C) 0.0996 una hora acudan o	(D) 1 y 2 era más de dos client (D) 0.8088 udan como mucho 5 (D) 0.1912 como mucho 50 client	(E) 2 y 3 tes es: (E) 0.9526 clientes es: (E) 0.6159				
5. 16. 17. 1	El número de cliente Poisson con media ig La(s) moda(s) de est (A) 0 y 1 La probabilidad de q (A) 0.0474 La probabilidad de q (A) 0.8088	es que acuden por regual a 0.80. Se asum a distribución es (se (B) 1 que en un minuto ac (B) 0.1912 que en el transcurso (B) 0.3841	minuto a una det de independencia. (C) 0 udan a la gasolina (C) 0.4493 de 10 minutos ac (C) 0.0996	erminada gasolinera (D) 1 y 2 era más de dos client (D) 0.8088 udan como mucho 5 (D) 0.1912	(E) 2 y 3 see es: (E) 0.9526 clientes es: (E) 0.6159				
5. 16. 17. 18. 1	El número de cliente Poisson con media ig La(s) moda(s) de est (A) 0 y 1 La probabilidad de q (A) 0.0474 La probabilidad de q (A) 0.8088 La probabilidad apro-	es que acuden por regual a 0.80. Se asum a distribución es (se (B) 1 que en un minuto ac (B) 0.1912 que en el transcurso (B) 0.3841 eximada de que en u (B) 0.8106	minuto a una det de independencia. (C) 0 udan a la gasoline (C) 0.4493 de 10 minutos ac (C) 0.0996 una hora acudan co (C) 0.9772	(D) 1 y 2 era más de dos client (D) 0.8088 udan como mucho 5 (D) 0.1912 como mucho 50 client (D) 0.1894	(E) 2 y 3 tes es: (E) 0.9526 clientes es: (E) 0.6159				

10. Sea $\{X_n\}_{n\in\mathcal{N}}$ una sucesión de variables aleatorias definidas con
--

$$X_n = \begin{cases} 2, & \text{con probabilidad } \left(1 - \frac{1}{n}\right) \\ 0, & \text{con probabilidad } \frac{1}{n} \end{cases}$$

La sucesión converge:

- (A) Sólo en distribución y probabilidad a X=2
- (B) Sólo en distribución y probabilidad a X=0
- (C) En distribución, probabilidad y media cuadrática a X=2
- (D) En distribución, probabilidad y media cuadrática a X=0
- (E) Todo falso
- 11. Sea $\{X_n\}_{n\in\mathcal{N}}$ una sucesión de variables aleatorias con distribución $N(1,\sigma^2=1/n)$. Si se sabe que la función característica de una v.a. normal $N(m, \sigma^2)$ es $\psi_n(u) = e^{ium - \frac{\sigma^2 u^2}{2}}$, la sucesión convergerá:
 - (A) En distribución a una v.a. N(1,1)
 - (B) En distribución y probabilidad a X=1
 - (C) En distribución a una v.a. N(1,2)
 - (D) En distribución y probabilidad a X=0
 - (E) Todo falso
- 12. Sean X e Y v.a. independientes, ambas con distribución N(0,1). Sean $W=Y^2$ y $Z=\frac{X}{\sqrt{W}}$. La distribución de Z es:

(A)
$$\chi_1^2$$

(B)
$$N(0,1)$$
 (C) $Z \equiv 1$ (D) $\mathcal{F}_{1,1}$

(C)
$$Z \equiv 1$$

(D)
$$\mathcal{F}_1$$

(E) t_1

13. Sea X una variable aleatoria con distribución t_n , t de Student con n grados de libertad. Entonces se verifica que:

(A)
$$t_{n,\alpha} > t_{n,\alpha}$$

$$\text{(A) } t_{n,\alpha} > t_{n,\frac{\alpha}{4}} \qquad \text{(B) } t_{n,\alpha} = -t_{n,1-\alpha} \qquad \text{(C) } t_{n,\alpha} > t_{n,\frac{\alpha}{2}} \qquad \text{(D) } t_{n,\frac{\alpha}{2}} > t_{n,\frac{\alpha}{4}} \qquad \text{(E) } t_{n,\alpha} = t_{n,1-\alpha}$$

(C)
$$t_{n,\alpha} > t_{n,\beta}$$

(D)
$$t_{n,\frac{\alpha}{2}} > t_{n,\frac{\alpha}{2}}$$

(E)
$$t_{n,\alpha} = t_{n,1-\alpha}$$

14. Sea X una variable aleatoria con distribución Poisson de parámetro λ . Para estimar el parámetro λ se ha tomado una m.a.s. de tamaño n, X_1, \dots, X_n . Un estadístico suficiente para el parámetro λ es:

(A)
$$\sum_{i=1}^{n} X_i$$

(B)
$$\prod_{i=1}^n X_i$$

(C)
$$\prod_{i=1}^n X_i$$

(A)
$$\sum_{i=1}^{n} X_i$$
 (B) $\prod_{i=1}^{n} X_i$ (C) $\prod_{i=1}^{n} X_i!$ (D) $\prod_{i=1}^{n} \left(\frac{1}{X_i}\right)$ (E) $\sum_{i=1}^{n} X_i!$

(E)
$$\sum_{i=1}^{n} X_i$$

Las cuestiones 15 y 16 hacen referencia al siguiente enunciado:

Sea X una v.a. con función de cuantía dada por:

$$P(X=0) = 4\theta; \ P(X=2) = \frac{1}{2} - 2\theta; \ P(X=-2) = \frac{1}{2} - 2\theta.$$

Para estimar el parámetro θ se ha tomado una m.a.s. de tamaño n, en la que han salido cuatro ceros.

- 15. La estimación de θ por el método de máxima verosimilitud es:
 - $(A) \frac{1}{n}$
- (B) $\frac{1}{4n}$
- (C) $\frac{n-1}{4n}$
- (D) $\frac{n-1}{n}$
- (E) $\frac{4}{n}$

16. La estimación de θ por el método de momentos es: (A) $\frac{n-1}{4n}$ (B) $\frac{1}{4n}$ (C) $\frac{4}{n}$ (D) $\frac{n-1}{n}$ (E) $\frac{1}{n}$ Las cuestiones 17 a 20 hacen referencia al siguiente enunciado:

Sabemos que cuando se muestrea de una población normal tenemos que $\frac{nS^2}{\sigma^2} \in \chi^2_{n-1}$, donde S^2 es la varianza muestral, y que la media y la varianza de una v.a. χ^2_p son, respectivamente, p y 2p.

17. La media o esperanza de S^2 , $E(S^2)$, es:

(A) σ^2 (B) Todo falso (C) $\frac{(n-1)\sigma^2}{n}$ (D) $\frac{n\sigma^2}{(n-1)}$ (E) $\frac{n(n-1)}{\sigma^2}$

18. ¿Es S^2 un estimador insesgado de σ^2 ?

(A) Sí

- (B) -
- (C) -
- (D) -
- (E) No

19. La varianza de S^2 es:

- (A) $\frac{2n(n-1)}{\sigma^2}$ (B) Todo falso (C) $\frac{2(n-1)\sigma^4}{n^2}$ (D) $\frac{2(n-1)\sigma^2}{n}$
 - (E) $\frac{2(n-1)n^2}{\sigma^4}$

20. ¿Es S^2 un estimador consistente de σ^2 ?

(A) Sí

- (B) -
- (C) -
- (D) -
- (E) No

Las cuestiones 21 a 23 hacen referencia al siguiente enunciado:

Se quiere contrastar la hipótesis nula de que la distribución de probabilidad de una determinada población es $\gamma(a=5,r)$, frente a la hipótesis alternativa de que es $\gamma(a=2,r)$, es decir, el parámetro r sería común para ambas distribuciones. Se recuerda que la función de densidad de una distribución $\gamma(a,r)$ es:

$$f(x; a, r) = \frac{a^r}{\Gamma(r)} x^{r-1} e^{-ax}, \quad x > 0, \ a, r > 0$$

Para ello se ha tomado de dicha población una muestra de un sólo elemento (es decir, se observa X).

21. La forma de la región crítica de máxima potencia para X será de la forma:

(A) $[K_1, K_2]$

- (B) [0, K] (C) $[K, +\infty]$
- (D) $[K_1, K_2]^c$
- (E) Todo falso
- 22. Si r = 1 y x = 0.40, ¿cuál será la decision al nivel de significación 0.05?

- (A) (B) No rechazar H_0
- (C) Rechazar H_0
- (D) -(E) -
- 23. ¿Y cuál será la potencia aproximada en dicho caso para ese nivel de significación?

(A) 0.70

- (B) 0.60
- (C) 0.30
- (D) 0.40
- (E) 0.95

Las cuestiones 24 y 25 hacen referencia al siguiente enunciado:

Sea X una v.a. con distribución uniforme $U[\theta, 5]$. Para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, donde $\theta_0 < \theta_1$, se toma una m.a.s. de tamaño n=1 y se decide rechazar H_0 si la observación muestral es mayor o igual que 2.

25	Si $\theta_1 = 1$, la potencia o	da la pruaba ac			
20.		(B) Todo falso	(C) 0.25	(D) 0.75	(E) 0.40
\mathbf{L}_{i}	as cuestiones 26 y 27	' hacen referencia a	l siguiente enun	ciado:	
	Se quiere contrastar si por el contrario, está t 10 veces.				
26.	Si llamamos Z al núme 5% , la decisión será rec			la 10 veces, a un ni	vel de significación del
	(A) $Z \ge 8$	(B) $Z \ge 9$	(C) $Z \ge 6$	(D) $Z = 0$	(E) $Z \geq 3$
27.	La probabilidad de no	rechazar que la mone	da es legal si está t	rucada es:	
		(B) 0.8507	_	(D) 0.0107	(E) 0.3828
	ac ac	. 1	1	• 1	
L	as cuestiones 28 a 30	hacen referencia a	l siguiente enun	ciado:	
	Un individuo está inter en 16 comercios, obten de 12 euros. Se supone	niendo un precio medi		-	
28.	Con una confianza del intervalo:	90% se puede afirma	ur que el precio me	edio de la calculado	ora se encuentra en el
	(A) (172.58, 183.42)	(B) (173.85	5, 182.15)	(C) (169.40, 186.	60)
	(D) (167.3	30, 188.70)	(E) (171)	.40, 184.60)	
29.	Si al nivel de significa calculadora es $m = 180$			oótesis nula de que	el precio medio de la
	(A) No rechazar la	hipótesis nula (B)	- (C) Rechaza	ar la hipótesis nula	(D) - (E) -
30.	Con una confianza del encuentra en el interva	-	r que la desviaci o	ón típica del preci	o de la calculadora se
	(A) (9.60, 17.81)	(B) (9.15	, 19.18)	(C) (8.77, 16.30))
	(D) (83.78	8, 368.05)	(E) (102	.16, 187.36)	

(C) 0.60

(D) 0.05

(E) 0.40

24. Si $\theta_0=0,$ el nivel de significación de la prueba es:

(B) Todo falso

(A) 0.20

PROBLEMAS (Duración: 75 minutos)

A. (10 puntos, 25 minutos)

Sean X_1, \ldots, X_n v.a. independendientes y tales que $X_1 \in N(k_1\theta, \sigma^2), X_2 \in N(k_2\theta, \sigma^2), \ldots, X_n \in N(k_n\theta, \sigma^2)$, todas con varianza $\sigma^2 > 0$ conocida, y donde las constantes $k_i > 0, i = 1, \ldots, n$ son también conocidas.

Se sabe que la función de densidad de probabilidad de una variable aleatoria $N(m, \sigma^2)$ está dada por:

$$f(x; m, \sigma^2) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-m)^2}{2\sigma^2}}, -\infty < x < \infty$$

- i) Deducir el estimador para el párametro θ por el método de máxima verosimilitud.
- ii) ¿Es dicho estimador insesgado? ¿Qué condición o condiciones necesitas para que, en caso de serlo, este estimador sea consistente? Nota: Para responder a esta última pregunta debes obtener la varianza del estimador.

B. (10 puntos, 25 minutos)

La siguiente tabla recoge la función de cuantía de la v.a. discreta X bajo la hipótesis nula $(P_0(x))$ y bajo la hipótesis alternativa $(P_1(x))$.

X	0	1	2	3	4	5	6
$P_0(x)$	0	0	0.05	0.05	0.10	0.40	0.40
$P_1(x)$	0.20	0.20	0.10	0.10	0.40	0	0

Tenemos una muestra aleatoria simple de tamaño n = 1 para contrastar la hipótesis nula $H_0: P(x) = P_0(x)$ frente a la hipótesis alternativa $H_1: P(x) = P_1(x)$.

- i) ¿Incluirías los puntos $X = \{5, 6\}$ en la región crítica? Explica.
- ii) ¿Incluirías los puntos $X = \{0, 1\}$ en la región crítica? Explica.
- iii) Al nivel de significación del 10% y proporcionando todos los detalles utilizados para obtener la respuesta solicitada, obtén la región crítica más potente para este contraste. **Nota**: Es muy importante que antes de responder a este apartado recuerdes lo que has respondido en los apartados anteriores.
- C. (10 puntos, 25 minutos) Sea X una v.a. con distribución $N(m, \sigma^2)$ con varianza desconocida, que se quiere estimar. Para ello se ha tomado una m.a.s. de tamaño n, X_1, X_2, \dots, X_n .
- i) Deducir de forma detallada el intervalo de confianza $(1-\alpha)$ para la varianza poblacional, σ^2 .
- ii) En el caso de que n=30 y que de la muestra se obtenga el valor de la varianza muestral $s^2=25$, obtener el intervalo de confianza 95% para la varianza poblacional σ^2 .

SOLUCIONES DEL CUESTIONARIO (tipo 0)

1: C	11: B	21: C
2: A	12: E	22: B
3: C	13: B	23: C
4: D	14: A	24: C
5: C	15: A	25: D
6: A	16: E	26: B
7: D	17: C	27: B
8: A	18: E	28: A
9: E	19: C	29: A
10: C	20: A	30: A

SOLUCIONES DE LOS PROBLEMAS

Problema A

Como $X_i \in N(k_i\theta, \sigma^2)$, con varianza $\sigma^2 > 0$ conocida, entonces tenemos que

$$f(x_i; \theta) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x_i - k_i \theta)^2}{2\sigma^2}}, -\infty < x < \infty$$

i) Así, la función de verosimilitud estará dada por

$$L(\theta) = f(x_1; \theta) f(x_2; \theta) \cdots f(x_n; \theta)$$

$$L(\theta) = \left[\frac{1}{\sqrt{2\pi} \ \sigma} \ e^{-\frac{(x_1 - k_1 \theta)^2}{2\sigma^2}}\right] \left[\frac{1}{\sqrt{2\pi} \ \sigma} \ e^{-\frac{(x_2 - k_2 \theta)^2}{2\sigma^2}}\right] \cdots \left[\frac{1}{\sqrt{2\pi} \ \sigma} \ e^{-\frac{(x_n - k_n \theta)^2}{2\sigma^2}}\right]$$

$$L(\theta) = (2\pi)^{-\frac{n}{2}} \sigma^{-n} e^{-\sum_{i=1}^{n} \frac{(x_i - k_i \theta)^2}{2\sigma^2}}$$

El estimador máximo verosímil de θ es el valor que maximiza la función de verosimilitud o, equivalentemente, su logaritmo neperiano:

$$\ln L(\theta) = -\frac{n}{2}\ln(2\pi) - n\ln(\sigma) - \sum_{i=1}^{n} \frac{(x_i - k_i\theta)^2}{2\sigma^2}$$

Derivando respecto de θ , tendremos que:

$$\frac{\partial \ln L(\theta)}{\partial \theta} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - k_i \theta)(k_i) = 0$$

Por lo tanto,

$$\sum_{i=1}^{n} k_i x_i - \sum_{i=1}^{n} k_i^2 \theta = 0,$$

de donde

$$\hat{\theta}_{MV} = \frac{\sum_{i=1}^{n} k_i X_i}{\sum_{i=1}^{n} k_i^2}$$

ii) El estimador será insesgado si $E(\hat{\theta}_{MV}) = \theta$.

$$E(\hat{\theta}_{MV}) = \frac{1}{(\sum_{i=1}^{n} k_i^2)} E\left(\sum_{i=1}^{n} k_i X_i\right) = \frac{1}{(\sum_{i=1}^{n} k_i^2)} \sum_{i=1}^{n} k_i E(X_i)$$

$$E(\hat{\theta}_{MV}) = \frac{1}{(\sum_{i=1}^{n} k_i^2)} \sum_{i=1}^{n} k_i(k_i \theta) = \frac{1}{(\sum_{i=1}^{n} k_i^2)} \left(\sum_{i=1}^{n} k_i^2\right) \theta = \theta$$

Por lo tanto, $\hat{\theta}_{MV}$ es un estimador insesgado para θ . Para establecer las condiciones bajo las cuales el estimador $\hat{\theta}_{MV}$ es consistente, en caso de serlo, podemos verificar si se cumplen las dos condiciones suficientes siguientes:

a)
$$\lim_{n\to\infty} E(\hat{\theta}_{MV}) = \theta$$

b)
$$\lim_{n\to\infty} \operatorname{Var}(\hat{\theta}_{MV}) = 0$$

Como $\hat{\theta}_{MV}$ es un estimador insesgado de θ , la condición a) se cumple. Por otro lado, tenemos que

$$Var(\hat{\theta}_{MV}) = \frac{1}{(\sum_{i=1}^{n} k_i^2)^2} Var\left(\sum_{i=1}^{n} k_i X_i\right) = \frac{1}{(\sum_{i=1}^{n} k_i^2)^2} \sum_{i=1}^{n} Var(k_i X_i)$$

$$\operatorname{Var}(\hat{\theta}_{\text{MV}}) = \frac{1}{\left(\sum_{i=1}^{n} k_i^2\right)^2} \sum_{i=1}^{n} k_i^2 \operatorname{Var}(X_i) = \frac{\left(\sum_{i=1}^{n} k_i^2\right)}{\left(\sum_{i=1}^{n} k_i^2\right)^2} \sigma^2 = \frac{\sigma^2}{\sum_{i=1}^{n} k_i^2}$$

Por lo tanto, si $\lim_{n\to\infty} \sum_{i=1}^n k_i^2 = +\infty$ se cumplirían las dos condiciones suficientes y, en consecuencia, $\hat{\theta}_{MV}$ sería un estimador consistente de θ .

Problema B

Queremos contrastar la hipótesis nula de que X es una v.a. discreta con función de cuantía $P_0(x)$ frente a la alternativa de que la función de cuantía es $P_1(x)$:

X	0	1	2	3	4	5	6
$P_0(x)$	0	0	0.05	0.05	0.10	0.40	0.40
$P_1(x)$	0.20	0.20	0.10	0.10	0.40	0	0

Hemos tomado una m.a.s. de tamaño n = 1; es decir, observamos X.

i) ¿Incluirías los puntos $X = \{5, 6\}$ en la región crítica?

Dado que, bajo la distribución de probabilidad de la hipótesis alternativa $P_1(x)$, estos puntos tienen probabilidad cero, la v.a. no puede tomar esos valores bajo la hipótesis alternativa, pero sí bajo la hipótesis nula. Por tanto, $X = \{5,6\}$ son puntos de no rechazo de H_0 y, por tanto, **nunca** deben incluirse en la región crítica.

ii) ¿Incluirías los puntos $X = \{0, 1\}$ en la región crítica?

Dado que, bajo la distribución de probabilidad de la hipótesis nula $P_0(x)$, estos puntos tienen probabilidad cero, la v.a. no puede tomar estos valores bajo la hipótesis nula. Por tanto, $X = \{0, 1\}$ son puntos de rechazo de H_0 y, por tanto, **siempre** deben incluirse en la región crítica.

iii) Al nivel de significación $\alpha = 0.10$ y recordando lo respondido en los apartados anteriores, tenemos que las posibles regiones críticas para este contraste son $RC_1 = \{0, 1, 2, 3\}$ y $RC_2 = \{0, 1, 4\}$. Esto se debe a que:

$$\alpha_1 = P(X \in RC_1|P_0) = P(X = 0, 1, 2, 3|P_0) = 0 + 0 + 0.05 + 0.05 = 0.10 \le \alpha = 0.10$$

 $\alpha_2 = P(X \in RC_2|P_0) = P(X = 0, 1, 4|P_0) = 0 + 0 + 0.10 = 0.10 \le \alpha = 0.10$

Para ver cuál de estas dos regiones críticas es la más potente para este contraste, calculamos las respectivas potencias:

Potencia₁ =
$$P(X \in RC_1|P_1) = P(X = 0, 1, 2, 3|P_1) = 0.20 + 0.20 + 0.10 + 0.10 = 0.60$$

Potencia₂ = $P(X \in RC_2|P_1) = P(X = 0, 1, 4|P_1) = 0.20 + 0.20 + 0.40 = 0.80$

De lo anterior, concluimos que, al nivel de significación $\alpha=0.10$, la región crítica RC₂ es la más potente para este contraste.

Problema C

i) Sea $\vec{X}=(X_1,X_2,\ldots,X_n)$ una m.a.s. de tamaño n tomada de una distribución $N(m,\sigma^2)$. Entonces:

$$\frac{nS^2}{\sigma^2} \in \chi^2_{n-1}$$

Intervalo de Confianza

$$P\left(\chi_{\overline{n-1}|1-\alpha/2}^{2} < \frac{nS^{2}}{\sigma^{2}} < \chi_{\overline{n-1}|\alpha/2}^{2}\right) = 1 - \alpha$$

$$P\left(\frac{1}{\chi_{\overline{n-1}|\alpha/2}^{2}} < \frac{\sigma^{2}}{nS^{2}} < \frac{1}{\chi_{\overline{n-1}|1-\alpha/2}^{2}}\right) = 1 - \alpha$$

$$P\left(\frac{nS^{2}}{\chi_{\overline{n-1}|\alpha/2}^{2}} < \sigma^{2} < \frac{nS^{2}}{\chi_{\overline{n-1}|1-\alpha/2}^{2}}\right) = 1 - \alpha$$

Por lo tanto, el intervalo de confianza $1-\alpha$ para la varianza es:

$$IC_{1-\alpha} = \left(\frac{ns^2}{\chi^2_{n-1|\alpha/2}}, \frac{ns^2}{\chi^2_{n-1|1-\alpha/2}}\right)$$

 $\bf ii)$ En el caso de que n=30 y $s^2=25$ el intervalo de confianza 95% será:

$$IC_{1-\alpha} = \left(\frac{750}{\chi_{n-1|\alpha/2}^2}, \frac{750}{\chi_{n-1|1-\alpha/2}^2}\right)$$

Dado que $\chi^2_{\overline{29}|0.05/2} = 45.7$ y $\chi^2_{\overline{29}|1-0.05/2} = 16$, entonces,

$$IC_{0.95} = (16.41, 46, 88)$$