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�9 In this short note we obtain the full set of inequalities that define the convex hull of 
a 0-1 knapsack constraint presented in Weismantel (1997). For that purpose we use 
our O(n) procedures for identifying maximal cliques and non-dominated extensions 
of consecutive minimal covers and alternates, as well as our schemes for coefficient 
increase based tightening cover induced inequalities and coefficient reduction based 
tightening general 0-1 knapsack constraints. 
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1 I n t r o d u t i o n  

Consider the 0-1 program 

m a x { d x :  Ax  _< b,x E {O, 1}m}, (1.1) 

where x is the m-column vector of the 0-1 variables, d is the related row 
vector of the objective function coefficients, A is the coefficient matr ix  of 
the constraints and b is the column vector of the right-hand-side (hereafter, 
rhs). All vectors and the matr ix  are assumed to have the appropriate 

dimensions. 

Let I and J be the set of indices of the constraints and variables, respec- 
tively, and J / b e  the set of indices of the variables with nonzero coefficient 
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in the i-th constraint for i E I. (The LP relaxation is the same system 
(1.1), where each xj is allowed to take any value in the range [0, 1]). 

We consider knapsack constraints of the form 

arX ~_ br, (1.2) 

where ar is the r-th row vector of matrix A and br is the r-th element of 
rhs b. Let arj be the j - th  element of vector at; without loss of generality, 
we assume that arj and br are integer and strictly positive, arj _< brVj E Jr 
and ~-~deJ~ arj > br for any r E I. 

Let n = ]Ji]. The knapsack polytope P is the convex hull of the 0-1 
points satisfying (1.2). 

For any subset V C Ji, let Pv = con{x E {0, 1} Y / ~ j e y  aijxj <_ bi}. 

For a given constraint system some other system may have exactly 
the same set of 0-1 feasible solutions. Such constraints are said to be 
0-1 equivalent systems or simply equivalent. See Nemhauser and Wolsey 
(1988) and Wolsey (1989) for good surveys on equivalent systems. Note that 
equivalent systems can have quite different intersections with the hypercube 
0 < x < 1. We say that the system A~x < U is as tight as the system Ax <_ b 
whenever 

{x E [0,1]: A'x < b'} C_ {x E [0,1]: Ax < b} (1.3) 

We say that A~x < U is tighter than Ax < b if the containment (1.3) is 
proper. We are interested in finding tight formulations for (1.1). 

Tight equivalent inequalities can be obtained by using coefficient reduc- 
tion and coefficient increase techniques. Our methods, see Dietrich et al. 
(1993), Escudero et al. (1997), and Escudero et al. (1995) (appropriately 
embedded in branch-and-cut procedures, see Hoffman and Padberg (1991)) 
may produce reductions of the LP feasible set that are not generally de- 
tected by other (so-called myopic) procedures, where only information from 
the same constraint to replace is exploited, aside the integrality of the vari- 
ables. 

Let two of the most frequent 0-1 structures that are encountered in 
real-life models: 

Cover. Set of indices of 0-1 variables, say C, such that at most kc 
of such variables can take the value 1. So, the induced inequality can be 
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writen 

X ( C )  <_ kc, (1.4) 

where X ( C )  = Y~decxj and 1 < k < IC I - 1. We say that  cover C is 
implied by knapsack constraint (1.2) provided that  Y'~dec aij > bi. 

A cover C is called a minimal cover implied by knapsack constraint (1.2) 
if Y~d~c-{t} aid G biVl �9 C. It is well known (see Balas and Zemel (1978), 
Padberg (1973) and Weismantel (1997), among others) that  the inequality 

X(C)  <_ I V [ -  1 (1.5) 

is a facet defining inequality for Pc if and only if C is a minimal cover. 

Clique. A cover with k = 1, so the induced inequality can be written 

x ( c )  < 1. (1.6) 

Let also the additional definitions. 

Extension of a minimal cover. Set of indices of 0-1 variables that  in- 
cludes the indices of the minimal cover plus the indices of the coefficients in 
the implying knapsack constraint that  are not smaller than any coefficient 
whose index is included in the minimal cover. So, the extension E(C)  of 
the minimal cover C for the i-th knapsack constraint can be expressed 

E(C)  = C U  {l 6 Ji : aia >_ ai j , j  E C}. (1.7) 

See that  X (E(C) )  <<_ kc. 

Alternate set of a minimal cover. Set of indices of IN1 variables that  
are alternatives to the index from the minimal cover with the smallest 
coefficient in the implying knapsack constraint, such that  the new set is 
also a minimal cover. So, the alternate set A(C) of the minimal cover C 
for the i-th knapsack constraint can be expressed 

A(C) = {l e Ji : ai, <_ ai j , j  e C:  Z aij > bi}, (1.8) 
jeCu{l}-p 

where p e C such that  ap << ajVj �9 C .  Note that  X(E(A(C) ) )  << kc. 

The scope of this brief note is to show how the full set of inequali- 
ties presented by Weismantel (1997) to define the convex hull of the 0-1 
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points satisfying a 0-1 knapsack constraint (1.2), can be derived by using 
successively Our set of procedures for: (1) identifying maximal cliques and 
non-dominated extensions of consecutive minimal covers and alternates, 
see Escudero et al. (1995); (2) coefficient increase based tightening cover 
induced inequalities, see Dietrich et al. (1994) and Escudero and Mufioz 
(1998); and (c) coefficient reduction based tightening general 0-1 knapsack 
constraints. 

The note is organized as follows. Section 2 introduces our basic princi- 
ples for coefficient increase and reduction based methods. Section 3 gives 
the Weismantel 0-1 knapsack constraint and the related set of convex hull 
defining inequalities, and section 4 describes our scheme to derive the set 
of the inequalities referenced above. 

2 B a s i c  T i g h t e n i n g  S c h e m e s  

2.1 Coeff icient Increase  

Consider the knapsack constraint (1.2) and let C C_ J be a cover whose 
induced inequality (1.4) is satisfied by any feasible solution for (1.1). If 
there exists l E C such that Str < br for r E I ,  where 

s{ = m a x ( ~  a , j ~ j / ~  ~,j~j ___ b, Vi �9 I,~, = 1,xj  E {o, 1} v j e  J} ,  
jeJr Jeai 

we define 

(2.1) 

A.+D = @ . -  sJ.)lk~ .vS ~ c 

fa.,  + A.+ D Vj ~ C i (2.2) 
arj = % t arj Vj E Jr \ C 

As a result, let the constraint 

~rj~j <_ b,. (2.3) 
j~J, mc 

T h e o r e m  2.1. Replacing the r-th knapsack constraint (1.2) by (2.3) in 
(1.1), results in a 0-1 equivalent and as-tight-as formulation. The new 
formulation is tighter than the original one i f  and only if  (2.3) is a non- 
redundant constraint. 
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Proof: See Escudero and Mufioz (1997). 

2.2 Coefficient Reduction 

Consider the knapsack constraint (1.2) and let C C J be a cover whose 
induced inequality (1.4) is satisfied by any feasible solution for (1.1). If 
Rr,r <: br for r E I, where 

Rr,r = m a x ( E  a,txt/  a,t t -< b, Vie S, 
rE Jr jeJi 

E x t  <- k c -  1,x t e {0,1}Vj e g}, 
tec  

we define 

(2.4) 

A ~r =br - Rr,c 

- = I a~t - h ~ ' c / k r  
art (art  

br - br - A~, c 

As a result, let the constraint 

Y j E c  
(2.5) 

V j e J ~ \ C  

E a"-rtxt <- -~" (2.6) 
jeJruC 

Theorem 2.2. Replacing the r-th knapsack constraint (1.2) by (2.6) and 
(1.4) in (1.1), results in a 0-1 equivalent and as-tight-as formulation. The 
new formulation is tighter than the original one if and only if there exists a 
feasible solution .for the LP relaxation of (1.1) that verifies any of the two 
following conditions: 

(2.7) 

(2.8) 
jEJr jEC 

E xj > kc 
tec  

Proof: See Escudero and Mufioz (1998). 
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3 W e i s m a n t e l  0 -1  K n a p s a c k  C o n s t r a i n t  

The  0-1 knapsack constraint  subject  of our analysis is as follows, see Weis- 
mante l  (1997). 

xl  + x2 + x3 + x4 + 3x5 + 4x6 < 4 (3.1) 

Table 1 shows the set of the  inequalities tha t  define the convex hull of the 
0-1 points  satisfying (3.1). 

Xl x2 x3 x4 55 56 
1 1 < 1 

i I < 1 

1 1 < 1 

i 1 < 1 

1 1 < I 

1 I I 2 < 2 

1 1 i 2 < 2 

1 I I 2 < 2 

1 1 1 2 < 2 

1 1 1 2 < 2 
1 1 1 2 < 2 

1 1 1 2 3 < 3 
1 1 1 2 3 < 3 
1 1 1 2 3 < 3 
1 1 1 2 3 < 3 

T a b l e  1: Convex hull defining inequalit ies 

4 Deriving the set of Convex Hull Defining Inequalities 

By using our scheme for identifying maximal  cliques, see Dietrich et al. 
(1994), the following cliques axe obtained: Cj = {j, 6} for j = 1 , 2 , . . . ,  5. 
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So, the following clique inequalities are identified 

x5 +x6 < 1 
x4 +x6 < 1 

x 3 -~-x 6 < 1 
x2 +x6 _< 1 

xl +x6 < 1. 

(4.1) 

Our scheme for identifying minimal covers and its extensions and alternates, 
see Dietrich et al. (1994), gives the following covers: 

1. Minimal cover: {3, 4, 5} with k c  = 2 

Extension: {3, 4, 5, 6} 

Alternate set to index 3: {1, 2} 

So, the following covers inequalities are identified for k c  = 2 : 

Xl 

x3 +x4 +x5 +x6 < 2  
x2 +x4 +x5 +x6 < 2  

+x4 +x5 +x6 < 2  

2. Minimal cover: {2, 3, 5} for k c  = 2 

Extension: {2, 3, 5, 6} 

Alternate set to index 2: {1} 

So, the following cover inequalities are identified for k c  = 2 : 

Xl 

x2 +x3 +x5 +x6 < 2  
+x3 +x5 +x6 < 2 

3. Minimal cover: {1, 2, 5} for k c  = 2 

Extension: {1, 2, 5, 6} 

So, the following cover inequality is identified for k c  = 2 : 

x l + x 2  + x 5 + x 6 < 2  

By using our scheme described in Escudero et al. (1997), see also Dietrich 
and Escudero (1992), the six above cover inequalities are reinforced. For 
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this purpose the clique inequalities (4.1) are used to tighten the coefficient 
of x6, such that the new constraints are as follows: 

x3 Wx4 -l-x5 -k-2x6 -< 2 
x2 x4 -k-x5 T2x6 -< 2 

Xl x4 -l-x5 -k-2x6 -< 2 
x2 Tx3 Tx5 -l-2x6 -< 2 

Xl -~-x3 -+'x5 -k-2x6 -< 2 
Xl %'x2 -{-x5 W2x6 ~ 2. 

(4.2) 

Let us use our coefficient reduction scheme given in Escudero et al (1995), 
see also Dietrich et al. (1993), for deriving the other facet defining inequal- 
ities for the original 0-1 knapsack constraint (3.1). To begin with let us 
drop the variable xl from (3.1). The new constraint will be tightened by 
using the clique (5, 6}. So, the auxiliary problem to solve can be expressed 

R = m a x  x2 +x3 +x4 -t-3x5 +4x6 
s.t .  Xl +x2 +x3 +x4 +3x5 +4x6 _ 4 

x5 +x6 -< 0 
xj e{0,1} vj. 

So, R -- 3 and, then, the tighter constraint can be expressed 

x2 + x3 + xa + 2x5 + 3x6 < 3. (4.3) 

By using successively the same approach for x2, x3 and x4 as it has been 
done forx1 above, the new constraints are as follows: 

Xl +x3 +x4 +2x5 +3x6 -< 3 
Xl -k-x2 -~-x4 +2x5 T3x6 < 3  (4.4) 
Xl "~X2 -{-X3 +2x5 T3x6 -< 3. 

See that the inequalities (4.1) - (4.4) plus the bounding constraints 
0 -< x j  -< 1, are exactly the inequalities shown in table 1. 

5 C o n c l u s i o n  

The set of inequalities that define the convex hull of the points satisfying 
a given 0-1 knapsack constraint has been derived by using an automatic 
scheme for efficient tightening of 0-1 programs. The approach turned out 
to be very efficient. In fact, it has been successfully used for solving an 
extensive set of real'life problems, see the given references. 
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