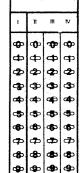

INSTRUCCIONES

- 1. La tarea consta de cuestiones, que se responden sobre la hoja de codificación proporcionada.
- 2. Para escoger una respuesta, basta efectuar una marca rellenando debidamente el rectángulo sobre el que está la letra escogida en la hoja de codificación. Piénsalo antes; aunque puedes borrar si escribes con lápiz (número 2 o similar), marcas que no estén perfectamente borradas pueden ser leídas. Te aconsejamos que señales sobre el formulario de examen las respuestas que te parezcan adecuadas, y emplees los últimos cinco minutos del tiempo asignado en transcribirlas a la hoja de codificación.
- 3. Hay siempre, en las preguntas de elección múltiple, una **única** respuesta correcta. Todas las cuestiones correctamente resueltas valen 1 punto mientras que las fallidas o las no contestadas no suponen penalización.
- 4. El formulario de examen tiene cuatro hojas numeradas correlativamente al pie (del 0.1 al 0.3). Cerciórate de recibirlas todas, y reclama si tu formulario fuera incompleto. Hay distintos tipos de tarea. Esta es del tipo 0; marca un 0 en la columna I de tu hoja de codificación.
- 5. Los puntos obtenibles en cuestiones son 15. Son precisos 11 para superar la tarea.
- 6. Rellena tus datos en la hoja de codificación.

Ejemplo:

12545 PEREZ, Ernesto


Tarea tipo 0 Convocatorias

	D N.I. / N.A.N.								
Ф	Ф	ф	ф	Ф	Ф	ф	Ф		
Ф	Φ	₽	Ф	Ф	Ф	Ф	Ф		
2	2	ආ	p	2	⊉	2	2 0		
30	3	30	30	အာ	3	30	3		
αp	⊄ >	o a þ	α ‡⊃	α‡p	α p	α ‡ο	œ		
්	\$	5 0	\$	\$	\$	დე:	5		
⊕	o\$ ⊃	⊕	® ⊃	\$ ⊃	œ ⊳	®	& ⊃		
⊅	௭	⊅	⊅	⊅	⊅	⊅	⊅		
a p	⇔	48⊳	\$€	8 ⊃	æ	48≎	8≎		
o g o	@	ფ	ფ	.@)	⊕	⊕⊕	ფ		

+ + + + + + + + + + + + + + + + + + +						l
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ф	Ф	Ф	Ф	a ⊕	
(3)(4)(4)(4)(5)(4)(5)(6)(7)(7)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)	Ф	Ф	ு	đ∍	ф	l
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 >	⊉	් ⊅	2	2	
45 45 45 45 45 45 45 45 47 47 47 47 48 48 48 48 48	30	30	3	30	30	I
45 45 45 45 47 47 47 47 48 48 48 48 48	4	4	o a p	⊄ ⊅	α‡⊃	l
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 6 4 4 4 4 7 4 4 4 4 8 4 4 4 4 8 4 4 4 4 9 4 4 4 4 10 4 4 4 4 10 4 4 4 4 10 4 4 4 4 10 4 4 4 4 10 4 4 4 4 10 4 4 4 <t< td=""><th>್</th><td>್ರಾ</td><td>\$</td><td>5</td><td>්</td><td>I</td></t<>	್	್ರಾ	\$	5	්	I
48 48 48 48 48 48 48 48 48 48 48 48 48 4	6 5⊃	æ	₫	\$ ⊃	⊕	l
	4	7	æ	콰	⊅	ı
අ ප අප අප අප	d ₿⊃	a 8⊃	∂\$ ⊃	\$≎	\$₽	l
	œ ⊃	.g o	ф.	ூ	ф.	ŀ

NUMERO / ZENBAKIA

CUESTIONES (Duración: 45 minutos)

(C) Madrid

Sea X una variable aleatoria con distribución uniforme $U[0,2\theta+1]$ de la que, para estimar el parámetro

(C) $2\overline{X}$

(C) Sí

(D) Londres

(D) -

(D) $\frac{1}{2} - \overline{X}$ (E) $2\overline{X} - 1$

(E) Pekín

(E) -

(B) Sebastopol

Las cuestiones 2 a 5 hacen referencia al siguiente enunciado:

(B) $\overline{X} - \frac{1}{2}$

(B) -

 θ , se toma una m.a.s. de tamaño n, X_1, \dots, X_n .

2. El estimador de θ por el método de momentos es:

3. ¿Es el estimador por el método de momentos insesgado?

La capital de España es:
 (A) París

(A) $\overline{X} - 1$

(A) No

	$(A) \frac{\theta^2}{12n}$	$(B) \frac{(2\theta+1)^2}{12n}$	$(C) \frac{(2\theta+1)}{12n}$	(D) $\frac{\theta^2}{12}$	$(E) \frac{(2\theta+1)^2}{12}$
5. El estima	ador de θ por	el método de máxim	na verosimilitud es:		
(A	$\frac{\max(X_i)-1}{2}$	(B) $\min(X_i)$	(C) $\max(X_i)$	(D) $\frac{\min(X_i)-1}{2}$	(E) $\overline{X} - \frac{1}{2}$
Las cuesti	ones 6 y 7 h	acen referencia al	l siguiente enunc	iado:	
Sea X_1 ,.	\ldots, X_4 una m	.a.s. extraída de una	a población normal	de media m y vari	anza σ^2 .
	$\text{amente } \theta = 0$	θ que hace que Z sea (B) únicame) — 0 30
` '			11000 - 0.00	(C) unicamente t	- 0.00
		valor $0 < \theta < 1$		únicamente $\theta = 1$	v — 0.00
7. El valor	(D) cualquier	` '	(E)	` '	v = 0.50
	(D) cualquier de θ que minim	valor $0 < \theta < 1$	(E) Z es:	únicamente $\theta = 1$	
(8. Se tiene	(D) cualquier de θ que minis A) $\theta = 1$ una m.a.s. de	valor $0 < \theta < 1$ miza la varianza de	(E) Z es: $(C) \ \theta = 0$ distribución de Pois	únicamente $\theta = 1$ (D) $\theta = 0.3$ son de parámetro .	(E) $\theta = 0.5$
(8. Se tiene	(D) cualquier de θ que minimal A) $\theta = 1$ una m.a.s. de sutilizar $\hat{\lambda} = 2$	valor $0 < \theta < 1$ miza la varianza de (B) $\theta = 0.8$ tamaño n de una d	(E) Z es: (C) $\theta=0$ distribución de Pois timador de λ consis	únicamente $\theta = 1$ (D) $\theta = 0.3$ son de parámetro .	(E) $\theta = 0.5$
8. Se tiene se decide	(D) cualquier de θ que minimal A) $\theta = 1$ una m.a.s. de utilizar $\hat{\lambda} = \hat{\lambda}$ (A) Sí	valor $0 < \theta < 1$ miza la varianza de (B) $\theta = 0.8$ tamaño n de una d $\overline{X} + \frac{2}{n^2}$. ¿Es este est	Z es: $ (C) \theta = 0 $ distribución de Pois timador de λ consistimador λ	únicamente $\theta = 1$ (D) $\theta = 0.3$ son de parámetro astente? (D) -	(E) $\theta = 0.5$ λ . Como estimado

Sea X una v.a. con fu	ınción de densidad				
	$f(x;\theta) = $	$ \bar{\theta}x^{\sqrt{\theta}-1}, \qquad 0 < 0 $	$< x \le 1,$	$\theta > 0$	
Se quiere contrastar la ha tomado de dicha p					$H_1: \theta = 4$. Para ello serva X).
11. La región crítica de m	aáxima potencia par	a X es de la for	rma:		
(A) Todo falso	(B) (K	,1)	(C) $(K_1,$	$(K_2)^c, K_2 \neq$	1
(D) (0)	,K)	(E) (E	$(K_1, K_2), K_2$	$_2 \neq 1$	
12. Si $\alpha = 0.05$, la región	crítica de mayor po	tencia es:			
(A) (0, 0.95)	(B) $(0, 0.05)$	(C) (0.95, 1)	(D) (0)	.05, 0.95)	(E) $[0.05, 0.95]^c$
13. La potencia del contra	aste es:				
(A) 0.0025	(B) 0.9025	(C) 0.6561	(I	O) 0.0975	(E) 0.3439
Las cuestiones 14 y 1	5 hacen referenci	a al signiente	enunciad	0.	
Un individuo está inte	resado en comprar u	n netbook. Ant	es de hacer	·lo pregunta e	el precio en 26 comercios Se supone normalidad.
14. Con una confianza de intervalo:	el 90% se puede af	irmar que el p	recio medio	o de un netl	book se encuentra en e
(A) (204.87, 215.13)	(B) (199	0.70, 220.30)	(C)) (195.00, 22	25.00)
(D) (201.	.80, 218.20)	(1	E) (206.04	213.96)	
15. Con una confianza del en el intervalo:	90% se puede afirm	ar que la desvia	ción típica o	del precio de	un netbook se encuentra
(A) (12.46, 20.02)	(B) (170.	06, 354.55)	(C)	(155.17, 40	0.68)
(D) (13.	.04, 18.83)	(]	E) (10.34,	26.71)	

(A) $\frac{n_3}{n}$ (B) $\frac{2\overline{X}}{3}$ (C) $\frac{n_1 + n_3}{n}$ (D) $\frac{2\overline{X}}{3} + \frac{1}{3}$ (E) \overline{X}

(E) $\frac{n_3}{n}$

(A) $\frac{n_1+n_3}{n}$ (B) $\frac{2\overline{X}}{3}$ (C) \overline{X}

9. El estimador máximo verosimil para el parámetro θ es:

10. El estimador por el método de momentos para el parámetro θ es: