EXERCISE 1 (10 POINTS)

Let X be a r.v. with probability density function given by

$$f(x; \theta) = \begin{cases} (\theta + 2) \cdot 3^{\theta+2} \cdot x^{\theta+1} & \text{for } 0 < x < \frac{1}{3}; \\ 0 & \text{otherwise} \end{cases}$$

In order to estimate the parameter θ, a random sample of size n, X_1, X_2, \ldots, X_n, is taken. It is known that the mean of this r.v. is $E(X) = \frac{(\theta+2)}{(3\theta+3)}$.

1. **(4 points)** Find, providing all relevant details, the method of moments estimator, $\hat{\theta}_{MM}$, for the parameter θ.

2. **(4 points)** Find, providing all relevant details, the maximum likelihood estimator, $\hat{\theta}_{ML}$, for the parameter θ.

3. **(2 points)** If a r.s. of size $n = 6$ has been taken, resulting in the sample values 0.25, 0.20, 0.28, 0.30, 0.31 and 0.29, find, providing all relevant details, a maximum likelihood estimate of θ.

EXERCISE 2 (10 POINTS)

Let X_1, X_2, \ldots, X_n be a r.s. taken from a population that follows a Poisson, $\mathcal{P}(\theta)$, distribution. Let us consider the following two estimators for the parameter θ:

\[
\hat{\theta}_1 = \frac{2X_1 + X_2 + \ldots + X_{n-1} + 2X_n}{n + 2}
\]

\[
\hat{\theta}_2 = \frac{2X_1 + 3X_2 + \ldots + 3X_{n-1} + 2X_n}{(3n - 2)}
\]

1. **(5 points)** Find out if either one or both of these estimators is/are unbiased. In addition, you should compute the bias for each of these estimators.

2. **(5 points)** Find out if either one or both of these estimators is/are consistent. In addition, you should compute the variance for each of these estimators, providing all relevant details.