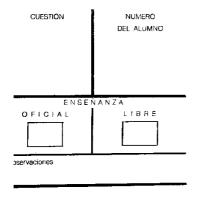
INSTRUCTIONS

- 1. The quiz contains multiple choice questions that must be answered in the orange code sheet we have provided you with.
- 2. To select an answer, all you need to do is mark in the orange code sheet, filling the rectangle over which the selected answer is located appropriately. Please make sure you know the answer you wish to mark before doing it. Even though you can always erase your mark if you have used a pencil (number 2 or similar), any mark that has not been completely erased could be read by the machine. Therefore, we advice you to first mark your selected answers in the exam and to use only the last ten minutes or so from the time assigned to the multiple choice questions part of the exam to copy them into the code sheet.
- 3. In the multiple choice questions part of the exam there is always **only one correct answer** for every question. Every question correctly answered is worth 1 point, while each question incorrectly answered will not penalize your grade at all. Questions that have not been answered do not penalize your grade in any form.
- 4. The quiz has four numbered sheets, going from 0.1 to 0.3. Please make sure that you have all sheets and contact your professor if this is not the case. There are different exam types. This exam is of type 0. Mark a 0 in the column labelled with I in your code sheet, just as it is illustrated in the example.
- 5. The maximum final grade is 15 points. You will need to obtain 11 points to pass this quiz.
- 7. Please fill in your personal information in the appropriate places in the code sheet.


Example:

12545 PEREZ, Ernesto

Exam type 0 Resit

⊕ →

3

D. N.I. / N. A. N.							
Ф	Ф	ф	ф	Ф	Ф	ф	Ф
Ф	Φ	₽	Ф	Ф	Ф	Ф	Ф
අ	2	ආ	2	2	⊉	2	2
30	3	30	30	30	3	30	30
αp	⊄ ≎	o a ⊅	αΦ	σ ‡ ρ	ø ₽	∞	4
්	\$	5 0	\$	\$	\$	დე:	5 0
⊕	o\$ ⊃	⊕	\$	ø ⊳	œ ⊳	®	&⊕
⊅	௭	⊅	콰	⊅	⊅	⊅	⊅
a €⊃	⇔	48⊳	\$€	8 ⊃	æ	48≎	86
o g o	ფ	œ	.g	9	ф	9	⊘

<u> </u>								
NUMERO / ZENBAKIA					}			
						1	п	III
ф	Ф	Ф	Ф	φ,		ф	6	Ð
Ф	Ф	₾	d ⊃	ф		Ф	Ф	Ф
2 >	2	್ತಾ	2	2		⊅	2	2
3	3	3	3	3 ⊳		4	ვე:	30
⊄ ⊅	4	o a p	⊄ ⊅	o4⊃		ο ‡ ρ	α ‡0	₫
್	5	\$	5 ∍	\$		්	\$	450
® ⊃	6 60	\$	\$≎	₫5-		® ⊃	⊕	₫>
奪	7	æ	₽	⊅		4	Φ	æ
\$ ⊳	\$ ⊃	∂\$ ⊃	\$≎	38 ⊃		\$€	æ ∍	රසිය
ф:	₽	Φ	⊕	49⊝		ф	⊕	⊲\$ 0

MULTIPLE CHOICE QUESTIONS (Time: 45 minutes)

(C) Madrid

Let X be a random variable having a uniform distribution $U[0, 2\theta + 1]$. In order to estimate the parameter

(C) Yes

(B) $\overline{X} - \frac{1}{2}$ (C) $2\overline{X}$ (D) $\frac{1}{2} - \overline{X}$ (E) $2\overline{X} - 1$

(D) London

(D) -

(E) Pekin

(E) -

1. FREE-QUESTION. The capital of Spain is:

2. The method of moments estimator of θ is:

3. Is the method of moments estimator unbiased?

Questions 2 to 5 refer to the following exercise:

(B) Sebastopol

 θ , a random sample of size n, X_1, \dots, X_n , has been taken.

(B) -

(A) Paris

(A) $\overline{X} - 1$

(A) No

4. The v	variance of the met	hod of moments est	imator is:			
	(A) $\frac{\theta^2}{12n}$	$(B) \frac{(2\theta+1)^2}{12n}$	$(C) \frac{(2\theta+1)}{12n}$	(D) $\frac{\theta^2}{12}$	(E) $\frac{(2\theta+1)^2}{12}$	
5. The i	naximum likelihoo	d estimator of θ is:				
	(A) $\frac{\max(X_i)-1}{2}$	(B) $\min(X_i)$	(C) $\max(X_i)$	(D) $\frac{\min(X_i)-1}{2}$	(E) $\overline{X} - \frac{1}{2}$	
Questio	ons 6 and 7 refer	to the following	exercise:			
Let A	X_1, \ldots, X_4 be a r.s.	taken from a norm	al population havi	ng mean m and var	riance σ^2 .	
6. If we $0 < \theta$	consider $Z_1 = (X_1 < 1$, the value of ℓ	$(+X_2)/2$ and $Z_2 = 0$ that makes Z an ι	$(X_3 + X_4)/2$, and on inbiased estimator	define the statistic x of m is:	$Z = \theta Z_1 + (1 - \theta) Z_2$	
	(A) only $\theta = 0$	(B) only θ	$\theta = 0.50$	(C) only $\theta = 0.3$	0	
	(D) any θ value such that $0 < \theta < 1$			(E) only $\theta = 1$		
7. The value of θ that minimizes the variance of Z is:						
	(A) $\theta = 1$	(B) $\theta = 0.8$	(C) $\theta = 0$	(D) $\theta = 0.3$	(E) $\theta = 0.5$	
	ave decided to use .	to ble of size n from a $\hat{\lambda} = \overline{X} + \frac{2}{n^2}$. Is this (B) -	a consistent estim		As an estimator of λ (E) No	
Questio	ons 9 and 10 refe	er to the following	g exercise:			
P(X) result	$x = 1$ = θ . In ord x = 1 was was	er to estimate the	parameter θ , a r.s casions, $X = 0$ wa	s. has been taken	$\frac{-\theta}{2}$, $P(X=0)=\frac{1-\theta}{2}$ providing the following casions and $X=1$ was	

10. The	method of mome	nts estimator of th	te parameter θ is:		
	$(A) \frac{n_1 + n_3}{n}$	(B) $\frac{2\overline{X}}{3}$	(C) \overline{X}	(D) $\frac{2\overline{X}}{3} + \frac{1}{3}$	(E) $\frac{n_3}{n}$
Questi	ons 11 to 13 re	fer to the follow	ing exercise:		
Let 2	X be a r.v. una v	a. with probabilit	ty density function	given by:	
		$f(x;\theta) = \mathbf{v}$	$\sqrt{\theta}x^{\sqrt{\theta}-1}, \qquad 0 < x$	$x \le 1, \qquad \theta > 0$	
			$\theta = 1$ against the taken (i.e., we obse		s $H_1: \theta = 4$. In order to
11. The	most powerful cri	tical region for X	for this test is of t	he form:	
	(A) All false	(B) (K	(0,1)	(C) $(K_1, K_2)^c$, $K_2 \neq$	1
	(D) (0)			$(K_2), K_2 \neq 1$	
12. If α	= 0.05, the most	powerful critical re	egion is:		
	(A) $(0, 0.95)$	(B) $(0, 0.05)$	(C) $(0.95, 1)$	(D) $(0.05, 0.95)$	(E) $[0.05, 0.95]^c$
13. The	power of the test	is:			
	(A) 0.0025	(B) 0.9025	(C) 0.6561	(D) 0.0975	(E) 0.3439
Questi	ons 14 and 15	refer to the follo	owing exercise:		
differ					to ask for its price at 26 of 15 euros. We assume
14. A 90	0% confidence inte	erval for the netboo	ok's mean price is:		
(A) (204.87, 215.13)) (B) (19	99.70, 220.30)	(C) (195.00, 22	25.00)

(A) $\frac{n_3}{n}$ (B) $\frac{2\overline{X}}{3}$ (C) $\frac{n_1 + n_3}{n}$ (D) $\frac{2\overline{X}}{3} + \frac{1}{3}$ (E) \overline{X}

9. The maximum likelihood estimator of the parameter θ is:

(D) (201.80, 218.20)

(D) (13.04, 18.83)

(A) (12.46, 20.02)

15. A 90% confidence interval for the netbook's standard deviation is:

(B) (170.06, 354.55)

(E) (206.04 213.96)

(E) (10.34, 26.71)

(C) (155.17, 400.68)