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Proc. of the VII ALIO–EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4–6, 2011

Welcome Note

Dear Conference Participant,

It is our great pleasure to welcome you to Porto and to the 7th edition of the ALIO-EURO workshop in Applied

Combinatorial Optimization.

Porto is a city full of tradition and contrasting modernity. House of some of the most awarded contemporary

architects in the world, here you can find modern vibrating buildings side by side with walls that preserve

centuries of History. You can make a toast (always with Port Wine) at the modernist concert hall building of

Casa da Música (House of the Music) or at the old cellars in Vila Nova de Gaia, on the left bank of river Douro.

You can explore the renowned contemporary art museum of Serralves and enjoy its wonderful gardens. A stroll

in the city park, towards the seaside and the mouth of river Douro is also a must for those who like walking.

Plenty of interesting activities that we expect will contribute for good moments of leisure after the workshop.

In ALIO-EURO 2011 there will be presentations covering a wide range of subjects – over 70 high quality pre-

sentations and 4 keynote talks by distinguished researchers. We are very grateful to all authors for contributing

to the success of the workshop. We hope that this selection will provide each of you with opportunities to learn

something new, to discuss and exchange research ideas with other colleagues and to start new collaborations.

The high quality of the program is also due to the strong engagement of the Program Committee and Cluster

Organizers in a thorough reviewing process. To all of them we address our sincere acknowledgment.

To conclude, we are grateful to the Faculty of Sciences of the University of Porto for hosting the workshop and

for providing all the required facilities, and to all sponsors for the financial support provided.

We wish you a pleasant and fruitful stay in Porto.

The Organizing Committee
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Routing in Graphs with Applications to Logistics and Traffic

Rolf Möhring ∗

∗ TU Berlin

Traffic management and routing in logistic systems are optimization problem by nature. We want to utilize the available street or logistic
network in such a way that the total network “load” is minimized or the “throughput” is maximized. This lecture deals with the mathematical
aspects of these optimization problems from the viewpoint of network flow theory and scheduling. It leads to flow models in which–in
contrast to static flows–the aspects of “time” and “congestion” play a crucial role.

We illustrate these aspects on several applications:

1. Traffic guidance in rush hour traffic (cooperation with ptv).

2. Routing automated guided vehicles in container terminals (cooperation with HHLA).

3. Ship Traffic Optimization for the Kiel Canal (cooperation with the German Federal Water- ways and Shipping Administration).

All these applications benefit from new insights into routing in graphs. In (1), it is a routing scheme that achieves traffic patterns that
are close to the system optimum but still respect certain fairness conditions, while in (2) it is a very fast real-time algorithm that avoids
collisions, deadlocks, and other conflicts already at route computation. Finally, (3) uses techniques from (2) and enhances them with special
purpose scheduling algorithms.
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Recent Developments in Optimization Methods for Scheduling Problems

Debora P. Ronconi ∗

∗ Department of Production Engineering, EP-USP, University of São Paulo
Av. Prof. Almeida Prado, 128, Cidade Universitária, 05508-900, São Paulo SP, Brazil

dronconi@usp.br

In this talk, the combinatorial optimization scheduling problem will be addressed. A few approaches of exact and heuristic nature developed
for different variants of scheduling problems will be described to illustrate the vitality of the topic.

Since the seminal paper by Johnson [4], scheduling problems have received significant attention, particularly in recent years with several
publications each year. In general words, the scheduling problem consists of the allocation of resources to tasks over time, considering the
physical restrictions of the process while optimizing one or more objectives. Resources can be machines in a workshop, processing units in
a computing environment, runways at an airport, and so on; while tasks may be operations in a production process, landings at an airport, or
executions of computer programs, just to name a few. A task may have a distinct due date, priority or release date. According to Baker [1],
to classify the major scheduling models it is necessary to characterize the configuration of resources and the behavior of tasks. For instance,
a model may contain one resource type or several resource types. In addition, if the set of tasks available for scheduling does not change
over time, the system is called static, in contrast to cases in which new tasks arise over time, where the system is called dynamic. Generally
speaking, the scheduling of jobs is a very complex problem due to its combinatorial nature and, amongst the combinatorial optimization
problems, it can be classified as one of the most difficult problems. An overview of scheduling models can be found in [5].

In most theoretical scheduling papers, simple measures of performance have been applied, such as, for example, the completion time of
the last job on the last machine, known as makespan. In general, the considered criteria are regular, i.e. nondecreasing with the completion
time. Among them, we can mention the total tardiness criterion, whose difficulty arises from the fact that tardiness is not a linear function
of completion time. On the other hand, scheduling problems involving not regular measures based on both earliness and tardiness costs
have also been addressed in many recent studies. This type of problem became important with the advent of the just-in-time (JIT) concept,
where early or tardy deliveries are highly discouraged. A practical example can be found in the chemical industry, where different products
can be made through the same process and must be mixed as close as possible to a given instant in time to prevent their deterioration.
Comprehensive reviews can be found in [2] and [3].

Due the good performance of optimization methods in several problems that appear in industrial settings, this talk will mainly focus on the
application and development of optimization methods for job-scheduling problems in different environments. Selected published papers,
which comprise problems addressed by the speaker, will be described.

As the solution of practical models is now largely automated by the use of commercial software, we will initially discuss different mixed-
integer models that represent a useful scheduling environment: the flowshop problem with no storage constraints aiming to minimize the
sum of earliness and tardiness of the jobs (see [8]). The formulation of combinatorial optimization problems such as mixed-integer models
opens the possibility of applying different algorithms developed for general and specific problems. Since the pioneering work of Ralph
Gomory in the late 1950s, integer programming is one of the fields in operational research that has made the most progress in the past few
years. The most popular approaches are cutting planes and enumerations. Within the second approach, we can highlight the branch-and-
bound algorithm, which is basically a sophisticated way to perform an enumeration. With the purpose of illustrating the application of
this technique to a scheduling problem, a lower bound which exploits properties of the flowshop problem with blocking will be presented
(see [6, 7]). In this environment there are no buffers between successive machines, and, therefore, intermediate queues of jobs waiting in
the system for their next operations are not allowed. Some examples of blocking can be found in concrete block manufacturing, which does
not allow stock in some stages of the manufacturing process.

On the other hand, there are several combinatorial optimization problems that are difficult to solve through the use of methods that are
guaranteed to provide an optimal solution. In these cases, heuristic methods are typically used to quickly find solutions that are not
necessarily optimal solutions, but are good quality solutions anyway. Due the practical importance of objectives associated with due
dates, we will present heuristic approaches that focus on these performance measures. First, a constructive heuristic that explores specific
characteristics of the flowshop problem with blocking will be presented [9]. In this case, performance is measured by the minimization
of the total tardiness of the jobs. Then a GRASP-based heuristic is proposed, coupled with a path relinking strategy to search for better
outcomes. Next, the minimization of the mean absolute deviation from a common due date in a two-machine flowshop scheduling problem
will be addressed [11].
An online version of a single machine scheduling problem to minimize total tardiness will also be described. In this problem, orders get
to the system randomly. Jobs have to be scheduled without knowledge of what jobs will come afterwards. The processing times and the
due dates become known when the order is placed. A customized approximate dynamic programming method will be presented for this
problem [10]. This talk will also comment on new research initiatives under development.
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Spatial Forest Optimization is concerned with the design of forest landscapes. Forest landscapes evolve along time under the action of
opposing forces. Vegetation growth is counterbalanced by natural hazards such as fire and pests, or through human intervention, such as
harvesting. In managed forests usually the main objective is to maximize the value of timber harvested. However, other objectives can be
considered, such as soil preservation, aesthetic values, biodiversity and wildlife conservation. Landscapes can be intentionally modified in
order to accomplish or help to achieve these goals. For modeling purposes, a forest landscape is a region in the plane, composed of a finite
number of smaller management units. A finite horizon divided into periods may be considered. Main decisions are, for each unit, either to
harvest in some specific period or not harvesting at all. A set of contiguous units with similar characteristics in some time period is called
a patch of the forest. The aim of spatial forest optimization is to optimize an objective function while ensuring certain characteristics of
some patches.

In this talk we review a few combinatorial optimization problems that arise in the context of spatial forest optimization: One problem is
the so-called "harvest scheduling subject to maximum area restrictions"- large harvested patches are forbidden, to prevent erosion and also
for aesthetic reasons. Another one consists of selecting a "patch with a minimum required area." Such a patch may represent an old growth
region suitable for wildlife habitat. A related problem consists of selecting a (nearly) convex region in the landscape. We introduce a
simplified version of this problem and show it can be solved in polynomial time.
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Programming
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Bilevel programming is a rich paradigm to express a variety of real-world applications including game theoretic and pricing ones. However,
what we are interested in this talk is to discuss the bilevel nature of two of the most crucial ingredients of enumerative methods for solving
combinatorial optimization problems, namely branching and cutting.

Specifically, we discuss a new branching method for 0-1 programs called interdiction branching [3] that exploits the intrinsic bilevel nature
of the problem of selecting a branching disjunction. The method is designed to overcome the difficulties encountered in solving problems
for which branching on variables is inherently weak. Unlike traditional methods, selection of the disjunction in interdiction branching takes
into account the best feasible solution found so far.

On the cutting plane side, we examine the nature of the so-called separation problem, which is that of generating a valid inequality violated
by a given real vector, usually arising as the solution to a relaxation of the original problem. We show that the problem of generating a
maximally violated valid inequality often has a natural interpretation as a bilevel program [2]. In some cases, this bilevel program can be
easily reformulated as a single-level mathematical program, yielding a standard mathematical programming formulation for the separation
problem. In other cases, no reformulation exists yielding surprisingly interesting examples of problems arising in the complexity hierarchies
introduced by Jeroslow [1].
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ABSTRACT

Installation of capacitors in radial electrical distribution power sys-
tems is a generalized practice used by the utilities mainly to reduce
power losses, improve system stability, perform power factor cor-
rection and get a better voltage profile. These benefits are associ-
ated with the ability of choosing the appropriate locations and ca-
pacity of the equipments to be installed. This problem has been ex-
tensively researched over the past decades. Nowadays more flex-
ible optimization tools allow for the computation of solutions to
more realistic models. This extended abstract shows how Multi-
Objective Evolutionary Algorithms (MOEAs) are adequate tools
to tackle this problem and provides a comparative study between
some distinct approaches. Some modifications are introduced into
an MOEA in order to tailor it to the characteristics of the multi-
objective mathematical model.

Keywords: Reactive power compensation, Quality of service, Multi-
objective models, Evolutionary algorithms

1. INTRODUCTION

Shunt capacitors installed in electrical distribution networks for
reactive power compensation generate some positive effects, such
as increasing voltage level at the load point, improving voltage
regulation when capacitor banks are properly switched, reducing
active and reactive power losses, improving system capacity by re-
ducing currents, reducing the need of reinforcement by releasing
system capacity. The importance of an adequate reactive power
planning is definite, namely due to the growing utilization and de-
pendency on electricity. The FERC report about the August 2003
North American electrical blackout [1], concluded that poor volt-
age profile and insufficient reactive planning were decisive factors
to this incident. In the mid-20th century these devices were gen-
erally installed at the head of electrical distribution systems. Sev-
eral mathematical models and algorithmic approaches have been
reported in the literature [2], and the Capacitor Subcommittee of
the IEEE Transmission and Distribution Committee has published
several bibliographies on this theme until 1980, [3, 4, 5, 6]. The
appearance of capacitors with smaller weight/capacity ratio en-
abled, from technical and economic perspectives, the allocation
of compensation also along the feeders of distribution networks.
Mainly in the 1990s new algorithms based on heuristic and meta-
heuristic search techniques started to be applied: specific heuris-
tics [7, 8], Simulated Annealing [9, 10, 11], Tabu Search [12, 13],
Genetic/Evolutionary Algorithms [14, 15, 16]. The problem of the
reactive power planning can be stated as identifying the best net-
work locations and the appropriate dimension of capacitors to be

installed in order to achieve the network operator’s objectives sub-
ject to technical, operational and budget constraints. Mathematical
model for this problem are generally of combinatorial nature, in-
volving multiple objective functions, real-valued and integer vari-
ables, and linear and non-linear relationships.

2. MULTI-OBJECTIVE MATHEMATICAL MODEL

The multi-objective mathematical model has been formulated as a
non-linear mixed integer problem considering two objective func-
tions: minimizing investment costs and minimizing active power
losses. These objectives are conflicting and of distinct nature. The
constraints comprise operational and quality restrictions: voltage
limits at each bus, impossibility to locate capacitor banks in some
nodes, operational constrains due to the power flow in the system
and the need to supply the required load at each node. The main
purpose is to characterize a compensation scheme, which consists
of a set of capacitors banks to be located in selected network lo-
cations, in order to achieve a compromise between active power
losses and investment costs while satisfying all constraints. A de-
tailed description of the model objective functions, power flow
equations (physical laws in electrical networks) and other con-
strains can be found in [17].

3. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

Evolutionary Algorithms (EAs) have gained a growing importance
to tackle multi-objective models, particularly for hard combinato-
rial problems, due to their capability of working with a population
of individuals (solutions). Since they deal with a population of so-
lutions and the aim is generally the characterization of a Pareto op-
timal front, EAs endowed with techniques to maintain diversity of
solutions present advantages with respect to the use of scalarizing
functions as in traditional mathematical programming approaches.
A Pareto optimal front can be identified throughout the evolution-
ary process, which hopefully converges to the true non-dominated
front for the problem under study. It must be noticed that, in real-
world problems, this is, in general, a potential Pareto optimal front,
classified as such because no other solutions dominating it could be
found but no theoretical tools exist guaranteeing their true Pareto
optimality. EAs can incorporate techniques aimed at guarantee-
ing the diversity of the Pareto optimal front in order to display the
trade-offs between the conflicting objective functions in different
regions of the search space. These advantages of using EAs are not
just related with the computational effort required but also with the
difficulty of using mathematical programming algorithms in most
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high-dimensional combinatorial multi-objective problems.

4. CASE STUDY AND RESULTS

An actual Portuguese electrical radial distribution network has been
used for a comparative case study. The network topology is dis-
played in 1. For more detailed information on this network see
[17]. This network is located in a rural area and has a particular
characteristic: the voltage profile without compensation does not
respect the quality voltage limits, so the zero cost solution is not
feasible. Therefore, it is necessary to install capacitors to have fea-
sible solutions with respect to the voltage profile constraint. Three
well known MOEA have been implemented: MOGA, SPEA and
NSGA-II. Moreover, a local search scheme tailored for this prob-
lem has been included in NSGA-II to make the most of the prob-
lem specificities, namely regarding neighborhood exploration. In
this local search scheme, a move leading to a neighbour solution
is defined by changing the capacitor location in the network to a
neighbour location, or the capacitor type corresponding to a ca-
pacity value. 2, 3, 5 and 4 display the set of initial solutions and
the Pareto Frontiers obtained with each algorithm. All MOEA
converge reasonably well to a set of dispersed non-dominated so-
lutions. However, the front reached with the modified NSGA II
totally dominates the other fronts 6. This approach not only in-
creased the number of solutions computed, but also improved the
middle front solutions and extended the Pareto front, achieving
compromise solutions with lower costs/higher losses, and higher
costs/lower losses.

Figure 1: Portuguese radial electrical distribution network.

Figure 2: Initial solutions and Pareto Frontier obtained with
MOGA.

Figure 3: Initial solutions and Pareto Frontier obtained with SPEA.

Figure 4: Initial solutions and Pareto Frontier obtained with NSGA
II.
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Figure 5: Initial solutions and Pareto Frontier obtained with NSGA
II with local search.

Figure 6: Pareto Frontiers
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ABSTRACT

This paper presents a new iterative algorithm for optimising ther-
mal unit commitment in power generation planning. The approach,
based on a mixed-integer formulation of the problem, considers
a piecewise linear approximation of the fuel cost function that is
dynamically updated to better reflect problem requirements, con-
verging to the optimal solution.
After thorough computational tests in a broad set of instances, it
showed to be flexible, capable of easily incorporating different
problem constraints, and to be able to solve large size problems.

Keywords: Unit Commitment, Approximation Algorithms, Schedul-
ing

1. INTRODUCTION

The Unit Commitment problem (UCP) is the problem of decid-
ing which power generator units must be committed/decommitted
over a planning horizon (lasting from 1 day to 2 weeks, and gener-
ally split in periods of 1 hour), and the production levels at which
they must be operating (Pre-Dispatch), so that a given objective is
optimised. The committed units must generally satisfy the fore-
casted system load and reserve requirements, subject to a large set
of other system, technological and environmental constraints.

This is a topic of major practical relevance because the effective-
ness of the schedules obtained has a strong economical impact in
any power generation company. Due to that and to its complexity,
it has received considerable research attention and, after several
decades of intensive study, is still a rich and challenging topic of
research.

Proposed optimisation techniques for Unit Commitment encom-
pass very different paradigms, ranging from exact approaches and
Lagrangian Relaxation to some rule of thumb or very elaborate
heuristics and metaheuristics. The combinatorial nature of the
problem and its multi-period characteristics prevented exact ap-
proaches from being successfully used in practice: they resulted
in very inefficient algorithms that were only capable of solving
small size instances of no practical interest. Heuristic techniques,
as those based in Priority Lists, were also not very successful as
they tended to lead to low quality solutions. Concerning meta-
heuristics, they had a very promising behaviour when they first
started being explored. The quality of the results was better than
the ones achieved by well established techniques, and good solu-
tions were obtained very quickly.

Some drawbacks can however be pointed out when metaheuristics
go into play. One major drawback, if one considers that the ulti-
mate goal is to design techniques that can be accepted and used
by a company, is the dependence of these techniques on parameter
tuning. Tuning the parameters is a time consuming and somehow
complex procedure that requires deep knowledge on the algorithm
implemented. Furthermore, it is vital for good algorithm perfor-
mance. A second drawback has to do with the lack of information
this techniques provide in terms of solution quality (i.e. how far
it is from the optimal solution). Some proposals have been made
to soften the referred drawbacks; but this is still an open line of
research.

Currently, the dramatic increase in efficiency of mixed-integer pro-
gramming (MIP) solvers requests for a thorough exploitation of
their capabilities. Some research has been directed towards the
definition of alternative, more efficient, mixed-integer linear pro-
gramming (MILP) formulations of the problem e.g. [1, 2]. Exten-
sive surveys on different optimisation techniques and modelling
issues are provided by e.g. [3, 4].

This paper presents a new MILP approach to the UCP that further
explores this line of research. Instead of considering a quadratic
representation of the fuel cost, we consider a piecewise linear ap-
proximation of that function and, in an iterative process update, it
by including additional pieces. The function update is based in the
solutions obtained in the previous iterations.

The approach was tested in a well known set of instances from the
literature and showed to be flexible, capable of easily incorporating
different problem constraints, and of solving large size problems.

2. PROBLEM DESCRIPTION

Different modelling alternatives, reflecting different problem is-
sues have been published: they consider fuel, multiarea and emis-
sion constraints (e.g. [5, 6, 7]) and, more recently, security con-
straints [8] and market related aspects [9].

The decentralised management of production brought up new is-
sues to the area [10], in some markets the problem being now
reduced to single-unit optimisation. However, for several decen-
tralised markets the traditional problem is still very similar to that
of centralised markets [1, 2]. The main difference is the objec-
tive function that, rather than minimising production costs, aims at
maximising total welfare. Therefore, the techniques that apply for
a centralised management of the production, will also be effective
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at solving many decentralised market production problems.

In this paper we will consider the centralised UC model. The ob-
jective is to minimise total production costs over a given planning
horizon. They are expressed as the sum of fuel costs (quadratic
functions that depend on the production level of each unit) and
start-up costs. Start-up costs are represented by constants that de-
pend on the last period the unit was operating; two constants are
defined: one for hot start-up costs, that is considered when the
unit has been off for a number of periods smaller or equal to a
given value; and another for cold start-up costs, considered other-
wise. The following constraints will be included in the formula-
tion: system power balance demand, system reserve requirements,
unit initial conditions, unit minimum up and down times, genera-
tion limits and ramp constraints. For a mathematical formulation
the reader is addressed to [11].

3. MIP APPROACH AND COMPUTATIONAL RESULTS

The approach considers a piecewise linear approximation of the
quadratic fuel cost function (see Equation (1)). Pit are decision
variables that represent the production level of unit i in period t;
ai, bi and ci are fuel cost parameters for unit i (measured in $/h,
$/MWh and $/MW2h, respectively). There are binary variables
yit that indicate the state of unit i in period t (0 if unit is off, 1
otherwise).

F(Pit) =

{
ciP2

it +biPit +ai if yit = 1
0 otherwise (1)

The main contribution of this paper concerns a linearisation of this
cost function. As it is convex, if we find a straight line tangent to
it, and constrain the cost to be greater than the value of the straight
line, we have a lower approximation of the cost. The process de-
vised here is to dynamically find straight lines, at points whose
cost is being underestimated, and add them to a set; we then im-
pose that the cost of a any production level p must be greater than
the maximum of those straight lines, evaluated at p.

For the sake of clarity, let us remove the indices i, t identifying the
generator. For any generator and any period, we start by approxi-
mating its cost by means of two straight lines: one going through
(Pmin,F(Pmin)), and another going through (Pmax,F(Pmax)), as can
be seen in Figure 1.

After solving the problem with this approximation, we obtain a
production level for this unit of, say, p. The operating cost at this
point will be underestimated by the value of the highest of the
straight lines at p; in Figure 1, the value F . In order to exclude this
point from the feasible region, we add another straight line to our
set; the line tangent to the quadratic function, evaluated at p, as
represented in blue in Figure 2. As we add more and more straight
lines, we are converging to an exact approximation of the true cost
function, as can be seen in Figure 2 for another possible value p′.Proc. of the VII ALIO/EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4 - 6, 2011
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Figure 1: Initial approximation of the cost function by two straight
lines, going through the minimum and maximum operating power
of the unit. If the current production level for this unit is p, its cost
(in this iteration) will be approximated by F
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Figure 2: Approximation of the cost function by the maximum of
three straight lines, after obtaining production at level p on the
previous iteration.

3.1. Algorithm description

Initially, for each unit, the corresponding quadratic fuel cost func-
tion is approximated by two linear functions. Thereafter, more
straight lines are iteratively added into a set, until having one iter-
ation with all production levels being correctly evaluated, up to an
acceptable error.

Let N be a set of integers identifying the power at which new
tangents to the true cost are added; initially P = {Pmin,Pmax}.
At a given iteration, if the production level obtained in the MILP
solution was p�, we add this point to P , except if there is a p ∈
P : |p� − p|< ε .

In the MILP solved at each iteration, we add the constraints
(making sure that they are only observed if the corresponding unit
is switched on at the period considered)

F ≥ αin +βin(p− pn) for n = 1, . . . , |P|,

where p and F are instantiated to the actual producing levels Pit
and costs Fit of a given unit, at a given period. For a given unit, the
constants of the straight lines are obtained by:

αin = ci p2
n +bi pn +ai

βin = 2ci pn +bi
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In our implementation, we have set ε = 1; this allows an excellent
approximation of the quadratic function in all the instances used
(actually, we could observe no difference at all).

3.2. Computational results

The algorithm was tested in two sets of problems: one without
ramp constraints but that has for long been a reference when com-
paring UC algorithms [12]; another where ramp constraints are
included. CPU times were obtained with CPLEX 12.1, on a com-
puter with a Quad-Core Intel Xeon processor at 2.66 GHz, running
Mac OS X 10.6.6; only one core was assigned to this experiment.

Tables 1 and 2 present the results obtained with the algorithm pro-
posed in this paper for different sets of instances. Problems P1 to
P6, in Table 1, do not include ramp constraints. Those constraints
are considered in problems R1 to R6 (Table 2). Problems R1 to
R6, resulting from problems P1 to P6, set ramp up and down max-
imum values to the minimum production level of each unit. All
problems consider a 24h planning horizon and the number of units
ranges from 10 to 100.

Table 3 presents results reported in the literature for instances P1
to P6. Although the objective function value reported in this paper
(565 828) for the 10 unit problem using the approximation algo-
rithm is different from the one reported in other papers (565 825),
the actual solution is the same. Small differences in values are
justified by possible rounding of values by other authors.
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In Tables 1 and 2, column Quadr provides the optimal result for
the base problem and column Lin the result obtained by the ap-
proximation. Columns CPUL and CPUQ refer to the time spent (in
seconds) to solve the quadratic problem and to reach convergence
for the linear problem, respectively.

Prob. Size Lin CPUL Quad CPUQ

P1 10 565 828 0.33 565 828 1.95
P2 20 1 126 000 7.46 1 126 000 241.
P3 40 2 248 280 134. 2 248 280 22716.
P4 60 3 368 950 2639.
P5 80 4 492 170 192966.
P6 100 5 612 690 157742.

Table 1: Results for problems P1 to P6. Attempts to solve the
problem with the quadratic formulation were not successful for
instances with more than 50 units.

As far as the authors know, no optimal results had ever been es-
tablished for problems P1 to P6, even for the smallest ones. We
now show that for problems up to 40 units optimal results can be
obtained by highly efficient MIP solvers. Furthermore, the effec-
tiveness and efficiency of the approach proposed in this paper are
reflected in the values of columns Lin and CPUL, respectively. For
problems up to 40 units the iterative approach is able to reach the
optimal solution with dramatical cuts in CPU times, when com-
pared to direct solution with the quadratic solver of CPLEX. For
problems of bigger size, good lower bounds on the optimal result
are also reachable as can be concluded by comparing those val-
ues with the best published values for the quadratic problem (see
Table 3).

Similar conclusions may be taken for the ramp problem. The
quadratic solver of CPLEX was capable of reaching optimal so-
lutions for instances of up to 20 units. Optimal values for the same
set of problems were also reached by the approximation algorithm,
that was capable of solving instances of up to 80 units.

Prob. Size Lin CPUL Quad CPUQ

R1 10 573 570 0.94 573 570 2.00
R2 20 1 144 450 258. 1 144 450 147.17
R3 40 2 284 670 12084.
R4 60 3 424 310 1830.
R5 80 4 565 420 41907.
R6 100

Table 2: Results for problems R1 to R6. Attempts to solve the
problem with the quadratic formulation were not successful for in-
stances with more than 20 units. With the linearisation algorithm,
limiting CPU to 200000 seconds, allowed solution of instances
with up to 80 units.

4. CONCLUSIONS AND FURTHER DEVELOPMENTS

The main contribution of this paper is a method for approximating
the quadratic cost of electricity generating units, with an iterative
method that converges to the exact solution.

Computational analysis shows that for problems without ramps the
method is capable of reaching the quadratic optimal result when-
ever it is known, within much less computational time. For larger
instances, where the quadratic problem optimal is not known, the
method also provides high quality lower bounds for the results.

The paper also establishes optimal results for small size instances
showing that currently, state-of-the-art MIP solvers can solve to
optimality problems that were not solvable before.

Prob. Size LR [12] GA [12] LR–MA [13]
P1 10 565 825 565 825 565 827
P2 20 1 130 660 1 126 243 1 127 254
P3 40 2 258 503 2 251 911 2 249 589
P4 60 3 394 066 3 376 625 3 370 595
P5 80 4 526 022 4 504 933 4 494 214
P6 100 5 657 277 5 627 437 5 616 314

ICGA [14] GRASP [11] CON [15]
P1 10 566 404 565 825 565 825
P2 20 1 127 244 1 126 805 1 126 070
P3 40 2 254 123 2 255 416 2 248 490
P4 60 3 378 108 3 383 184 3 370 530
P5 80 4 498 943 4 524 207 4 494 140
P6 100 5 630 838 5 668 870 5 615 410

Table 3: Previous results for problems P1 to P6.

Similar conclusions can be taken when ramp constraints are mod-
elled. The method is also capable of reaching quadratic optimal re-
sults (now with extra computational time). Furthermore, for prob-
lems with more than 20 units where quadratic optimal solutions
were not obtained, the approximate method was still effective.

As future work the authors plan to include additional features in
the algorithm to make it more efficient for very large size prob-
lems.
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ABSTRACT

This paper presents an optimization model for daily operation of
Middle Sao Francisco River hydroelectric system in Brazil. The
study considers eight hydroelectric power plants – Sobradinho,
Luiz Gonzaga, Apolonio Sales, Paulo Afonso I, II, III, IV e Xingo
– witch belongs to the Sao Francisco Hydroelectric Company. Its
objective is to maximize the hydroelectric power plant efficiency
and, simultaneously, to minimize the number of startups and shut-
downs of generating units. The technique of resolution is made
in two steps: Step 1 determines the load allocated in each hy-
droelectric power plant at each per hour and Step 2 defines the
number of generating units in operation and the load of particular
power plant. The mathematical formulation is non-linear mixed
integer programs and solved with a Genetic Algorithm (GA) ap-
proach, and Linear Programming . This model was implemented
with two computation programs, one a commercial optimization
solver, and a in house GA solver coded with a programming lan-
guage of four generation. One of programs was used as interface,
while the fourth generation, the optimization model was imple-
mented.

Keywords: Linear and non-linear optimization, Multiobjective
optimization, Hydroeletric system, Generating units, Genetic al-
gorithm

1. INTRODUCTION

Several objectives are adopted for the dispatch models of gener-
ating units in hydroelectric power plants. Generally, the problem
of maximizing the efficiency of the Brazilian hydroelectric plants
has as the main objective a model for the Optimal Load Dispatch
(DOC). The DOC resolves the load allocation problem of the hy-
droelectric plants and it can be implemented as an Evolutionary
Computation problem, specifically with Genetic Algorithm. It also
allows calculating the global efficiency of the plants when the op-
erating conditions, the hills curves and operatives restrictions are
known.

According to [1], the efficiency of generating units is the main fac-
tor influencing the performance of generation of electricity in a hy-
droelectric power plant . The operation planning of generation sys-
tems covers the long, medium and short term. This article focuses
on the short-term operation. The short-term programming requires
a more detailed mathematical representation of the operatives re-
strictions and it is determined the curve of a generation plant, and
then, the units are chosen to be dispatched. Thus, this paper pro-
poses an optimization model of the Sao Francisco’s hydroelectric
plants daily operation. Its objective is to maximize the plant’s ef-
ficiency and minimize the number of startups and shutdowns of
the generating units simultaneously. The literature presents a sig-
nificant number of works that relate the problem of dispatch with
different approaches that vary according to the applicability of the
same.[2] proposed a model of multiobjective optimal dispatch for

the operation of a hydroelectric power plant. The model consists of
two algorithms based on GA. The first algorithm is used to allocate
the generating units and aims to maximize the efficiency of power
plant at each time interval. The second step aims to maximize ef-
ficiency and minimize the number of startups and shutdowns of
generating units.

The dispatch model proposed by [3], and [4], was divided into two
subproblems called Dispatch of Units (DU) and Dispatch Gener-
ation (DG). DG was solved via Lagrangean Relaxation and DU
was used with Genetic Algorithms. This methodology was ap-
plied to actual case study of the hydroelectric power plants system
of Paranapanema in Brazil.

2. PHYSICAL ASPECTS

It is important that the physical aspects of generating units must be
more detailed in the dispatch, such as operational restriction and
the operating characteristics (for example their efficiencies), where
costs and goals are more important.

• Unit efficiencies
Generation unit efficiency depends on three variables: wa-
ter head of the plant, water discharge and eletric power of
the unit. The hill is a three-dimensional curve that plots ef-
ficiency as a fuction of the water head of the plant and the
eletric power of unit, as shown in Figure 1.

Figure 1: Hill curve of a real hydroelectric power plant.

• Demand
The load of the plant is determined by long- and mid-term
planning. A short-term scheduling model estimates the plant’s
daily load curve. The Figure 2 shows a typical load curve
of one day. In this case, the demand to be met by power
plants of Middle Sao Francisco river.

• Startups and Shutdowns of generating units
In some studies the costs of startups and shutdowns of the
generating units have a great importance, since it decreases
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Figure 2: Typical daily load curve.

the life of units and increases the maintenance of windings
and mechanical equipament them.
A study presented by [5] showed how startups affect the
cost of short term hydro operation and how these costs af-
fect short term scheduling strategies of power producing
companies in Sweden. Overall, the study points to an ap-
proximate value of 3US$/MW.

• Plant Production Factor
Power output in a hydroelectric plant per unit turbine flow.
It varies according to plant gross head, and is expressed in
MW/m3/s. For purposes of illustration, the Figure 3 shows
the productivity of a specific plant from Brazil.

Figure 3: Plant Production Factor.

3. GENETIC ALGORITHM

Math and computational techniques have been developed for deca-
des with the principles of Darwin’s evolution theory, defining what
is known as Evolutionary Computation. Inside its branches, Ge-
netic Algorithms (GA) are the most used [6]. GA were developed
by Holland [7], who analyzed the phenomena of the process of nat-
ural selection of species and the genetic selection of races. Each
individual in the GA is a coding of a possible solution of a prob-
lem. This encoding can be binary or real.

The first step towards its implementation is the generation of an
initial population, that for most problems is randomly generated.
However, depending on the application forms, the individuals can
be selected heuristically to compose a more favorable population
[8]. GA use some genetic operators like crossover and mutation,
and these operators are applied to generate new solutions inside a
feasible set of solutions.

Also, the operators are randomized to provide diversities in the
overall population seeking global optimal solutions. The advan-
tage of GA is that its use does need differentiable functions, so

they can be applied to problems with discontinuities, which are
very common in dispatch problems.

4. PROBLEM DESCRIPTION

4.1. The Sao Francisco river

The Sao Francisco is a river in Brazil. With a length of 3200
kilometres, the Sao Francisco originates in the Canastra mountain
range in the central-western part of the state of Minas Gerais and
traverses the states of Minas Gerais (MG), Bahia (BA), Pernam-
buco (PE), Sergipe (SE) and Alagoas (AL).

Cascade Middle Sao Francisco River is formed by uses of the
HPPs Sobradinho, Luiz Gonzaga, Apolônio Sales (Moxotó), Paulo
Afonso I, II, III, IV and Xingó. These HPPs are the core of the
system producing electric power from the Northeast, Companhia
Hidro Eletrica do Sao Francisco (CHESF). The Figure 4 shows
the location of the Middle Sao Francisco in Brazil, along with the
HPPs.

Figure 4: System of the Middle Sao Francisco with him HPPs lo-
cated in Brazil.

The Figure 5 illustrates the HPPs Cascade Middle Sao Francisco.

Figure 5: Cascade Middle Sao Francisco river in Brazil.

4.2. Mathematical Formulation

The problem presented is solved in two steps, as follows Diagram
6.

The dispatch is described by Equations 1 to 9
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Figure 6: Diagram of the proposed problem.

Max
24

∑
j=1

∑
i∈UHE

∑
k∈Mi

ηi(pi,k, j)yi,k, j (1)

Min
24

∑
j=2

∑
i∈UHE

∑
k∈Mi

∣∣yi,k, j− yi,k, j−1
∣∣ (2)

s.a.

∑
i∈UHE

∑
k∈Mi

pi,k, j = d j−G (3)

24

∑
j=1

∑
k∈Mi

pUSB, j

ρUSB(x0
USB, pUSB,k, j)

= 24QUSB (4)

24

∑
j=1

∑
k∈Mi

pULG, j

ρULG(x0
ULG, pULG,k, j)

= 24QULG (5)

24

∑
j=1

∑
k∈Mi

pUSQ, j

ρUSQ(x0
USQ, pUSQ,k, j)

= 24QUSQ (6)

24

∑
j=1

∑
k∈Mi

pUXG, j

ρUXG(x0
UXG, pUXG,k, j)

= 24QUXG (7)

pmin
i,k, jyi,k, j ≤ pi,k, j ≤ pmax

i,k, jyi,k, j (8)

yi,k, j ∈ {0,1} (9)

for i ∈ UHE = {USB,ULG,USQ,UXG}, k = {1, ...,n} and j =
1, ...,24, where

This problem has a multiobjective character because its objective
functions 1 and 2 seek to maximize productivity and minimize the
number of startups and shutdowns, respectively.

Equations 4 to 7 represent the daily average for each mill. The
variable ki, j indicates whether unit i is dispatched (ki, j = 1) or not
dispatched (ki, j = 0).

USB HPP Sobradinho
ULG HPP Luiz Gonzaga (Itaparica)
USQ HPP Paulo Afonso IV
UXG HPP Xingó
i Power plant index
k Generating unit index
j Time period index
Qi Avarage flow of that the HPP i must keep

during the day
pi, j Power generated by the HPP i in period j
x0

i Reservoir level of the HPP i in the last
period of the previous day

UHE Set of power plants UHE = {USB,ULG,USQ,UAS}
ρi Plant Production Factor function of the HPP i
ηi Efficiency function of the power plant i
G Generation of HPP UPA e UAS
Mi Set of UG of the power plant i
yi,k, j Indicates if the UG k of the power plant i

in period j is dispatched
d j Demand of the four power plants UHE in period j
Mi Set of UG of the power plant i
ki, j Indicates if the UG k of the power plant i

in period j is dispatched
pmin

i, j (ki, j) Minimum power to ki, j UG
pmax

i, j (ki, j) Maximum power to ki, j

G Generation of HPP UPA and UAS

Table 1: Variables used in the mathematical formulation.

5. METHODOLGY

The problem above is solved in two steps, as Figure 7. The Step 1

Figure 7: Illustration of the problem.

determines how much each power plant must generate at each time
interval. It provides an initial solution which takes into account
the service and video-streaming market averages per hydroelectric
power plant.

From this initial solution, the Step 2 determines the number of
units in operation and the load of a particular plant. This last step
is divided into two phases which are solved iteratively until con-
vergence.
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5.1. Step 1

This Step 1 solves a simplified problem given below, which does
not decide on the number of machines in operation.

Min
24

∑
j=1

∑
i∈UHE

pi, j

ρ i
(10)

s.a.

∑
i∈UHE

pi, j = d j−G (11)

24

∑
j=1

pi, j

ρUSB
= 24QUSB (12)

24

∑
j=1

pULG, j

ρULG
= 24QULG (13)

24

∑
j=1

pUSQ, j

ρUSQ
= 24QUSQ (14)

24

∑
j=1

pUXG, j

ρUXG
= 24QUXG (15)

pmin
i, j (1)≤ pi, j ≤ pmax

i, j (ni, j) (16)

for i ∈UHE = {USB,ULG,USQ,UXG} and j = 1, ...,24.

5.2. Step 2

Due to its mixed character, the problem in this step is decomposed
into two phases, iteratively solved until convergence. Both phases
are resolved by the GA techniques.

5.2.1. Phase 1

The dispatch problem formulation in this phase is described by the
following objective function and constraints, with time j and HPP
i are fixed.

Max ∑
i∈UHE

∑
k∈Mi

ηi(pi,k, j)yi,k, j (17)

s.a.

∑
i∈UHE

∑
k∈Mi

pi,k, j = d j−G (18)

∑
k∈Mi

pi, j

ρi(x0
i , pi,k, j)

= 24Qi (19)

pmin
i,k, jyi,k, j ≤ pi,k, j ≤ pmax

i,k, jyi,k, j (20)

yi,k, j ∈ {0,1} (21)

for i ∈UHE = {USB,ULG,USQ,UXG}, k ∈Mi e t = 1, ...,24.

5.2.2. Phase 2

The dispatch problem formulation in the second Phase is described
by the following objective function and constraints, with HPP i
fixed.

Max
24

∑
j=1

n

∑
k=1

ηi(pk, j)yk, j (22)

Min
24

∑
j=2

n

∑
k=1

∣∣yk, j− yk, j−1
∣∣ (23)

s.a.

∑
k∈Mi

pk, j = d j−G (24)

24

∑
j=1

n

∑
k=1

p j

ρ(x0, pk, j)
= 24Q (25)

pmin
k, j yk, j ≤ pk, j ≤ pmax

k, j yk, j (26)

yk, j ∈ {0,1} (27)

for i∈UHE = {USB,ULG,USQ,UXG}, k ∈Mi and j = 1, ...,24.

To the Step 2, was one chosen HPPs Sobradinho and Paulo Afonso
IV to be the study of case.

6. RESULTS

It was considered a daily horizon with a half-hour discretization
containing all the HPPs in cascade, according to the schedule data
held on September 10, 2007. The daily load curve to be attended
by the cascade, the initial state of the reservoirs and expected in-
flows for each day, were the available data provided by CHESF.

The Step 1 produced a graph that shows the result in terms of gen-
erating for each HPPs of cascade, shown in Figure 8. Basically, all
the HPPs followed the curve of charge and its ranged according to
her keeping the levels of its reservoirs within the allowed limit.

Figure 8: Generation of cascade and HPPs.

In Step 2 obtained the graphics of generation and centrifugation for
HPPs Sobradinho and Paulo Afonso IV, also indicating the limits
of maximum and minimum generation, shown in Figures 9 and 10.

7. CONCLUSIONS

This paper approached the dispatch problem by a mathematical
model that maximizes the energy efficiency of power plant tak-
ing into account the operational restrictions translated in terms of
reservoir levels, the swallowing of the turbines, the goal of gener-
ation and video-streaming of the HPP.

The genetic algorithm is a powerful optimization tool that has been
used very often in solving similar problems in the proposed work.
The efficiency of its use in simulation of this work showed an ap-
propriate discovery of dispatch. The result achieved with its use
was a great diversity of solutions with startups and shutdowns dif-
ferent that the best solution will be found depending on the priority
of the problem.

The applicability of this model can be used for optimization of
other HPPs in cascade.
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Figure 9: Generation and Centrifugation for Sobradinho.

Figure 10: Generation and Centrifugation for Paulo Afonso IV.
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ABSTRACT

Most real world problems remain as a multi-objective solution
space. To overcome the well known computational complexity of
such problems, the divide and evolve is a feasible solution, if the
sub-problems remain solvable. This paper envisions a road-map,
when and how to apply algebraic group theory structures into a
multi stage evolutionary approach. It solves certain combinations
of objectives from group stage to group stage in a nested group
structure, until the reference problem at hand even reaches the dis-
tinct solution of the problem. Further, the quality of the solution,
i.e. the overall number of steps to reach the solution results in a
low number of steps (albeit not the lowest possible). Performance
and integrity of this approach are consequently verified.

Keywords: Group theory, Divide and evolve, Evolution strategy,
Discrete optimization

1. INTRODUCTION

The universe of combinatorial optimization problems is a quite di-
verse space of problems. Evolutionary solutions for so far infeasi-
ble complexity spaces provide an opportunity if an algebraic group
theory based structure can be identified. The Rubik’s Cube is intro-
duced as a reference and benchmark problem to fulfill an integrity
and performance profile of a consequently applied algebraic group
theory driven divide and evolve approach. The main task is to find
a structure of subgroups which, when transformed for application
as fitness function(s) in an evolutionary approach, enable an over-
all multi-objective optimization problem - previously non-solvable
or only with high computational cost - to be solved in reasonable
time. The problem at hand, introduced and formalized in this pa-
per, is multi-objective in the sense that a scrambled Cube has to be
solved (first objective) using a preferably small number of moves
(second objective).

On a general level, a group-theoretic structure has to be found,
which divides the infeasible problem domain into solvable tasks,
represented by algebraic groups. The phase-transition of solutions
from one group to the following one is realized by specific fitness
functions for each group-transition. Each transition itself solves a
partly multi-objective subproblem with varying, subgroup-induced
prime objectives. Making use of the nested group structure guar-
antees a steady improvement of individuals and promotes a stable
population towards the end of each evolution phase. Each group
induces a combination of constraints which remain fulfilled and
subsequently add up until the final group-transition.

Large population sizes and the presented evolutionary phase-transi-
tion mechanic increase individual diversity to ensure efficient tran-
sitions from group to group and finally the overall unique solution.
This remains different from the general combinatorial optimiza-
tion task which, in general, defines an equal number of solutions.
In the reference problem however, the sequences of moves found
for group-transitions remain non-deterministic and therefore dif-

ferent. The overall solution is a single unique point in the search
space. By deriving a statistical analysis of the search space, a simu-
lation onset based on an integrity verification is provided. Accord-
ingly, all computationally feasible states up to a certain complexity
have been generated. The presented approach has been approved
upon this onset and further a random selection of more complex
points of the search space to ensure a solution from every point
of the search space (including the known most complex). In the
case of this reference problem, each solution in the search space is
evaluated by the exact and shortest solution known so far.

2. DIVIDE AND CONQUER THE RUBIK’S CUBE

2.1. Structure and Notation

The classic 33 Rubik’s Cube is widely known and the one subject
to this paper. It consists of 26 pieces: 8 corner pieces, 12 edge
pieces and 6 center pieces, distributed equally on the six sides
of the Cube. Each side of the Cube will be called face, each 2-
dimensional square on a face will be referred to as facelet.

F F

Figure 1: Classic 33 Rubik’s Cube, effect of CW turn of front face.

Corners, edges and centers are all cubies - representing the phys-
ical object. A corner shows 3 facelets, an edge 2 and a center
1. Each side of the Rubik’s Cube can be rotated clockwise (CW)
and counterclockwise (CCW). Every such single move changes
the position of 4 edges and 4 corners - note that the center facelet
on every of the Cube’s faces always stays in the same position (see
Figure 1). Thus, the color of a solved face is always determined by
its center color. For each edge and corner it is of great importance
to distinguish between position and orientation: i.e. an edge can
be in its right position (defined by the two adjacent center colors)
but in the wrong orientation (flipped).

There are several known notations [11] for applying single moves
on the Rubik’s Cube. We will use F,R,U,B,L,D to denote a clock-
wise quarter-turn of the front, right, up, back, left, down face
and Fi,Ri,Ui,Bi,Li,Di for a counterclockwise quarter-turn. Ev-
ery such turn is a single move. In Cube related research half-turns
(F2,R2,U2,B2,L2,D2) are also counted as single move, we will
do so as well. This notation is dependent on the users viewpoint to
the cube rather than the center facelets’ colors.
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2.2. Algebraic Characteristics

A group G is a set together with multiplication and identity e (eg =
g), inverse (gg−1 = g−1g = e) and an associative law. A subgroup
H < G is a subset H that is closed under group operations. S⊆ G,
written G =< S > is a generator of G if any element of G can be
written as a product of elements of S and their inverses. The order
of the group is the number of elements in it, |G|.
All possible states of a Rubik’s Cube are described by the group
generated by its applicable moves GC =< F,R,U,B,L,D >, also
called the Cube Group (|GC| = 4.3 · 1019). All configurations of
the Rubik’s Cube can be reached by using combinations of single
moves in this group, thus the single moves generate GC. Further,
there is always a neutral element, i.e. F ·FFFF = FFFFF = F
and F4 = 1 (also showing the order of each generator in GC is 4)
and an inverse: Fi ·F = 1 and Fi = FFF

Given a group G and a subgroup H < G, a coset of H is the set
Hg = hg : h ∈ H; thus, H < G partitions G into cosets. The set of
all cosets is written H�G.

Let H =< L,R,F,B,U2,D2 > be a subgroup of GC, representing
a Cube where only the edge positions matter, as no edge orien-
tations can be altered. Thus, H�GC depicts the left coset space
which contains all possibly attainable states when only flipping
edge cubies (changing an edges orientation). For extended expla-
nation refer to [6], [3].

2.3. Related Work

Solving the Rubik’s Cube is a challenging task. Both the size of
the solution space induced by the number of attainable states and
multiple desirable side-objectives next to restoring the Cube (fa-
vorably in the smallest possible number of moves and lowest cal-
culation complexity) make this an interesting optimization prob-
lem. Although invented in 1974, the number of moves required to
solve any state of Rubik’s Cube (the so-called God’s Number) has
just recently been found to be 20 [12].

Various algorithms were devised to decrease the upper bound. How-
ever, all those approaches are strictly exact methods and the most
recent ones rely on terabytes of pre-calculated lookup-tables. This
is reflected in the research road-map of lowest upper bounds by
Rokicki [12] to finally prove it to be 20. This number was attained
by applying the same method he had used earlier for pushing the
upper bound to 26, 25 and then 23 moves - using the very same al-
gorithm only on more powerful hardware and a longer calculation
time [11], [12].

Evolutionary Algorithms have been successfully applied in a vari-
ety of fields, especially highly complex optimization problems [2],
[9], [14]. Oftentimes, superior solutions - as compared to classical
algorithms have been achieved - notably in multi-objective cases
(for example multi-constraint knapsack problems [5]). This gives
rise to the idea of applying Evolutionary Algorithms to the Ru-
bik’s Cube problem. All relevant approaches are based on dividing
the solution space of the Rubik’s Cube into mathematical groups,
starting with Thistlethwaite using 4 [13], then Reid combining two
of Thistlethwaite’s groups resulting in total of 3 [10] and finally
Kociemba’s [8] and Rokicki’s approach using 2 subgroups. This
makes the group theoretic approach a reasonable starting point for
designing Evolutionary Algorithms. It is of particular interest to us
to determine how such an EA can solve the Cube without relying
on extensive lookup-tables. Only a few evolutionary approaches
dedicated to solve the Rubik’s Cube exist. In 1994 Herdy devised
a method which successfully solves the Cube [7] using pre-defined
sequences as mutation operators that only alter few cubies, result-
ing in very long solutions. Another approach by Castella could not
be verified due to a lack of documentation. Recently Borschbach

and Grelle [1] devised a 3-stage Genetic Algorithm based on a
common human “SpeedCubing” [11] method, first transforming
the Cube into a 2x2x3 solved state, then into a subgroup where
it can be completed using only two adjacent faces (two-generator
group).

2.4. Rubik’s Cube as an Individual

The Rubik’s Cube is represented using 6 2D matrices containing
values from 1 to 6, each representing one color. Every quarter- and
half-turn can be applied to this representation, yielding a total of
18 different single moves while still leaving the Cube’s integrity
intact. Thus, mutation is easily realized by not modifying a sin-
gle facelet’s color but applying a sequence of moves to the Cube.
This guarantees that the Cube’s integrity stays intact at all times
and makes a separate integrity test superfluous. Every individual
remembers the mutations it has undergone, i.e. a list of moves that
have been applied. To keep this list as small as possible, redundant
moves are automatically removed. For example an individual that
has been mutated with F and is then mutated with FRRiB will only
remember the optimized sequence F ·FRRiB = F2B, preventing
redundancy. Essentially, this is realized via a while-loop, elimi-
nating redundant moves in each pass until no further optimizations
can be made: e.g. F2BBiR2R2F is optimized to Fi by first remov-
ing BBi, then removing R2R2 and finally transforming F2F into
Fi.

3. FITNESS FUNCTION BASED ON ALGEBRAIC
GROUPS

3.1. Divide and Conquer

Translating the classic Thistlethwaite Algorithm [13] into an ap-
propriate Fitness Function for an Evolutionary Algorithm essen-
tially forces the design of four distinct subfunctions. As each sub-
group of G0 has different constraints, custom methods to satisfy
these constraints are proposed. The groups provided by Thistleth-
wate [13] are: G0 =< F,R,U,B,L,D >, G1 =< F,U,B,D,R2,
L2 >, G2 =< U,D,R2,L2,F2,B2 >, G3 =< F2,R2,U2,B2,L2,
D2 >, G4 = I.

Obviously, G0 = GC. The functional principle of Thistlethwaite’s
Algorithm is to put the Cube into a state where it can be solved by
only using moves from Gi which again has to be achieved by only
using moves from Gi−1 for i = 1, . . .4, thus named nested groups.
This provides the basis of the presented divide and conquer ES-
approach. As we use randomly generated mutation sequences (al-
beit dependent of the current fitness phase/group in the final ver-
sion), first attempts while working in the whole of the group GC
would consistently fail to solve due to the very high order of |GC|
- and thus the solution space.

The divide and conquer ES-approach however evolves a transition
sequence for an individual in the current coset space Gi+1�Gi
to the next one (i = i+ 1). These coset spaces, each describing
a reduced form of the 33 Rubik’s Cube puzzle, induce different
kinds of constraints. This directly results in the total number of
attainable states being reduced by using only moves from some
subgroup Gi+1. The exact orders for each group are calculated ex-
emplary for G1�G0 (complete calculations are found in [3], [4]):

The first coset space G1�G0 contains all Cube states, where the
edge orientation does not matter. This is due to the impossibility
of flipping edge cubies when only using moves from G1. As there
are 211 possible edge orientations,

|G1�G0|= 211 = 2048 (1)
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the order of |G1| is

|G1| ≡
|G0|

|G1�G0|
= 2.11 ·1016 . (2)

3.2. Algebraic group-based Fitness Calculation

G0→ G1
To reach G1 from any scrambled Cube, we have to orient all edge
pieces right while ignoring their position. The fitness function
for this phase simply increases the variable phase0 by 2 for each
wrong oriented edge. Furthermore, we add the number of moves
that have already been applied to the particular individual in order
to promote shorter solutions, yielding a multi-objective optimiza-
tion problem. Finally, we adjust the weight between w (number of
wrong oriented edges) and c (number of moves applied to current
Cube individual). This will be done similarly in all subsequent
phases.

phase0 = 5 · (2w)+ c (3)

With a total of 12 edges which can all have the wrong orientation
this gives max{2w}= 24. The Cube has been successfully put into
G1 when phase0 = c. Reaching G1 is fairly easy to accomplish,
thus making the weight-factor 5 a good choice.

G1→ G2
In order to fulfill G2 the 8 corners have to be oriented correctly.
Edges that belong in the middle layer get transferred there. Tests
with the Thistlethwaite ES showed it somewhat problematic to do
this in one step. Oftentimes, the algorithm would get stuck in local
optima. To solve this, the process of transferring a Cube from G1
to G2 has been divided into two parts. First, edges that belong
into the middle layer are transferred there. Second, the corners are
oriented the right way. The first part is fairly easy and the fitness
function is similar to that from phase0 except for w (number of
wrong positioned edges), i.e. edges that should be in the middle
layer but are not.

phase1 = 5 · (2w)+ c (4)

In the second part, for each wrong positioned corner, 4 penalty
points are assigned as they are more complex to correct than edges.
Obviously, in order to put the Cube from G1 to G2 both phases
described here have to be fulfilled, which yields:

phase2 = 10 · (4v)+ phase1 (5)

where v represents the number of wrong oriented corners. The
weighing factor is increased from 5 to 10 to promote a successful
transformation into G2 over a short sequence of moves.

G2→ G3
We now have to put the remaining 8 edges in their correct orbit.
The same is done for the 8 corners which also need to be aligned
the right way. Thus, the colors of two adjacent corners in one
circuit have to match on two faces. In G3 the Cube will only have
opposite colors on each face. Let x (number of wrong colored
facelets) and y (number of wrong aligned corners), then

phase3 = 5 · (x+2 · y)+ c . (6)

G3→ G4(solved)
The Cube can now be solved by only using half-turns. For the
fitness function we simply count wrong colored facelets. Let z be
the number of wrong colored facelets, then

phase4 = 5 · z+ c . (7)

To summarize, 5 different fitness functions are needed for the This-
tlethwaite ES. phasei is solved if phasei = c, i = 0, ...,4 and with

the properties of nested groups we can conclude, given the above,
a solved Cube implies:

4

∑
0

phasei = c . (8)

Fulfilling the above equation satisfies the constraints induced by
the groups G0, . . . ,G4, with the final fitness value c describing
the final solution sequence length. The weight factors chosen are
based on consecutive testing throughout development. The ratio
depends on the size of the nested groups. Finding optimal weights
presents a separate optimization problem and may be subject to
future work.

4. REMARKS ON SELECTION, GROUPS AND DIVIDE
AND CONQUER

In the specific case of the Rubik’s Cube, the unsolvable complete
solution space of |GC|= 4.3 ·1019 using non-restricted, randomly
generated mutation sequences consisting of single moves, spawned
the idea of dividing the problem into smaller subproblems. The
idea itself however is not exclusive to this application.

The general problem in this type of situation is to find a consis-
tent divide and conquer strategy, equivalent to the original prob-
lem. However, oftentimes many problems already provide such in
form of classical, non-ES algorithms. With this work we intend to
show how such existing divide and conquer concepts can be used
and transformed into heuristics suitable for adaption into fitness
functions to enable quick and efficient deployment of divide and
conquer EAs. Next, it is necessary to provide suitable mutation op-
erators and selection methods. Mutation operators in our case are
still randomly generated only adhering to the single moves pro-
vided by the current subgroup, which again depends on the current
fitness phase. However, this only needs a minor tweak from the
original idea, removing some entries from the list of single moves
that can be randomly chosen from.

Finding an appropriate selection function for efficient EA design
in large solution spaces is a far more challenging and, at times, cre-
ative process. Even more so when building a divide and conquer
EA where essentially each phase proves to be a single, classical
ES-loop and the input (starting population) of the current loop is to
be the solution provided by the previous one. A first version of our
Rubik’s Cube ES for example would evolve until one individual
fulfilling the current fitness phase had been found to form the start-
ing population of the subsequent phase by duplication. However,
in problems where there exist more than one solution, typically
multi-dimensional solutions in multi-objective optimization, most
often one of these dimensions outweighs the others in importance.
In the present two-dimensional Rubik’s Cube example objective
dimensions are distance_to_phase_solve (variables v,w,x,y,z in
equations (3) - (7)) and current_sequence_length (variable c in
equations (3),(4),(6),(7),(8)) - where distance_to_phase_solve is
the primary, to be fulfilled under all circumstances.

This property can be exploited in scenarios where the already
smaller solution spaces acquired by divide and conquer are still
large. Key is to provide subsequent ES-loops with a high diver-
sity of individuals which fulfill at least the prime objective (e.g.
distance_to_phase_solve but may - or even should - differ in the
other (e.g. current_sequence_length). Even if some individuals
with non-optimal, even relatively bad secondary objective values,
form part of the starting population for the subsequent ES loop
- the gain in diversity provides new search paths in the solution
space and ultimately increases overall ES efficiency. Using atypi-
cally large µ and λ further helps to increase diversity.

In our exemplary ES for solving the Rubik’s Cube these mechanics
have been applied as follows. After some solution to a phase has
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been found, the ES does not immediately start calculation of the
next group-transition (which would take only this one individual as
basis for further calculation) but continues evolution until at least
µ different individuals have been found to form the start population
for the next phase. To further increase diversity we used large
(µ,λ ) = (1000,50000).

5. BENCHMARKS AND CONCLUSIONS

To provide a brief performance overview 100 random scrambles
of minimum length 10 and maximum length 50 were generated
and and solved in 5 repetitions. Solution lengths and calcula-
tion time are of particular interest to us. The test was conducted
with the TWES using (µ,λ ) = (1000,50000), weighing factors
(5,5,5,5,5), mutation lengths (5,5,13,15,17) and maximum gen-
erations before reset (250).

avg. Run 1 Run 2 Run 3 Run 4 Run 5
Generations 95.72 100.63 92.71 99.66 92.22
Moves 50.67 50.32 50.87 50.23 49.46
Time(s) 321.78 381.68 393.99 312.98 287.93

Table 1: Solutions of 100 random scrambles, 5 repetitions,
Thistlethwaite ES.

As seen in Table 1, the solution sequences hit an average of about
50 single moves, further demonstrating a consistent performance
throughout the repetitions. Most scrambles are solved in 35-45
moves, outliers are responsible for the higher average count. Ex-
tensive additional benchmarks can be found in [3].

The benchmarks are promising, yielding comparable results to the
classic TWA. Outliers calculated by TWES provide both signif-
icantly shorter and longer solutions. This is most probably due
to inter-group dependencies and future focus lies on increasing
our TWES’ tendency to such shorter results. Instead of obtain-
ing static solutions dictated by the lookup-table used in the classic
TWA, the dynamic evolution process enables those shorter solu-
tion sequences not previously possible.

Regarding the Rubik’s Cube optimization problem, our evolution-
ary approach is evidently competitive with the exact method it
adepts. As this was the first such attempt - based on the first group
theoretic exact approach using lookup-tables (Thistlethwaite) - fu-
ture work promises further improvement. This algorithm only
solves the classic 33 Rubik’s Cube, just as the exact method it is
based on, does. However, our modular EA can also be used to
solve higher dimensional Rubik’s Cubes by appropriately substi-
tuting the current fitness functions.

The next developmental step will adept approaches that reduce
the number of subgroups to 3 and then 2, potentially yielding fur-
ther improvement in solution sequence length. Conveniently, our

implementation already provides such possibilities for extensions,
enabling quick testing of different subgroup combinations
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ABSTRACT

Multi-Objective Evolutionary Algorithms (MOEAs) are highly fle-
xible procedures capable of producing a set of optimal compromise
solutions called Pareto Front. These solutions represent the best
values that can be obtained for each objective without reducing
the optimality of the other objectives of the solution. Taking this
into account, timetabling problems that are usually dealt with a
weighted sum of penalization functions can be considered a multi-
objective problem. This paper presents a study of the use of dif-
ferent MOEAs to solve several instances of a particular type of
timetabling problems called Course TimeTabling (CTT).

Keywords: Multi-objective, Timetabling, MOEA

1. INTRODUCTION

Course Timetabling problems consist of the weekly planning of
lectures for a set of courses. There are many formulations for this
problem, which differ greatly, especially when they consider how
to deal with the hard and soft constraints imposed by the prob-
lem definition. The hard constraints must be completely satisfied,
while the soft constraints are considered penalizations that have to
be optimized. Among the techniques used to solve this problem
are Evolutionary Algorithms [1, 2], or meta-heuristics [3] such as
procedures based on Tabu Search [4] or Simulated Annealing [5].
A more complete study on different timetabling problems can be
found in [6], discussing several kinds of timetabling problems and
different methods that could be used to solve them.

A timetable is a set of encounters organized in time. An encounter
is a combination of resources (rooms, people or equipment), some
of which can be specified by the problem while others must be
organized as part of the solution. It has long been known that
timetabling is an NP-complete problem [7], which means that there
is no known method to solve it in a reasonable amount of time.

It is usually considered that the solution to be found (whether with
an evolutionary algorithm, tabu search, simulated annealing, or
any other technique) is a weighted sum of the values of the prob-
lem objectives (the soft constraints), effectively turning the prob-
lem into a single-objective one. On the other hand, a Pareto Front-
based multiobjective approximation [8] can also be used when
considering many weighted sums as several different objectives
to optimize, or even defining as many objectives as there are con-
straints.

The remainder of this paper is organized as follows: Section 2
shows the main concepts behind multi-objective optimization, while
section 3 briefly explains the basics of several MOEAs. In sec-
tion 4 the problem of course timetabling is described, along with
the main restrictions that apply to a particular instance. Finally,
sections 5 and 6 explain the experimental results and conclusions
respectively.

2. CONCEPTS IN MULTI-OBJECTIVE OPTIMIZATION

The use of Multi-Objective Optimization as a tool to solve Multi-
Objective Problems (MOP) implies explaining some key concepts
that are of invaluable importance. Without them it would be inac-
curate to describe what a good approximation to the Pareto Front
is in terms of criteria such as closeness to the Pareto set, diversity,
etc [9, 10, 11, 12].

Multi-Objective Optimization is the exploration of one or more
decision variables belonging to the function space, which simul-
taneously satisfy all constraints to optimize an objective function
vector that maps the decision variables to two or more objectives.

minimize/maximize( fk(s)),∀k ∈ [1,K] (1)

Each decision vector s={(s1, s2, .., sm)} represents accurate numer-
ical qualities for a MOP. The set of all decision vectors constitutes
the decision space. The set of decision vectors that simultaneously
satisfies all the constraints is called feasible set (F). The objec-
tive function vector ( f ) maps the decision vectors from the deci-
sion space into a K-dimensional objective space Z∈ℜK, z= f (s),
f (s)={ f 1(s), f 2(s),..., f K(s)}, z∈Z, s∈F.

In order to compare the solutions of a given MOP with K≥2 ob-
jectives, instead of giving a scalar value to each solution, a partial
order is defined according to Pareto-dominance relations, as de-
tailed below.

Order relation between decision vectors: Let s and s’ be two
decision vectors. The dominance and incomparability relations in
a minimization problem are:

{
s dominates s′ (s≺ s′) i f f

fk(s)< fk(s′)∧ f ′k(s) 6> f ′k(s
′), ∀k′ 6= k ∈ [1,K]

(2)

{
s, s′ are incomparable (s∼ s′) i f f

fk(s)< fk(s′)∧ f ′k(s)> f ′k(s
′), k′ 6= k ∈ [1,K]

(3)

Pareto-optimal solution: A solution s is called Pareto-optimal if
there is no other s’∈F, such that f (s’)< f (s). All the Pareto-optimal
solutions define the Pareto-optimal set, also called Pareto Front.

Non-dominated solution: A solution s∈F is non-dominated with
respect to a set S′∈F if and only if 6 ∃s’∈S′, verifying that s′≺s.

Obtaining a set of non-dominated solutions is not the only impor-
tant objective when solving this kind of problem. Obtaining a wide
and evenly distributed Pareto Front is also of key importance be-
cause such a set of solutions is more useful for the decision ma-
king process. This happens because a wide and evenly distributed
Pareto Front h
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3. IMPLEMENTED MOEAS

The following MOEAs have been used to perform the experiments
needed to gather the data used in this paper:

• NSGA-II, Non-dominated Sorting Genetic Algorithm II [13].
It makes use of a population as well as a temporary helper
population where it stores the descendant individuals. It
then joins both populations and classifies them by using
a fast non-dominated sorting to separate the solutions into
several fronts, with a domination relationship between them.
To generate the next population, only the first fronts are
kept, while the other solutions are disregarded. As an es-
timation of solution density, the Crowding distance is cal-
culated, in order to use a crowding comparison operator to
guide the selection process towards a uniform front. In this
way, the population holds the Pareto front and becomes the
solution at the end of the procedure.

• PESA, Pareto Envelope-based Selection Algorithm [14].
This MOEA uses a hypergrid for analyzing the density in-
formation of the individuals. PESA keeps the non-domina-
ted individuals in an archive, updating it each time a new
solution is inserted by removing the old solutions that be-
come indifferent or dominated by the new one. The archive
holds the Pareto front, which becomes the solution at the
end of the procedure.

• SPEA2, Strength Pareto Evolutionary Algorithm [15]. It
uses a strength indicator in order to measure the solution
quality of the individuals stored in the archive. At the end
of the procedure, the archive becomes the final solution,
storing the generated Pareto front. The main operations in
this MOEA consist of generating the fitness of the solu-
tions, calculating the density information for each solution
within the solution set, and then truncating the archive once
it becomes full, by removing the worst quality solutions in
the densest areas.

• msPESA, Mixed Spreading PESA [16]. This MOEA is a
derivative of PESA that implements a different hypergrid
policy allowing the grid resolution to increase without pe-
nalizing performance. In this case, the hypergrid has one
dimension less than the PESA hypergrid, so the memory re-
quirements are greatly reduced for larger populations. The
logic behind this consists of using the same number of cells
in the grid as there are solutions. Ideally this would mean
that as the algorithm optimizes the Pareto front, the solu-
tions would end up evenly spread alongside the front. On
inserting a solution into the archive, it performs a local
search procedure in order to improve the quality of the so-
lution, or it even inserts more than one possible solution.
Inserting a new solution into the archive does not enforce
a strong elitism, since all the solutions are kept, and they
are only removed when the archive is full. This increases
genetic variety during the first iterations of the MOEA.

4. PROBLEM DEFINITION: COURSE TIMETABLING

The implemented MOEAs use the problem proposed by Di Gaspero
and Schaerf [4] , which considers q lectures (c1,. . . , cq), p periods
(1, . . . , p) and m rooms (r1,. . . ,rm). Each course ci consists of li pe-
riods that will be scheduled in different time slots with si assigned
students. Each room r j has a capacity cap j, defined by the number
of available seats. There are also g lecture groups called curricula,
such that any pair of courses of a curriculum have students in com-
mon.

The objective of the problem is to satisfy every hard constraint in
each and every one of the final solutions of the problem, while the

soft constraints may not be fully satisfied, deteriorating the solu-
tion quality. The following definitions show the constraints for a
basic definition of this timetabling problem:

Lectures (hard) The number of lectures of course ci must be exac-
tly li.

Room Occupancy (hard) Two distinct lectures cannot take place
in the same period and room.

Conflicts (hard) Lectures of courses in the same curriculum or
taught by the same teacher must be scheduled at different
times.

Availabilities (hard) Lecturers may not be available for some pe-
riods.

Room Capacity (soft) The number of students that attend a course
must be less than or equal to the number of seats in each of
the rooms that host its lectures.

Minimum Working Days (soft) The set of periods p is split in
wd days of p/wd periods each (assuming that p is divisible
by wd). Each period therefore belongs to a specific week
day. The lectures of each course ci must be spread over a
minimum number of days di (with di ≤ li and di ≤ wd).

Curriculum Compactness (soft) The daily schedule of a curricu-
lum should be as compact as possible, avoiding isolated lec-
tures, i.e. one lecture for a given curriculum that is not ad-
jacent to any other lecture within the same day.

There are other categories of constraints and requirements existing
on a practical level, rather than on an academic one, such as:

Lecture Management A teacher must not give lectures in more
than 4 consecutive periods.

4.1. Timetabling Solver

As an initial treatment, an attempt to schedule the classes is made
by sorting the rooms in descending order of available seats, which
greatly helps to schedule the initialization of the Individuals (of
the initial population, which has not yet been evolved). This pre-
treatment tries to fit all the lectures in time slots where they fit and
are not violating any hard constraints. Individuals that are created
from another one (descendants) clone them (they become exact
copies). This behavior helps to reduce the amount of hard constra-
int violations.

During the evaluation of each Individual the violations of hard
constraints are checked. In case of violation, it will most likely
happen during the first generations because Individuals that com-
ply with the hard constraints have not yet evolved. Once a vio-
lation of a hard constraint happens, then the evaluation procedure
will try to correct it by randomly making additional changes to the
schedule in a mutation-like manner. This will always be applied
after the mutation operation. Only changes that do not produce
hard constraint violations are allowed. This means that both the
mutation operation and the additional corrections performed at the
beginning of the evaluation process allow valid individuals to ap-
pear after a brief time interval. Once the hard constraints have been
removed, all the optimization efforts will be centered on minimiz-
ing the violations of soft constraints.

Mutations follow a pattern inspired by Simulated Annealing, which
means that as the number of function evaluations increases, the
amount of time slot exchanges slowly decreases. At the beginning
of the procedure, up to three movements are made in the mutation.
At the end of the process only one change is allowed. Choosing
the amount of initial maximum movements is related with perfor-
mance issues, since each movement implies checking for compli-
ance with all the hard constraints beforehand, higher numbers of
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changes impair performance significantly. No crossover operation
has been implemented in order to avoid generating timetables that
violate hard constraints (the constraint on the amount of lectures
for each course).

The objectives chosen for optimization are the sum of the values
of CurriculumCompactness, RoomCapacity and MinimumWork-
ingDays as the first objective, and CurriculumCompactness as the
second one. The intention is both to minimize the whole set of
objectives, while placing a special focus on the importance of ha-
ving a dense time schedule in order to reduce the problem of dead
hours that is so inconvenient for both teachers and students. This
also allows for easy sorting based on the first objective in order
to identify the best global solutions, while in some situations it is
more interesting to choose solutions with a higher penalty for Cur-
riculumCompactness because it usually has an impact on the other
constraints. Usually, the higher the penalty on CurriculumCom-
pactness, the lower the penalty on the other objectives.

The problem instance is loaded in memory as a set of linked ob-
jects, which allows easy analysis of the relations between the dif-
ferent courses, rooms, curricula and constraints. With that infor-
mation, the timetable is constructed as a string-indexed vector that
holds a matrix of courses. The string index represents the assigned
room while the matrix of courses it references is the timetable as-
signed to that room, using the matrix indexes to represent the time
period and day of the week.

5. EXPERIMENTAL RESULTS

The results obtained by the MOEAs depend on the implementation
of the individual, because the operations needed to build a proper,
working, timetable are not as simple as the operations needed to
optimize the ZDTn functions used as benchmarks. Furthermore,
representing a timetable as well as groups of students, teacher and
space constraints implies additional challenges to add to the evo-
lutionary operations.

The configuration parameters for the experiments were 100 indi-
viduals for archive size in PESA and msPESA (10 for their work-
ing populations), 100 individuals for SPEA2 archive and work
population, and 100 for NSGA-II (its helper population has the
same size as the main one). The local search parameter for msPESA
is to generate 10 new individuals with two moves each, and all the
procedures were set to finish after performing 106 function evalu-
ations.

Table 1 shows the best results found by the tabu search procedure
used in [4] as a reference to compare with the results generated
by the MOEAs implemented for this thesis. Note that in the orig-
inal settings for the results obtained with the tabu search, there is
no specification of any limits in the amount of time or number of
function evaluations used in the experiments.

The experiments with MOEA have been performed by choosing
the soft constraints as objectives. The assigned weights are 1x for
each violation of RoomCapacity, 1x for each violation of Curricu-
lum Compactness and 5x for each violation of MinimumWorking-
Days. In the tabu search procedure, the sum of all penalizations
generates the value of the solution. Therefore, the lower the sum,
the better the solution.

An interesting convergence phenomenon appeared when perform-
ing the experiments: different solutions shared the same penaliza-
tion score. This means that as the experiments progress further, the
Pareto front tends to converge towards a local minimum, unless by
chance a better timetable is found, which effectively substitutes in
a few generations all the solutions with the previous penalization.

Since the Pareto dominance criterion is not met, due to the conver-
gence to the best solution, it is far more difficult for the MOEAs

to solve the timetabling problem with this criterion. This is why
in table 1 the solutions are given as a single scalar (the best so-
lution found after calculating the weight of all the penalizations,
of all the solutions returned by the MOEAs), instead of giving the
Pareto fronts generated by each procedure. The values given are
the result of the weighted sum of the objectives, as used for the
generation of the Optimal solution of the different instances..

Test1 Test2 Test3 Test4
Optimal Solution 214 8 36 43

NSGA-II 364 52 99 84
SPEA2 253 59 66 97
PESA 236 28 81 68

msPESA 235 11 61 67

Table 1: Comparison of the best solution found by each procedure
after 106 function evaluations. The optimal solution is given as
reference [4].

As table 1 illustrates, PESA and msPESA are the best procedures
for this problem after running 1,000,000 objective function evalu-
ations.

6. CONCLUSIONS

Table 1 shows that msPESA is the best procedure in all situations,
with the limit of 106 evaluations imposed on the procedures. The
use of a local search procedure allowed it to improve the solution
quality faster than other MOEAs. Though it does not reach optimal
results, it comes close, especially for the problems test1 and test2.

Given the added difficulties to obtain solutions to the timetabling
problem, these results are interesting, considering how close the
PESA-based methods were to the optimal solution for some of the
test instances.
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ABSTRACT

The design of software architecture for embedded system is one of
the big challenges in the research field of modern software engi-
neering. It requires software architects to address a large number
of non-functional requirements that can be used to quantify the
operation of system. Furthermore, these quality attributes often
conflict with each other, for instance, improving system perfor-
mance often needs more powerful hardware, which could increase
the production cost and power consumption in the meantime. In
most cases, software designers try to find a set of good architec-
tures by hand. However because of large and combinatorial design
space, this process is very time-consuming and error-prone. As
a consequence, architects could easily end up with some subopti-
mal designs. In this paper, we introduce our AQOSA (Automated
Quality-driven Optimization of Software Architecture) toolkit which
can improve these aforementioned non-functional properties in an
automated manner. More precisely, beginning with some initial ar-
chitectures, AQOSA toolkit can use its optimizer to not only pro-
duce several alternatives, but also apply trade-off analysis to these
newly created architectures according to multiple attributes of in-
terests.

Keywords: Component-Based Software Architecture, Evolution-
ary Multiobjective Optimization

1. INTRODUCTION

Modern embedded systems are large and complicated and there-
fore difficult to develop and maintain. For example, real-time sys-
tems, which nowadays are intensively applied to application do-
mains such as automobile and multimedia, are often built to guar-
antee the safety and robustness requirements. To meet these re-
quirements makes the design of real-time systems very challeng-
ing.

Under such circumstances, software architecture which is an im-
portant field of study in software engineering receives more and
more attentions in the last few years. More technically speak-
ing, software architectures describe various aspects of the system,
mostly their deployment, behavioral, and structural features. With
them, designers have the opportunity to analyze the quality prop-
erties of software at a high level and thus can make optimal archi-
tectural decisions to satisfy the quality attributes at the very early
architectural stage of the project.

In many cases, quality properties conflict with each other, that is,
improving one quality property can have a negative impact on oth-
ers, and thus to construct a system that satisfies all its requirements
could be difficult. One possible solution is to use optimization
techniques to generate several feasible architectures according to
initial models and then select optimal solutions from all alterna-
tives through the trade-off analysis with respect to all quality re-

quirements.

In current practice, this process is normally performed manually
to the system design. The drawback of this is that it can be time-
consuming and error-prone work, especially for large and complex
architectures. For complex applications, having some of this work
automated could be a considerable cost saver. To this end we pro-
pose our AQOSA toolkit which was developed to automatically
improve the non-functional properties of an architectural design
and thus enable architects to focus on the higher-level design deci-
sions.

The paper is organized as follows. Section 2 summaries some ex-
isting methods which are different from ours. Section 3 explains
our proposed AQOSA toolkit, especially the execution procedure,
in detail. The case study as well as some experimental results is
presented in Section 4. Finally, conclusions and future works are
given in Section 5.

2. RELATED WORK

As we emphasized at the very beginning of this paper, it is almost
impossible for software architects to manually find optimal archi-
tecture designs from not only large but also discontinuous design
search space. Researchers have proposed several approaches, es-
pecially some metaheuristic-based methods which can automate
this process. For instance, Martens et al. [1] introduced approach
which could automatically improve software architectures mod-
elled with the Palladio Component Model based on trade-off anal-
ysis of performance, reliability, and cost.

ArcheOpterix [2] is another generic framework which optimize ar-
chitecture models with evolutionary algorithms. It supports only
one degree of freedom for exploration, that is allocation of soft-
ware components. Besides, two quality criteria (data transmis-
sion reliability and communication overhead) are defined and the
evaluation is based on formal mathematical analysis. Similar to
Marten’s approach, ArchiOpterix suffers from the limitation on
search freedom and has chance to be trapped by some suboptimal
solutions.

To alleviate this issue, our proposed AQOSA toolkit, which de-
ploys both advanced model technology and evolutionary multi-
objective optimization algorithms with specially designed genetic
encoding scheme, allows not only more quality attributes but also
more complex degrees of freedom like exploration of architecture
topology.

3. AQOSA TOOLKIT

The detailed working process of AQOSA toolkit is illustrated in
Figure 1. As can be seen, the automated optimization process starts
with some initial software architectures, which could be designed
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by domain experts by using some advanced model design tools.
Next, these architectures are evaluated and corresponding multiple
quality criteria of interests are obtained. More specific, proces-
sor utilization, data flow latency, and cost metrics are addressed in
this study. At the current stage, the simulation-based approach1

is used for AQOSA evaluator. Note that the precision of evalua-
tion is highly dependent on the modeling details and the features
supported by simulator.

As mentioned earlier, some conflicting quality attributes, such as
utilization and cost, are often involved in performance analysis.
Thus the domination principle could be adopted by evolutionary
optimizer for doing trade-off analysis on quality attributes which
are extracted through an extractor based on our performance met-
rics. Some good architectures are then selected from current avail-
able solutions. Furthermore, the evolutionary optimizer could au-
tomatically produce new candidate architectures by using repro-
duction operators like "crossover" and "mutation".

Figure 1: The detailed working scheme of AQOSA (Automated
Quality-Driven Optimization of Software Architecture) toolkit.

Next, we will explain some key components and related techniques
in detail.

3.1. Modeling and Evaluation Engine

For software architecture modeling, as a natural extension of pre-
vious work [3] AQOSA integrates ROBOCOP [4] (Robust Open
Component Based Software Architecture for Configurable Devices
Project) modeling language. Furthermore, AQOSA also supports
AADL [5] (Architecture Analysis & Design Language) which is
now widely recognized industrial standard in modeling embed-
ded and real-time architectures. The architect can easily design
the initial architecture in OSATE (Open Source AADL Tool En-
vironment) and then import it into AQOSA framework. To use
ADeS [6] as the core part of our AQOSA simulation engine, we
made some modifications of ADeS in scheduling and added new
features for data flow latencies evaluating. More specifically speak-
ing, our evaluation engine first loads an AADL model and creates
necessary objects for simulation. After that, it generates system
events based on the behaviour annex of the model and follow the
events through the model connections till end of flows. For com-
plex and concurrent events, the scheduling module decides which
process can take the processor.

At present, we implement three quality properties: processor uti-
lization, data flow latency and architecture cost. By design, AQOSA

1As compared to analysis-based approach.

toolkit can be easily extended to support other quantitative qual-
ity criteria of software architectures by introduce new evaluation
plug-ins, i.e. for communication lines loads evaluation, we just
needed to add a new listener which implements the measurement
of the bus load to our simulation engine. Another advantage of
AQOSA is that it provides some very flexible API for the interac-
tion between evaluator and various optimization frameworks such
as Opt4J and JMetal2.

3.2. Evolutionary Optimizer

3.2.1. Evolutionary multiobjective optimization

Evolutionary multiobjective optimization (EMO) [7] derives from
single objective evolutionary optimization (EO) algorithms and is
recognized as a fast growing fields of research. It is relatively sim-
ple to implement and wide-spread applicable. In this work, two
representative multiobjective optimization algorithms (NSGAII [8]
and SPEA2 [9]) from literatures are chosen and applied to one ar-
chitecture design task for the car radio navigation (CRN) system.

3.2.2. Search problem formulation

From EMO algorithm perspective, architecture design problem can
be generalized as following optimization task (see Equation 3.2.2):

min fm(x), m = 1,2, . . . ,M (1)
s.t. g j(x)& 0 j = 1,2, . . . ,N

Here, x is a solution and can be of any domain, e.g., real or bi-
nary. In the given context, x could be a valid architecture from
embedded system design domain. For each solution x, there ex-
ists m = 3 objectives, i.e. f1 : Processor utilization, f2 : Cost, and
f3 : Data flow latency. g j(x) represents a number of constraints
which any feasible solution must satisfy. The aim is not only pro-
vide one optimal solution but rather to provide a broad variety of
nondominated solutions representing trade-offs in the three objec-
tives.

3.2.3. Generic degree of freedom to exploration

With specially designed genotype representation, the following de-
grees of freedom to exploration are implemented: (1) System hard-
ware topology (hypergraph), i.e. processor/bus can be added or
removed from the system, (2) Allocation of service instances, (3)
Replacement between different hardwares, i.e. one component can
be replaced by its counterparts from available hardware repository.
Figure 2 shows three system topologies which are supported and
valid for car radio navigation (CRN) architecture design (i.e. case
study in Section 4).

4. CASE STUDY AND EXPERIMENTAL RESULTS

4.1. Car Radio Navigation System

To validate our proposed AQOSA toolkit, we applied it to one
benchmark application - the car radio navigation (CRN) system
[10]. The CRN system is constructed according to the component-
based paradigm. An overview of the software architecture is de-
picted in Figure 3.

As can be seen, the CRN system contains three major functional
blocks:

2http://opt4j.sourceforge.net and http://jmetal.
sourceforge.net
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Figure 2: Possible topologies supported by genotype representa-
tion: Single processor node (left), Two processor nodes with single
bus (middle), and Three processor nodes with single bus (right).

Figure 3: Overview of the car radio navigation system functional-
ity.

• The Man-Machine Interface (MMI), that takes care of all
interactions with the end-user, such as handling key inputs
and graphical display output.

• The Navigation functionality (NAV) is responsible for des-
tination entry, route planning and turn-by-turn route guid-
ance giving the driver visual advices. The navigation func-
tionality relies on the availability of map database and po-
sitioning information.

• The Radio functionality (RAD) is responsible for tunner
and volume control as well as handling of traffic message
channel information services.

The major challenge is to determine a set of optimal architectures
with respect to quality attributes such as processor utilization, data
flow latency, and cost. Technically speaking, we investigate how
to distribute these aforementioned functionalities over the avail-
able resources (processor node in Figure 2) to meet some global
requirements. Vector representation in Figure 4 illustrates how the
genotype is used to describe possible architecture topologies (Fig-
ure 2) as well as mapping of services.

4.2. Experimental Setup and Results

The experimental setup is as follows: two standard evolutionary
multiobjective optimization algorithms from Opt4J, Non-dominated
Sorting Genetic Algorithm (NSGA-II) and Strength Pareto Evo-
lutionary Approach 2 (SPEA2), will be used. Furthermore, the
following parameter settings are adopted: initial population size:
50, parent population size: 25, number of offspring: 25, archive
size: 100, number of generation: 50, crossover rate is set to 0.95,
constant mutation probability is 0.01. For each algorithm we run

Figure 4: Genotype vector for possible software architectures rep-
resentation (884,736 possibilities).

AQOSA 20 runs (≈ 10 hours). The resulting archive of optimal
solutions can be visualized in the 3-D Pareto front with respect to
processor utilization, cost, and data flow latency in Figure 5.

Figure 5: Resulting Pareto front approximations of archive popu-
lation (non-dominant solutions) after 50 generations of one typical
run of SPEA2. Colors are used to distinguish between different
found architecture topologies.

An interesting finding is that resulting pareto front consists of three
segmentation (with clearly gap in between). This could be the re-
sult of discontinuities in the search space caused by structural tran-
sitions. By identifying and mapping each individual from archive
back to corresponding design architecture, solutions from same
segmentation share the same architectural topology3 (i.e. Fig-
ure 2). This discovery is consistent with our understanding of CRN
system, for instance, solutions with topology 3 (solutions with blue
color) normally have lower processor utilization and higher cost
for the hardware. On the contrary, solutions with topology 1 (red
color) have higher processor utilization and lower cost.

Figure 6: Plot between two objectives of archive population (non-
dominant solutions): Cost vs. Processor utilization (left) and Cost
vs. Data flow latency (right).

The 2-D plot of two quality attributes is presented in Figure 6. In
this way, the software architect can make trade-off decision much
easier. For instance, the left plot shows the processor utilization
over the cost per candidate architecture while the right one indi-
cates the data flow latency over cost. There is no obvious conflict
between processor utilization and data flow latency and the corre-
sponding plot is excluded here. Further more, both the attainment
surface of one typical run of SPEA2 and the box-plots of the hy-
pervolume indicator [11] for ref. point (1,1,1)T of archive popu-
lation for NSGA-II, SPEA2, and random search over 20 runs are
presented in Figure 7

From figure 7 (left), it gets clear that final solutions from archive
are mutually non-dominated with respect to three quality attributes
investigated. Another observation is that NSGA-II and SPEA2
show the comparable performance with each other (student’s t-test

3All three algorithms which we studied show the same behaviour.
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Figure 7: The dominated Hypervolume approximation of one typ-
ical run of SPEA2 (left) and the box-plots of the hypervolume in-
dicator for NSGA-II, SPEA2, and random search on CRN design
problem over 15 runs (right).

with 1% confidence level), and the results are very similar. Ran-
dom search, by contrast, shows worst performance.

5. CONCLUSIONS AND OUTLOOK

We presented so-called AQOSA (Automated Quality-driven Op-
timization of Software Architecture) toolkit. It not only can help
software architects to reduce the workload for modeling and eval-
uating real-world problems, but also can automatically improve
quality attributes by using evolutionary multiobjective optimizers.
We applied AQOSA on the car radio navigation (CRN) system.
The preliminary results are very promising.

For future research several questions are of interest: First, more
challenging application (i.e., from automobile industry) will be
modeled and tested by using AQOSA. Secondly, besides afore-
mentioned attributes which we studied in this work other non-
functional qualities such as power consumption and safety will be
integrated. Algorithms such as SMS-EMOA [12] are also worth
investigating for the resulting many-objective problems.
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ABSTRACT

In this paper, we give new characterizations for some subfamilies
of chordal graphs, such as k-intercats and SC k-trees, based on
properties of their minimal vertex separators. We also establish
the relationship among these families and interval graphs.

Keywords: Chordal graph, k-tree, ur-chordal

1. INTRODUCTION

Chordal graphs are an extensively studied class of graphs, as their
peculiar clique-based structure allows a more efficient solution for
many algorithmic problems. The investigation of new properties
of the family brings up the possibility of solving problems more
efficiently, with a different approach.

In this context, the minimal vertex separators play a decisive role.
Their determination has been already studied in at least two recent
papers [1, 2]. The presentation of a very simple algorithm [3] to
perform this task renews the chance to find better results for several
problems. Based on properties of the minimal vertex separators
of chordal graphs and their multiplicities, we propose in this pa-
per new characterizations for some known subfamilies of chordal
graphs such as k-intercats and SC k-trees, which generalizes mops
and maximal planar chordal graphs. The new structural character-
izations lead to simple and efficient recognition algorithms. We
are also able to prove inclusion relations among these families and
other subfamilies of chordal graphs such as interval graphs.

2. BACKGROUND

Basic concepts about chordal graphs are assumed to be known and
can be found in Blair and Peyton [4] and Golumbic [5]. In this
section, the most pertinent concepts are reviewed.

Let G = (V,E) be a graph, with |E| = m, |V | = n > 0. The set
of neighbors of a vertex v ∈ V is denoted by Ad j(v) = {w ∈ V |
(v,w) ∈ E}. For any S ⊆ V , we denote G[S] the subgraph of G
induced by S. S is a clique when G[S] is a complete graph. A
vertex v is said to be simplicial in G when Ad j(v) is a clique in G.

A subset S⊂V is a separator of G if two vertices in the same con-
nected component of G are in two distinct connected components

1Partially supported by grant 305372/2009-2, CNPq, Brazil.

of G[V −S]. The set S is a minimal separator of G if S is a separa-
tor and no proper set of S separates the graph. A subset S⊂V is a
vertex separator for non-adjacent vertices u and v (a uv-separator)
if the removal of S from the graph separates u and v into distinct
connected components. If no proper subset of S is a uv-separator
then S is a minimal uv-separator. When the pair of vertices re-
mains unspecified, we refer to S as a minimal vertex separator. It
does not necessarily follow that a minimal vertex separator is also
a minimal separator.

The next theorem presents a characterization of chordal graphs in
terms of minimal vertex separators.

Theorem 1. [5] A graph is chordal if and only if every minimal
vertex separator of it induces a clique.

The clique-intersection graph of a chordal graph G is the con-
nected weighted graph whose vertices are the maximal cliques of
G and whose edges connect vertices corresponding to non-disjoint
maximal cliques. Each edge is assigned an integer weight, given
by the cardinality of the intersection between the maximal cliques
represented by its endpoints. Every maximum-weight spanning
tree of the clique-intersection graph of G is called a clique-tree of
G.

Theorem 2. [4] Let G = (V,E) be a chordal graph and T =
(VT ,ET ) a clique-tree of G. The set S⊂V is a minimal vertex sep-
arator of G if and only if S =Q′∩Q′′ for some edge (Q′,Q′′)∈ ET .

Observe that the set of minimal vertex separators related to one
clique-tree is actually a multiset, since the same minimal vertex
separator can appear several times. Blair and Peyton [4] proved
that, for a chordal graph G, the same multiset is always obtained.

Theorem 3. Let G = (V,E) be a chordal graph. The multiset S ∗

of the minimal vertex separators of G is the same for every clique-
tree of G.

From Theorem 3 it is clear that |S ∗| = `−1, being ` the number
of maximal cliques of G. We define the multiplicity of the minimal
vertex separator S, denoted by µ(S), as the number of times that
S appears in S ∗. The set of minimal separators S (S ∗ without
repetitions) has cardinality η .

Two important subfamilies of chordal graphs, the k-trees and the
interval graphs, can be defined as follows [6].

Definition 1. A k-tree, k > 0, can be inductively defined as fol-
lows:
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• Every complete graph with k vertices is a k-tree.

• If G = (V,E) is a k-tree, v /∈ V and Q ⊆ V is a k-clique of
G, then G′ = (V ∪{v},E∪{{v,w}|w ∈Q}) is also a k-tree.

• Nothing else is a k-tree.

The simplicial vertices of a k-tree are also called k-leaves.

Definition 2. An interval graph is the intersection graph of a set
of intervals on the real line. It has one vertex for each interval in
the set, and an edge between every pair of vertices corresponding
to intervals that intersect.

3. GENEALOGY OF CHORDAL GRAPHS

Interval graphs and k-trees are well known in the literature. Our
goal is to establish the relation among these families and three
other genealogical branches of chordal graphs. The first branch,
defined by Proskurowski [7], is the family of k-caterpillars and its
descendent, the k-intercats. The second one, defined by Kumar and
Madhavan [8], is the family of ur-chordal graphs and its descen-
dent, the ur-interval graphs. The last one, defined by Markenzon
et al. [9], is the family of SC k-trees and its descendent, the k-path
graphs. The definitions of all these families are reviewed in this
section.

Kumar and Madhavan defined several families based on structural
properties of the clique-tree. We are going to focus on two of these
families.

Definition 3. [8] A chordal graph is called uniquely representable
chordal graph (briefly ur-chordal graph) if it has exactly one clique
tree. An interval graph that is uniquely representable is called an
ur-interval graph.

Theorem 4 presents a characterization of ur-chordal graphs.

Theorem 4. [8] Let G = (V,E) be a connected chordal graph. G
is an ur-chordal graph if and only if (i) there is no proper con-
tainment between any two minimal vertex separators and (ii) all
minimal vertex separators have multiplicity 1.

The concept of a k-path appeared first in [10], as a generalization
of paths. It is the base of the formal definition of k-path graphs.

Definition 4. [10] In a graph G = (V,E), a k-path of length p > 0
is a sequence 〈B0,C1,B1,C2,B2, . . . ,Cp,Bp〉, where:

• Bi ⊂V , 0≤ i≤ p, are distinct k-cliques of G;

• Ci ⊆V , 1≤ i≤ p, are distinct (k+1)-cliques of G;

• Bi−1 ⊂ Ci, Bi ⊂ Ci and no other k-clique B j, 0 ≤ j ≤ p,
j 6= i−1 and j 6= i, is a subset of Ci, 1≤ i≤ p.

Definition 5. [9] Let G = (V,E) be a k-tree with n > k vertices.
G is a k-path graph if there is a maximal k-path 〈B0,C1,B1, . . . ,
Cp,Bp〉, p > 0, such that the subgraph of G induced by C1 ∪ . . .∪
Cp is isomorphic to G.

Observe that k-paths and k-path graphs are often confused. How-
ever, for k > 1, the concepts can be quite distinct; actually, there
are k2 different maximal k-paths in a k-path graph; the k-cliques
B1, . . . ,Bp−1 belong to all maximal k-paths.

The recognition of a k-tree as a k-path graph can be easily accom-
plished, due to the characterization provided by the next theorem.

Theorem 5. [9] Let G = (V,E) be a k-tree with n > k+1 vertices.
G is a k-path graph if and only if G has exactly two simplicial
vertices.

The inductive definition of a simple-clique k-tree (SC k-tree) fol-
lows. Note that its construction is similar to the one presented in
Definition 1, except that it is more restrictive. It is worth to men-
tion two particular cases of the family: SC 2-trees are the maxi-
mal outerplanar graphs (mops) and SC 3-trees, the maximal planar
chordal graphs.

Definition 6. [9] A Simple Clique k-tree (SC k-tree), k > 0, can be
inductively defined as follows:

• Every complete graph with k+1 vertices is a SC k-tree.

• If G = (V,E) is a SC k-tree v /∈ V and Q ⊂ V is a k-clique
of G not previously chosen in the existing SC k-tree, then
G′ = (V ∪{v},E ∪{{v,w}|w ∈ Q}) is also a SC k-tree.

• Nothing else is a SC k-tree.

The definition of k-caterpillars and k-intercats is also based on the
concept of k-paths and were presented in [7]. Firstly we define the
body of a graph.

Definition 7. Let G be a chordal graph and H the set of its simpli-
cial vertices. We call G[V −H], the subgraph induced by V −H,
the body of G.

Definition 8. Let G be a k-tree and P its body. G is a k-caterpillar
if P is: (i) an empty graph or (ii) a complete graph or (iii) a k-path
graph.

Definition 9. Let G be k-caterpillar and P its body. G is an inte-
rior k-caterpillar (k-intercat, for short) if: (i) P is an empty graph
or (ii) P is a complete graph with k vertices or (iii) there is a max-
imal k-path in P 〈B0,C1,B1, . . . ,Cp,Bp〉 such that for any k-leaf v
of G, v is adjacent to all vertices of some k-clique Bi.

4. NEW CHARACTERIZATIONS

In this section we present three theorems that establish the relations
among all the families mentioned. It is interesting to note that these
theorems actually provide new characterizations for some of these
families such as the SC k-trees and the k-intercats. For the latter,
the characterization leads to a simple linear recognition algorithm.

Theorem 6. Let G = (V,E) be a k-tree with n > k + 1 vertices.
The three following statements are equivalent:

1. G is a SC k-tree.

2. All minimal vertex separators of G have multiplicity one, that is
η = n− k−1.

3. G is an ur-chordal graph.

Proof:

(1⇐⇒ 2) Definition 1 provides the construction of a k-tree G. It
is possible to build at the same time the clique-tree of G: each new
vertex v, together with the k-clique Q, chosen in the current graph,
forms a new maximal clique and, consequently, a new vertex of
the clique-tree. Two maximal cliques of G have the same subset
Q; so, Q is a minimal vertex separator of G. By Definition 6, in a
SC k-tree Q can be chosen only once.

(2⇐⇒ 3) Kumar and Madhavan [8] proved that a chordal graph
is uniquely representable if and only if (i) there is no proper con-
tainment between any two minimal vertex separators and (ii) all
minimal vertex separators have multiplicity 1. By Rose [11], ev-
ery minimal vertex separator of a k-tree has cardinality k; so, there
is no containment between them.

�
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The concept of asteroidal triple is fundamental for a compact char-
acterization of interval graphs. Three vertices u,v,w of G form
an asteroidal triple (AT) if for every pair of them there is a path
connecting the two vertices that avoids the neighborhood of the
remaining vertex. Brandstadt et al. [6] refer to the following theo-
rem:

Theorem 7. G is an interval graph if and only if G is chordal and
contains no AT.

Besides the efficient recognition of k-intercats, the next theorem
also shows that a k-tree is an interval graph if and only if it is a
k-intercat.

Theorem 8. Let G be a k-tree with η ≥ 2 minimal vertex separa-
tors and P its body. The three following statements are equivalent:

1. G is a k-intercat.

2. G is an interval graph.

3. P has exactly η−2 minimal vertex separators.

Proof:

(1⇒2) Let 〈B0,C1,B1, . . . ,Cp,Bp〉 be a longest k-path of G. Let G′

be the subgraph of G induced by the vertices of this k-path. G′ has
two simplicial vertices (Theorem 5): v′ ∈ B0 and v′′ ∈ Bp. As G′

is a k-path graph, it is an interval graph [12]. Let H be the set of
simplicial vertices of G. By definition, each w ∈ H, except v′ and
v′′, is adjacent to a k-clique Bi, 1≤ i≤ p−1.

Let us add a vertex v∈H to G′ and suppose, by absurd, that vertex
v with vertices u and w of G′ form an asteroidal triple. Vertex v
is adjacent to some Bi, 1 ≤ i ≤ p− 1. As Bi = Ci ∩Ci+1, Bi is a
minimal vertex separator of G′. The removal of Bi separates G′ in
two components. Two cases can happen:

case 1) Bi separates u and w. As Bi is a minimal vertex separator,
all paths linking u and w cannot avoid the neighborhood of v.

case 2) After removing Bi, u and w belong to the same connected
component. Since u and w are not adjacent, they belong to differ-
ent maximal cliques of G′. The clique-tree of a k-path graph is a
path. As v is adjacent to Bi, the vertex corresponding to the new
maximal clique C′ can be inserted between cliques Ci and Ci+1.
Suppose, without loss of generality, that u ∈ Cq and u /∈ Cq+1,
i < q. Suppose also that w ∈ Ct , t > q. Bq separates u and w
and it belongs to the neighborhood of u. All paths between v and
w cannot avoid Bq. So, it is impossible to have an asteroidal triple
and G is an interval graph.

(2⇒3) Let T = ({Q1, ...,Qp},{(Qi,Qi+1)|1 ≤ i ≤ p− 1}) be a
clique-tree of G such that T is a path. We know that simplicial
vertices belong to just one maximal clique, and we know that in a
k-tree at most one simplicial vertex belongs to a maximal clique.
So, Q1 = v′∪S1 and Qp = v′′∪Sp.

The body P of G (and its clique-tree) is obtained by the removal
of all simplicial vertices of G. This task will be performed in two
steps. Firstly, we remove all vertices of H−{v′,v′′}, being H the
set of simplicial vertices of G. Let v ∈ Qi, i 6= 1, p, be a simpli-
cial vertex and Qi = {v}∪ Si. As |Qi ∩Qi+1| = |Qi ∩Qi−1| = k,
then Qi−1 ∩Qi+1 = Si. So, the maximal clique Qi does not ex-
ist anymore and so the corresponding vertex of the clique-tree;
(Qi−1,Qi+1) is a new edge in the clique-tree. Observe that Si is
a minimal vertex separator (because it is an edge) of the clique-
tree of the remaining graph. After the removal of all vertices of
H−{v′,v′′}, the remaining graph is a k-path graph.

Secondly, we remove vertices v′ and v′′. All minimal vertex sepa-
rators of a k-path graph are distinct. So, after the removal of these
two vertices, the maximal cliques Q1 and Qp do not belong to P

and the two minimal vertex separators S1 and Sp are not minimal
vertex separators of P.

(3⇒1) By Definition 9, P is subgraph of G; G is a k-tree, so P
is also a k-tree. As all simplicial vertices of G were removed, a
vertex of P belongs to at least one minimal vertex separator of G.
Let v be a simplicial vertex of P. The minimal vertex separator
that contains v in G is not a minimal vertex separator of P. In a k-
tree, there are not adjacent simplicial vertices. So, as P has η −2
minimal vertex separators, P has exactly two simplicial vertices
and P is a k-path graph.

Let 〈B0,C1,B1, . . . ,Cp,Bp〉 be a maximal k-path of G. Observe
that 〈B1,C2, B2, . . . ,Cp−1,Bp−1〉 is a maximal k-path of P and only
B1 and Bp−1 are not minimal vertex separators of P. So, all sim-
plicial vertices of G are adjacent to a k-clique Bi, 1 ≤ i ≤ p− 1,
i.e., G is a k-intercat.

�

By definition, we know already that ur-interval graphs are interval
graphs; in [11], Pereira et al. proved that k-path graphs are also
interval graphs. Recalling that an interval graph has a clique-tree
that is a path, the following theorem shows that the k-path graphs
actually satisfy the definition of three important families.

Theorem 9. A graph G is a k-tree, an interval graph and an ur-
chordal graph if and only if it is a k-path graph.

Proof:

(⇒) By Theorem 6, a k-tree that is an ur-chordal has all minimal
vertex separators with multiplicity one. So, a simplicial vertex of
G is adjacent to exactly one minimal vertex separator B of G and
B is not a minimal vertex separator of P. By Theorem 8 the body
P of a k-tree that is an interval graph has η − 2 minimal vertex
separators. So G has exactly two simplicial vertices, i.e, G is a
k-path graph.

(⇐) By definition a k-path graph is a k-tree and Pereira et al.
proved that k-path graphs are interval graphs. Let 〈B0,C1,B1, . . . ,
Cp,Bp〉 be a maximal k-path of G. Observe that B1,B2, . . . ,Bp−1
are the η = n−k−1 minimal vertex separators of G. By Theorem
6 G is an ur-chordal graph.

�

Figure 1 shows all results covered in this paper, showing the hier-
archy of subfamilies. Note that an arrow indicates that a family is
subfamily of its parent. If more than one arrow arrives at a node,
the family is the intersection of the parent families.

chordal

interval k-treeur-chordal

k-intercat

SC k-treeur-interval

k-path graph

k-caterpillar

chordal

interval k-treeur-chordal

k-intercat

SC k-treeur-interval

k-path graph

k-caterpillar

Figure 1: Relationship among k-trees, ur-chordal and interval
graphs.
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ABSTRACT

This paper proposes new approaches based on the GRASP and
Evolutionary algorithms for the resolution of a specific regional-
ization problem. This problem can be mapped on a capacity and
connectivity graph partition problem. A review of literature show-
ing that the algorithms work only with the edges of the Minimum
Spanning Tree is presented. In this case, the algorithms act on the
original graph, in order to increase the possibilities of vertex mi-
gration. Results obtained from the application of such algorithms
over a set of real data suggested that the use of original graphs
through them is a new efficient way to solve this problem.

Keywords: Graph Partition Problem, Clustering, Regionalization,
Metaheuristics

1. INTRODUCTION

According to [1, 2], regionalization is a clustering procedure ap-
plied to spatial objects with a geographic representation, which
groups them into homogeneous contiguous regions and Cluster
Analysis is a multivariate technique used to group objects together
based on a selected similarity measure, in such way that objects in
the same cluster are very similar and objects in different clusters
are quite distinct [3].

Considering a given set with n objects X = {x1, ..,xn} , it must ex-
tract partitions from the set X in k different clusters Ci, respecting
the following three conditions:

k⋃

i=1
Ci = X

Ci 6= /0,1≤ i≤ k
Ci∩C j = /0,1≤ i, j ≤ k, i 6= j

The cluster analysis is a fundamental technique to experimental
sciences in which the classification of elements into groups is de-
sirable . As examples of these fields it is possible to cite: biology,
medicine, economy, psychology, marketing, statistic among others
[4].

2. GRAPH PARTITION PROBLEM

Several clustering problems can be mapped on graph partition prob-
lems.This consists in grouping the vertexes of the graphs in differ-
ent subsets (clusters), according to their similarities, by using a
fitness function [1, 5, 6]. Moreover, this regionalization problem
considers the following restrictions:

• Connectivity: the vertexes grouped in each cluster must be
connected.

• Minimum Capacity: associated total to one of the variables
must be higher than minimum capacity submitted as param-
eter.

The high combinatorial possibilities of the clustering problems
suggests the use of metaheuristic algorithms [7]. This algorithm
can reach a typical optimal solution which is very close to global
solution, in some cases the global optimal, in a reasonable amount
of time. So, papers about clustering problems, including graph
partition problem that consider additional restrictions such as con-
nectivity and capacity had been widely reported in literature.

Some Groups [8, 9] had proposed heuristics algorithms for the ca-
pacity clustering problem, while others [1, 2, 10] had suggested
algorithms for the regionalization problem, in which the connec-
tivity restriction was considered (Automatic Zoning Procedure -
AZP and the Spatial ’K’luster Analysis by Tree Edge Removal -
SKATER).

The problem presented in this paper considers both connectivity
and capacity restrictions into partition graph problem. It is impor-
tant to underline that, excepting the AZP, the other works refer-
enced that considered the connectivity restriction were based on
Minimum Spanning Tree (MST) Partition Method. This method is
composed by two steps:

1. Construction of a MST from the graph which represents the
problem.

2. Formation of sets of clusters through of partitioning of MST.

According to the connectivity restriction, a natural solution for the
problem will consist of building a MST T from G, respecting the
smaller values of di j (1).

di j =

√
p

∑
s=1

(xs
i − xs

j)
2 (1)

In this way, these areas are geographically immediate neighbors,
and homogeneity, regarding a set of p variables associated to popu-
lational and environmental known characteristics. These variables,
which will be represented by xs, s = {1,..,p}, are also called indi-
cators (associated variables to each vertex).

Considering these indicators and using the distances di j between i
and j neighbors vertexes are calculated. The distances di j represent
the homogeneity degree, i.e., the proximity among values from p
variables associated to all vertexes to be aggregated.

Once provided one tree T and a number k of partitions (cluster
to be generated), it is possible to extract (k − 1) edges from T,
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defining, this way, a set of K subtrees Tj, j={1,.., k}. Each one of
these subtrees will be associated to one cluster.

The connectivity property can be observed in each of the subtrees
(clusters). Thus, the solution for the problem will consist of par-
titioning T in k subtrees Tj, j={1,.., k} associated to cluster what
satisfies the capacity restriction and results in the lower possible
value for a fitness function(2).

f (T ) =
p

∑
j=1

n

∑
i=1

(xi j− x j)
2 (2)

The case of AZP was based on the spatial object neighbor struc-
ture to assure the connectivity restriction and acts, basically, on the
migration of the objects in order to minimize a fitness solution.

Figure 1: Adjacency relations between objects [1].

According to 1, follows the descriptions of the items: (1) connec-
tivity graph, (2) minimum Spanning Tree and (3) an example of
solution.

3. PROPOSED ALGORITHMS

Review of literature showed that the proposed algorithms work
only on the edges of MST. In order to increase the possibilities
of vertex migration this work presents new heuristic algorithms
that act with the original submitted graph of the problem. This
proposal enables and facilitates the formation of not only feasi-
ble, which the restriction of capacity is respected, but also better
quality solutions.

According to [6], a good data structure for the problem is ex-
tremely important to the algorithms performance and it can be de-
cisive for a fast convergence and quality of the obtained solutions.
The group-number structure was used to representation of the so-
lution, where the index of vector represents the vertex of the graph
and its content represents the cluster to which the vertex belongs
(also used by [5, 6, 11] ).

The proposed approach consists in creating solutions using the
MST Partition Method through the constructive heuristics, and so,
refining its using local search procedures. It was used versions of
local search that consider the original graph, and not only the MST
built.

3.1. Constructive Heuristics

Two versions of constructive heuristics were proposed, assuring
the connectivity restriction through MST Partition Method, both
considering the concepts of GRASP Metaheuristic (Greedy Ran-
domized Adaptive Search Procedures [12]).

While a first version worked aiming to build feasible solutions,
which the restriction of capacity is respected, the second version

acted in order to minimize the fitness solution, independently of
the restriction of capacity.

Both versions act to generate k partitions, removing (k − 1) edges
from T, since the hierarchical division strategy was used and, ini-
tially, all the vertexes belong to the same cluster.

The Constructive Heuristic 1 (CH1) was proposed by [11] and con-
sists in, after the selection of the cluster (associated with a subtree
Ti) that must be partitioned (what have the high fitness function),
to evaluate all the possibilities of edge removal in order to mini-
mize the fitness function. This way, must be removed the edge of
high value of (3) of the subtree Ti, generation two new subtrees T 1

i
and T 2

i .

Cedge = f (Ti)− ( f (T 1
i )+ f (T 2

i )) (3)

Although it is a greedy procedure which has an expensive compu-
tational cost, it was applied on the building of the initial solution
for the proposed algorithm. In order to make this algorithm semi-
greedy, it was used a Restricted Candidate List (RCL), which the
α high edges (according Cedge value) are selected and, one of them
is randomly selected, aiming to divide the selected cluster.

The Constructive Heuristic 2 (CH2) was based on the CH1 but, in
this version, intending to obtain valid solutions. In this case, the
selection of the cluster that must be partitioned occurs by capacity
criteria, in which the cluster with higher capacity must be selected.
Moreover, the algorithm is also semi-greedy and a RCL was used.
In order to build valid solutions, the CH2 acts dividing the selected
cluster Cw (subtree Tw) in the clusters Cw1 and Cw2 and, afterwards,
one of them must have its capacity minimized and the capacity
criteria respected.

3.2. Local Search Procedures

Six versions of Local Search (LS) were used considering:

• MST: only the edges of the MST built.
• Original Graph: all edges from the original submitted graph.
• Feasible Solutions: construction of valid solutions.
• Better Solutions: to minimize the fitness solution, indepen-

dent of the restriction of capacity.

Table 1 ilustrates the distributions of the Local Search versions
among the considering properties.

Property LS1 LS2 LS3 LS4 LS5 LS6
MST x x x

Original Graph x x x
Feasible Solutions x x x
Better Solutions x x x

Table 1: Properties by Local Search versions.

Descriptions of the Local Search versions:

• LS1: uses the edges that were selected during the cluster
partition. Basically, the procedure verifies if one and only
one cluster associated to vertexes of the edge is penalized
(if it has capacity less than the minimum capacity). In this
case, the vertex is migrated to this cluster, aiming to regen-
erate the solution.

• LS2: realizes migrations of vertexes based on the original
submitted graph of the problem, aiming to regenerate the
infeasible solutions.

• LS3: realizes migrations of vertex based on the original sub-
mitted graph of the problem aiming to minimize the fitness’
solution.
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• LS4 and LS5: work joining adjacent clusters in which ex-
ists an edge connecting vertexes of this clusters, and after,
dividing this cluster using, respectively, the CH1 and CH2
procedures.

• LS6: was based on the known clustering algorithm of the
literature, the K-Means [13, 4] but, in this case, the restric-
tions of this problem were considered.

3.3. Additional Comments about the Implementation

This paper proposes Evolutionary Algorithms (EA)[12] that bring
together the construtives and local search procedures. It follows
the other implemented techniques:

• Crossover: the vertexes migration occur by the 1-point type
crossover operator. It was necessary to verify if the new
solutions have k clusters and if the clusters are connected.

• Mutation: it was used random vertex migration, aiming to
perturb the solution.

• Elitism: The best found solutions are saved and inserted to
the next population in order to improve quality by using the
others procedures.

• Minimum Capacity: Total associated to one of the variables.
This value can be either submitted as parameter or calcu-
lated at the begin of the algorithm, which β is the fit factor,
k a number of clusters, n a number of vertexes and xs

i the
variable s associate with the vertex i (4).

CapMin = (β/k).
n

∑
i=1

xs
i (4)

In the experiments, were considered only two versions of EA:

• EAOG: Evolutionary Algorithm that consider the original
submitted graph. It was used: LS2, LS3, LS6, Elitism, CH1
or CH2.

• EAMST: Evolutionary Algorithm that consider only the edges
of the MST. It was used: LS1, LS4, LS5, Crossover, Muta-
tion, Elitism, CH1 or CH2.

4. COMPUTATIONAL RESULTS

A real set of twenty six instances from Brazilian Demographic
Census (data for public use) was used for the experiments. More-
over, the algorithms presented were coded in Ansi C, running on a
Intel Centrino II 2,4 GHz processor and 4GB RAM.

Table 2 presents properties of the used instances, where each ver-
tex is a weigthed area. A weighted area is a small geographical
area formed by a mutually exclusive enumeration areas (cluster
of census segments), which comprise, each one of them, a set of
records of households and people. And the associated variables
are: total of houses, total of domiciles, total of person, sum of
salaries, sum of time of instruction or study, sum of salary per-
capita, average time of instruction or study of the responsible.

Aiming to calibrate the parameters, several preliminary experi-
ments were run based on the selected set of instances. The ob-
tained parameters were: k=3 (clusters), PopulationSize=10 solu-
tions, StopCriteria=100 generations, Crossover =80%, Mutation=5%
and α=5. The crossover and mutation have a high probability since
its execution is evaluate in order to form only feasible solutions.

Although real applications can define the Minimum Capacity for
each instance, in this experiment was fixed β = 30%.

Id |Vertex| |Edge| Id |Vertex| |Edge|
1 21 58 14 178 791
2 61 286 15 121 567
3 409 2020 16 75 359
4 73 350 17 114 502
5 14 46 18 133 620
6 18 59 19 195 868
7 89 363 20 68 307
8 16 60 21 181 843
9 57 236 22 151 560
10 375 1769 23 86 388
11 179 882 24 155 722
12 74 357 25 461 2385
13 231 1172 26 285 1451

Table 2: Real instances of Brazilian Demographic Census.

In the experiment, each algorithm was executed over the same in-
stance twenty times. The elapsed time and the gap associated with
the best known result of the each instance were obtained.

The tables 3 and 4 present, respectively, the best of this results
by EA version for each instance and some statistics about this ex-
periment. The EAOG obtained best results for all the instances,
however, its average of elapsed time was higher then EAMST ver-
sions.

Gap(AEGO,EAMST ) = 100∗ | fAEGO− fAEMST |
fAEGO

(5)

Id Gap Id Gap Id Gap
1 26.97 10 43.33 19 54.08
2 7.1 11 61.85 20 16.44
3 5.82 12 40.31 21 41.86
4 20.3 13 51.23 22 39.05
5 11.71 14 91.09 23 60.6
6 3.97 15 65.76 24 48.96
7 78.84 16 35.38 25 26.46
8 17.44 17 56.49 26 56.25
9 59.59 18 84.02

Table 3: Gap between EAOG and EAMST.

Average Time EAOG 269 seconds
EAMST 133 seconds

Gap (EAOG, EAMST) Min 3.97%
Max 91.09%
Mean 42.49%
Median 42.59%

Gap [Best Known reference] EAOG 4.00%
EAMST 51.00%

Table 4: Statistics.

In order to analyze the results, three categories were created ac-
cording to the Gap values of the best solution known: Best (Gap =
0%), Interesting (Gap ≤ 5%) and Bad (Gap > 70%).

The table 5 presents the results by categories.

Since the AEOG reached best results but its elapsed time was
higher than of AEMST, both algorithms were submitted to a new
experiment. They were run one hundred times, over three among
the bigger selected instances and, in this experiment, the StopCri-
teria was a maximum time (300 seconds) or the solution reach the
target value, submitted as parameters.
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Categories EAOG EAMST
Best 40% 12%

Interesting 60% 17%
Bad 0% 29%

Table 5: Results by categories.

In this experiment all the AEOG executions reached the target,
while the AEMST had probabilities of 52%, 55% and 38% for the
instances 4, 13 and 22, respectively.

Despite the algorithm had obeyed the stipulated processing time,
the EAMST continued limited in best local solutions, while the
EAOG obtained new different solutions, that could not be formed
through the only MST method. Moreover, the AEOG reached the
target of the instances 4, 13 and 22 at 40, 10 and 10 seconds, re-
spectively.

5. CONCLUSIONS

In this paper two versions of constructive heuristics were proposed,
both considering the concepts of GRASP Metaheuristic. After-
wards, six local search procedures were used aiming to refine the
solutions, in order to increase de solutions’ quality or regenerate
infeasible solutions.

Two Evolutionary Algorithms were presented, bring together the
construtives and local search procedures: The EAOG (based on
the Original Graphs) and EAMST (based only on edges of MST).

It was possible to confirm that the procedures that acted with the
original submitted graph increase the possibilities of vertex mi-
gration and thus facilitated the formation of both valid as better
quality solutions.

The computational results showed that the use of Constructive Heuris-
tics that consider only edges of MST together a local search proce-
dures and the use of Original Graphs are an interesting alternative
to solve this problem, improving both the solution’s quality as the
quantity of formation of valid solutions.

These results indicate that the proposed heuristics are an efficient
way to solve this problem. Besides, as another ways to solve it
we can cite: the use of Pathrelinking in order to integrate intensifi-
cation and diversification in search for new best solutions [12]; to
develope and analyze the use of other metaheuristics, such as: It-
erated Local Search (ILS), Variable Neighborhood Search (VNS),
Tabu Search or a hybrid heuristic version [12].
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ABSTRACT

The Weight-Constrained Minimum Spanning Tree problem (WMST)
is a NP-hard combinatorial optimization problem having impor-
tant applications in the telecommunication networks design and
communication networks. We use simple but effective Lagrangean
based algorithms to compute lower and upper bounds. Computa-
tional results show that the algorithms are fast and present small
gap values.

Keywords: Weight-constraints, Constrained minimum spanning
tree, Lagrangean relaxation, Heuristics

1. INTRODUCTION

In this work we discuss Lagrangean based algorithms for the Weight-
Constrained Minimum Spanning Tree problem (WMST).

Consider an undirected complete graph G = (V,E), with node set
V = {0,1, . . . ,n−1} and edge set E = {{i, j}, i, j ∈V, i 6= j}. As-
sociated with each edge e = {i, j} ∈ E consider nonnegative in-
teger costs ce and nonnegative integer weights we. The Weight
Minimum Spanning Tree problem (WMST) is to find a spanning
tree T = (VT ,ET ) in G ( VT ⊆ V and ET ⊆ E) of minimum cost
C(T ) = ∑e∈ET

ce and with total weight W (T ) = ∑e∈ET
we not ex-

ceeding a given limit W . This combinatorial optimization problem
is NP-hard [1, 2].

The WMST is known under several different names. It was first
mentioned in Aggarwal, Aneja and Nair [1], under another name,
the MST problem subject to a side constraint. In this paper the au-
thors propose an exact algorithm to solve the problem that uses a
Lagrangian relaxation to approximate a solution combined with a
branch and bound strategy. This kind of solution approach can also
be found in the work of Shogan [3]. The paper of Ravi and Goe-
mans [4] describes an approximate scheme. In [5] Xue presents a
simple but efficient primal-dual algorithm to find approximate so-
lutions. Another approach to solve the problem is given in Hong,
Chung and Park [6] where the authors propose a fully polynomial
bicriteria approximation scheme. Hassin and Levin [7] adopt the
ideas in [4] and add to them an application of a matroid intersec-
tion algorithm. Yamada, Watanabe and Kataoka [2] consider a
weight-constrained maximum spanning tree problem. They prove
the problem is NP-hard, use a local search heuristic to obtain up-
per bounds, a Lagrangian relaxation to obtain lower bounds, use
a branch-and-bound algorithm to solve the problem and propose a
method to accelerate the computation. The authors refer that the
results can be easily applied to the minimization case. Henn [8]
presents a compilation of results and existing algorithms to solve

the problem.

A related approach is to include the weight of the tree as a second
objective instead of a hard constraint. The resulting problem is the
bi-objective spanning tree problem ( [9, 10, 11, 12, 13, 14, 15],
among many others).

The WMST appears in several real applications and the weight re-
strictions are mainly concerned with a limited budget on installa-
tion/upgrading costs. A general application is related with the up-
grade and design of physical systems, somehow connected through
a minimum spanning tree, when there is a budget restriction. One
such application arises in the areas of communication networks
and network design, in which information is broadcast over a min-
imum spanning tree. There are several problems that consider the
design of the enhancement of the performance of an underlying
network by carrying out upgrades at certain nodes and/or edges
of the network. Upgrading a node corresponds to installing faster
switching equipment at that node. Such upgrade reduces the com-
munication delay along each edge emanating from the node. Sim-
ilarly, upgrading an edge corresponds to replacing an existing link
with a new type of link. Moreover, costs/profits is not the only
meaning for the weights. Edge weights may represent the delay
of an edge or the logarithm of the reciprocal of the reliability of
an edge [5]. Another example (see [8, 16]) arising in commu-
nication networks problems, is the minimum cost reliability con-
strained spanning tree. In this application we are given a set of
nodes in the plane that can communicate with each other. The ob-
jective is to connect the nodes. The cost of a connection might
be modeled by the distance of the nodes and the reliability of a
connection by its fault probability. We now want to compute a
minimum cost connection (spanning tree) such that its total fault
probability is beyond a given limit. The interest from the telecom-
munications community arises from the great deal of emphasis on
the need to design communication protocols that deliver certain
performance guarantees. This need is the result of an explosive
growth in high bandwidth real time applications that require de-
manding QoS (Quality of Service) guarantees. It is for this reason
that the WMST has assumed great importance in telecommunica-
tions network applications.

There are several studies of Lagrangean based approximation al-
gorithms either to general constrained combinatorial optimization
problems, cf. [17], or to weight/resource constrained shortest path
problems, cf. [18, 19]. The WMST has received only brief ref-
erences and computational results are almost non existing. We
will describe Lagrangean based algorithms to the WMST and ob-
tain computational results. To present the Lagrangean relaxation
to the WMST in Section 4, we describe a general formulation to
the problem in Section 2. We discuss some properties of the prob-

ALIO-EURO 2011 – 38



Proc. of the VII ALIO–EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4–6, 2011

lem in Section 3 and a solution procedure in Section 5. We present
existing settings and propose a different setting to obtain approx-
imate trees in the solution procedure. Computational results to
assess the quality of the discussed procedures will be shown in
Section 6.

2. A FORMULATION FOR THE WMST

Several formulations are well known for the MST (see Magnanti
and Wolsey [20]). In [21] natural and extended formulations for
the WMST are discussed. To obtain formulations to the WMST
one can easily adapt a MST formulation.

It is well known (see Magnanti and Wolsey [20]) that oriented
formulations (based on the underlying directed graph) leads, in
general, to tighter formulations (formulations whose lower bounds
provided by the linear relaxations are closer to the optimum val-
ues). Thus, henceforward we consider the corresponding directed
graph, with root node 0, where each edge e= {0, j}∈E is replaced
with arc (0, j) and each edge e = {i, j} ∈ E, i 6= 0, is replaced with
two arcs, arc (i, j) and arc ( j, i), yielding arc set A = {(i, j), i ∈
V \{0}, j ∈V, i 6= j}. These arcs inherit the cost and weight of the
ancestor edge.

Henceforward, let PL be the linear programming relaxation of for-
mulation P and let ϑ(P) be the optimal value of P.

Consider the original variables, the binary variables xi j (for all
(i, j) ∈ A) indicating whether arc (i, j) is in the MST solution [20].
Two classical formulations on the space of the original variables
for the MST can be considered. In order to ensure the connectivity
of the feasible solutions and to prevent the existence of circuits in
the feasible solutions, one formulation uses the cut-set inequali-
ties and the other formulation uses circuit elimination inequalities.
The linear relaxation of both models provide the same bound [20].
However the number of inequalities in both sets increase exponen-
tially with the size of the model. It is well known that in order to
ensure connectivity/prevent circuits, instead of using one of those
families with an exponential number of inequalities, one can use
compact extended formulations. The well-known Multicommod-
ity Flow formulation (MF) using the additional flow variables can
be considered. In this formulation the connectivity of the solution
is ensured through the flow conservation constraints together with
the connecting constraints [20]. These three formulations for the
MST are easily adapted for the WMST through the inclusion of
a weight constraint. Therefore a formulation to the WMST is as
follows.

(WMST ) min ∑
(i, j)∈A

ci jxi j

s.t. x ∈ (MST ) (1)

∑
(i, j)∈A

wi jxi j ≤W. (2)

Where x = (xi j) ∈ R|A| and (MST ) represents a set of inequalities
describing the convex hull of the (integer) solutions of the MST
and can use one of the sets of inequalities referred previously (the
circuit elimination inequalities, the cut-set inequalities, the flow
conservation constraints together with the connecting constraints)
plus the following constraints

∑
i∈V

xi j = 1 j ∈V (3)

xi j ∈ {0,1} (i, j) ∈ A. (4)

Constraint (2) is the weight constraint and we emphasize that the
above formulation without the weight constraint is a formulation
for the MST [20].

If the incidence vector x=(xi j)∈R|A| represents an (integer) MST
solution, and subgraph T = (V,AT ), AT ⊆ A, of G = (V,A) the
corresponding tree, then C(T ) = ∑(i, j)∈A ci jxi j = ∑(i, j)∈AT

ci j and
W (T ) = ∑(i, j)∈A wi jxi j = ∑(i, j)∈AT

wi j. Furthermore, if we define
a matrix of non-negative profits pi j associated to each arc (i, j) ∈
A, then we use P(T ) = ∑(i, j)∈A pi jxi j = ∑(i, j)∈AT

pi j.

3. SOME PROPERTIES OF THE WMST

The well know Minimum Spanning Tree problem (MST) is to find
a spanning tree Tc = (V,ATc), ATc ⊆ A, on G = (V,A) of mini-
mum cost C(Tc) = ∑(i, j)∈ATc

ci j and for this combinatorial opti-
mization problem there are several polynomial algorithms such as
Sollin’s, Kruskal’s and Prim’s algorithm (see [22] for descriptions
of these algorithms). An additional constraint to the MST such
as the one we use (the total tree weight W (Tc) = ∑(i, j)∈ATc

wi j
must not exceed a given limit W ) turns the MST into a NP-hard
problem [1]. Consider a companion problem to the WMST, the
Minimum-weight Spanning Tree problem that is to find a spanning
tree Tw = (V,ATw), ATw ⊆ A, on G = (V,A) of minimum weight
W (Tw) = ∑(i, j)∈ATw

wi j.

Tc and Tw are two spanning trees of G, Tc of minimum cost and
Tw of minimum weight. Moreover, these trees give us upper and
lower bounds on the optimal value of the problem

C(Tc)≤ ϑ(WMST )≤C(Tw)

and we can assume the following proposition.

Proposition 1. There exists an optimal solution for the WMST if
and only if

W (Tw)≤W ≤W (Tc).

Clearly, if W (Tw)>W , then the WMST has no solution. Further-
more, we have the following.

Proposition 2. If W (Tc) ≤W, then Tc is an optimal solution for
the WMST.

Consider another companion problem to the WMST. Define some
non-negative profits pi j associated to each arc (i, j) ∈ A which are
linear combination of the cost and weight associated to each arc,
pi j = awi j +bci j with real scalars a,b. The Minimum-profit Span-
ning Tree problem that is to find a spanning tree Tp = (V,ATp),
ATp ⊆ A, on G of minimum profit P(Tp) = ∑(i, j)∈ATp

pi j . If a = 0
and b = 1 then we have Tp ≡ Tc. If a = 1 and b = 0 then we have
Tp ≡ Tw.

4. LAGRANGEAN RELAXATION

In order to derive a Lagrangean relaxation attach the Lagrangean
multiplier λ to the weight constraint (2) and dualize the constraint
in the usual Lagrangean way. This leads to the following relaxed
problem.

(WMSTλ ) −λW + min ∑
(i, j)∈A

(ci j +λwi j)xi j

s.t. x = ∈ (MST )

For every non-negative multiplier λ , the tree solutions to this re-
laxed problem give us lower bounds on the optimum value, i.e.

ϑ(WMSTλ )≤ ϑ(WMST ).

ALIO-EURO 2011 – 39



Proc. of the VII ALIO–EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4–6, 2011

For a given non-negative value of the Lagrangean multiplier λ ,
the relaxed problem WMSTλ can be solved using any well known
polynomial algorithm to solve the MST [22]. Moreover, if for each
multiplier λ we define the profits pλ

i j = ci j +λwi j , then

ϑ(WMSTλ ) =−λW +P(Tpλ ).

Classically a Lagrangean relaxation is solved using a subgradi-
ent optimization procedure [23]. The subgradient optimization
procedure starts by initializing the Lagrangean multipliers. Af-
ter, iteratively, solves the relaxed problem WMSTλk

, then actual-
izes the Lagrangean multiplier λk by setting, at each iteration k ,
λk+1 = max{0,λk + skdk} using a direction dk and a step-size sk,
and finally verifies some stopping criteria.

An appropriate choice for the step size sk produces a convergent
method. We can use [23]

sk = ρ
C(Tw)−ϑ(WMSTλk

)

(∑(i, j)∈A wi jxk
i j−W )dk

= ρ
C(Tw)−P(Tpλk )+λkW

(W (Tpλk )−W )dk

with 0 < ρ < 2 and using the upper bound C(Tw) to approximate
the optimum value of the problem. Observe that for the tree solu-
tion xk = (xk

i j) of the Lagrangean relaxed problem WMSTλk
, cor-

responding to Tpλk , we have ϑ(WMSTλk
) = −λkW +P(Tpλk ) and

W (Tpλk ) = ∑(i, j)∈A wi jxk
i j.

5. SOLUTION PROCEDURE

In order to obtain an approximate solution to the WMST we pro-
pose the following general algorithm.

Algorithm

Step 1 Obtain an upper bound.
Find a spanning tree Tw = (V,ATw), ATw ⊆ A, on G of mini-
mum weight W (Tw) = ∑(i, j)∈ATw

wi j.

If W (Tw)>W , then there is no solution. STOP. Otherwise,
set Tα = Tw.

Step 2 Obtain a lower bound.
Find a spanning tree Tc = (V,ATc), ATc ⊆ A, on G of mini-
mum cost C(Tc) = ∑(i, j)∈ATc

ci j .

If W (Tc)≤W , then Tc is an optimal solution. STOP. Other-
wise, set Tβ = Tc.

Step 3 Compute an approximate tree.
Compute profits pi j for every (i, j) ∈ A.
Find a spanning tree Tp = (V,ATp), ATp ⊆ A, on G of mini-
mum value P(Tp) = ∑(i, j)∈ATp

pi j.

Compute P(Tp), W (Tp) and C(Tp).

Step 4 Stopping criteria.
If W (Tp) ≤ W then update upper bound, i.e. if C(Tp) <
C(Tα ) replace Tα by Tp;

otherwise update lower bound, i.e. if C(Tp) >
C(Tβ ) replace Tβ by Tp.
If |P(Tα )−P(Tp)| ≤ tol, then

Tα is the approximate solution, STOP.
Go To Step 3.

The subgradient optimization scheme perfectly fits this algorithm
layout. Now we will discuss settings for the non-negative prof-
its pi j = awi j + bci j , with real scalars a,b, associated to each arc
(i, j) ∈ A and their update at each iteration. We will consider set-
tings for the profits pi j characterized by associating a parameter,
the Lagrangean multiplier, to the weights, a = λk, and a parameter

with value equal to one to the costs, b = 1. Two examples of such
settings will be given next.

Jüttner et al. [19] built up the Lagrangian Relaxation Based Ag-
gregated Cost (LARAC) algorithm which solves the Lagrangian
relaxation of the constrained shortest path (CSP) problem. In [24]
the equivalence of the LARAC algorithm and other algorithms in
[17, 18, 19] is shown. Using the ideas of these algorithms, the first

setting is a = λk =
C(Tα )−C(Tβ )

W (Tβ )−W (Tα )
.

If the Held, Wolfe and Crowder [25] direction is to be considered
dk = ∑(i, j)∈A wi jxk

i j−W =W (Tpλk )−W, leading to the second set-
ting

a = λk = max{0,λk−1 +ρ
C(Tw)−P(Tpλk−1 )+λk−1W

W (Tpλk−1 )−W
}

and initializing λ0 =
C(Tw)−C(Tc)

W (Tc)−W .

6. COMPUTATIONAL RESULTS

Computational results will assess the quality of the approximate
solutions obtained with each setting of the profits.

At the moment we present some computational results of the ap-
proximation algorithms for instances to the weight-constrained min-
imum spanning tree problem on complete graphs and between
150 and 300 nodes. Costs and weights are generated based on
Euclidean distances combined with Pisinger’s [26] instances and
W =

W (Tc)+W (Tw)
2 .

|V | W (Tw) W W (Tc) C(Tc) C(Tw) C(Tp)

150 824 4197 7570 781 7529 1114
200 866 5890 10914 890 10557 1154
250 958 6921 12884 1004 12925 1361
300 1080 8281 15481 1082 14588 1470

Table 1: Computational results.

Preliminary computational results show that the algorithms are fast
and present small gap values. For the instances in Table 1 the
bound obtained is equal for both profits settings and its value is
shown in the last column.

An extensive computational experience is performed to complete
this section.
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ABSTRACT

In many applications, a suitable permutation of patterns (electronic
circuit nodes, cutting patterns, product orders etc.) has to be found
in order to optimize over some given objective function, so giving
rise to the so-called Open Stack Problems. We focus on the Gate
Matrix Layout Problem, where electronic circuits are obtained by
connecting gates and one seeks a gate layout permutation that min-
imizes connection costs under restrictions on the circuit area. In
the literature, the connection costs and the circuit area are also
know as Time of Open Stacks and Maximum Number of Open
Stacks, respectively. We propose a genetic algorithm providing
heuristic solutions, and a branch-and-cut algorithm, based on a
new linear integer programming formulation and representing, at
our best knowledge, the first exact approach in the literature. The
algorithms are under extensive test, and preliminary results on real
instances are presented here.

Keywords: Time of Open Stacks, Maximum Number of Open
Stacks, Genetic Algorithms, Integer Linear Programming, Branch-
and-Cut

1. INTRODUCTION

The Gate Matrix Layout Problem is related to programmable logic
array folding in Very Large Scale Integration (VLSI) electronic
circuit design [1]. Roughly speaking, gates correspond to circuit
nodes and different connections are required. Each connection in-
volves a subset of nodes and is called net. Figure 1(a) shows an
example where 7 gates (vertical lines) have to be connected ac-
cording to 5 different nets, described by dots of the same row: net
A connects gates 1, 3 and 5, net B connects gates 1, 4, 5 and 6 etc.
Wires are used to create connections, one for each net, as shown
in Figure 1(b). Note that, to connect the gates of a net, it may be
necessary to cross other gates not included in the net, depending
on the gate layout sequence. Also, a single connection track can be
used to place non-overlapping net wires, as shown in Figure 1(c)
for nets D and E. The total wire length determines the connection
cost, while the number of tracks determines the total circuit area,
which may be limited by design constraints or efficiency issues.

1 2 3 4 5 6 7

A
B
C
D
E

1 2 3 4 5 6 7

A
B
C
D
E

1 2 3 4 5 6 7

A
B
C

D E

(a) (b) (c)

Figure 1: Sample gate matrix: connection requests (a), wired nets
(b) and connection tracks (c).

A
B
C
D
E

A
B
C
D
E

A
B

D

(a) (b) (c)

1 3 5 2 4 6 7

C

E

1 3 5 2 4 6 7 1 3 5 2 4 6 7

Figure 2: Sample gate matrix: an improved gate sequence.

Both indicators give an estimate of the circuit layout efficiency
and depend on how gates are sequenced. The gate layout of Figure
1 requires 19 wire units and 4 tracks, corresponding to the maxi-
mum number of overlapping net wires. A better layout is shown
in Figure 2, using 15 wire units and 3 tracks.

We define the Gate Matrix Layout Problem (GMLP) as the prob-
lem of finding a gate permutation such that the connection cost is
minimized and the number of required tracks is limited. The prob-
lem is NP-Hard and has several applications in different fields [2].
For example, in production planning, gates correspond to articles,
nets to client orders and wires represent the occupation of ded-
icated order stacks (and related loading facilities) over all the or-
der processing time, depending on the article production sequence.
The same stack can be used for non-overlapping orders and one
wants to find a production sequence that minimizes the total stack
occupation time, under the restriction that the maximum number
of overlapping orders, that is the maximum number of simulta-
neously open stacks during the production process, is at most the
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number of available stacks, as determined by plant layouts. Sim-
ilarly, in cutting stock environments, the items (corresponding to
nets in GMLP) obtained from panels sawed according to given cut-
ting patterns (corresponding to gates) are heaped on stacks around
the sawing machine. Stacks remain open during all the production
time of the related item and, again, the same stack (corresponding
to track) can be used for items whose production does not over-
lap over time. The problem is to find a cutting pattern permutation
that minimizes the total stack opening time, provided that the max-
imum number of simultaneously open stacks during the cutting
process must not exceed a given threshold, which is a parameter
of the sawing center. In the literature, the total stack occupation
time and the maximum number of simultaneously open stacks are
known as Time of Open Stacks (TOS) and Maximum number of
Open Stacks (MOS), respectively. In GMLP, the wire length cor-
responds to TOS, and the number of required tracks corresponds
to MOS. Note that a given gate sequence may not be feasible be-
cause the number of required tracks (MOS) exceeds the number
of available tracks as determined by the restrictions on the circuit
area.

We can characterize an instance of GMLP by a production matrix
M ∈ {0,1}m×n and a parameter λ ∈ Z+ representing the number
of available tracks and, hence, an upper bound for MOS, mean-
ing that all the sequences having MOS greater than λ are not fea-
sible. Rows of M are associated with nets, columns with gates,
and M(i, j) = 1 if and only if net i includes gate j. A solution
of GMLP consists in a sequence φ : [1, . . . ,n]→ [1, ...,n], where
φ( j) indicates the layout position of gate j. Such a solution de-
fines a new matrix Mφ obtained from M by permuting its columns
according to φ . From Mφ we obtain a stack matrix M̄φ by switch-
ing to 1 any 0 of Mφ between two 1s in the same row. Therefore
M̄φ (i, j)= 1 if and only if, according to φ , the wire of net i includes
or crosses gate j. Figure 3 reports the production matrix of the

M =

1 2 3 4 5 6 7
1 0 1 0 1 0 0
1 0 0 1 1 1 0
0 1 0 1 0 0 1
1 1 1 0 0 0 0
0 0 0 1 0 1 1

(a)

Mφ =

1 3 5 2 4 6 7
1 1 1 0 0 0 0
1 1 1 1 1 1 0
0 0 0 1 1 1 1
1 1 1 1 0 0 0
0 0 0 0 1 1 1

(b)

Figure 3: Sample Production Matrix M (a), and Stack Matrix Mφ
(φ = [1,3,5,2,4,6,7]) with switched elements in italics (b).

sample gate matrix of Figure 2 and the stack matrix of sequence
[1,3,5,2,4,6,7]. Note that MOS and TOS for a given sequence φ
can be easily obtained from M̄φ . The length of the wire required
by net i is the distance (in number of gates) between the first and
the last gate of i, equal to the number of 1s in the i-th row of M̄φ ,
minus 1 (the first gate must not be considered). Therefore, the
length of the wire for a single net is the sum of the entries of the
related row of M̄φ minus 1 and TOS is the sum of all the entries
of M̄φ , minus m. MOS is the maximum number of 1s appearing in
any of the columns of M̄φ . Summarizing, given a {0,1}-matrix M,
GMLP is to find a column permutation having MOS not greater
than λ and minimizing TOS.

Literature on pattern sequencing problems is rich and related to
different application fields and solution techniques. Nevertheless,
most works consider MOS minimization ([3, 4, 5, 6], among oth-
ers), and TOS is sometimes used to heuristically drive the search
of good MOS sequences (see for example [7, 8]). Just a few works
take TOS optimization explicitly into account. Among the most
recent ones, we cite [9], proposing a Constructive Genetic Algo-
rithm, where GMLP is solved by integrating genetic operators, lo-
cal search and schemata filling heuristics, and [10], where a bi-

objective approach is considered for an application in the paper in-
dustry, and the set of Pareto-optimal solutions is approximated by
a genetic algorithm improved by initial heuristics and local search.

In this paper, we focus on GMLP, i.e. on pattern sequencing prob-
lems where TOS has to be minimized under restrictions on MOS,
and we propose two algorithms: the first one, described in Sec-
tion 2, aims at determining both an as low as possible threshold
λ for the number of tracks (MOS), and a feasible sequence with
a low connection cost (TOS); the second one starts from this se-
quence and minimizes the wire length (TOS), provided that MOS
must not exceed λ (Section 3). The first algorithm is based on a
genetic approach with a composite and dynamic definition of the
fitness function. The second algorithm exploits the flexibility of
a new integer programming formulation based on the properties
of consecutive-ones matrices and solved by branch-and-cut. An
extensive computational campaign is in progress, and preliminary
results on real GMLP instances are presented in Section 4.

2. GENETIC ALGORITHM

The aim of the first algorithm for GMLP is twofold. First, we need
to determine an appropriate threshold λ for MOS, which may be
not a priori known. For example, in production or cutting stock en-
vironments, the limitation on the number of available stacks may
be too restrictive, so that no feasible sequence exists and tempo-
rary warehousing is necessary. We thus want to take λ as low
as possible, to limit temporary warehousing and preserve process
efficiency. Second, we seek for a feasible sequence that, beyond
minimizing MOS, has also a good TOS, to mimimize connection
costs. Note that this may also speed-up the branch-and-cut algo-
rithm for TOS optimization, as a good initial incumbent solution
is available. We consider a genetic approach: genetic algorithms
iteratively evolve a population of several individuals according to
the principle of natural selection. Each individual encodes a partic-
ular solution and, at each generation, new individuals are obtained
by selecting parents and combining their features. In order to ob-
tain better and better solutions, a fitness value is associated to each
individual: the fitter the individuals, the more they are likely to
be selected as parents and to transmit their features to new gener-
ations. The Genetic Algorithm for GMLP (GAG) is sketched in
Figure 4. Individuals are encoded as columns sequences, and the

1. Determine individuals of the initial population
2. Repeat (for each generation)
3. Repeat (for each offspring)
4. Select two parents
5. Generate offspring by crossover
6. Apply mutation to offspring
7. Until a set of new individuals are generated
8. Replace old individuals with new ones
9. Refine the fittest individuals by local search

10. Adapt fitness criteria
11. Until termination conditions are satisfied
12. Return the best individual found.

Figure 4: Sketch of the Genetic Algorithm for GMLP.

initial population is obtained in part heuristically, in part by ran-
dom columns permutations (step 1). The operator to recombine
individuals and obtain offspring for the new generation (steps 3
to 7) is the Order Crossover, borrowed from the Traveling Sales-
man Problem. After selecting two parents, two new individuals are
generated: each individual inherits a subsequence from one parent
and the remaining elements are filled-in in the relative order of the
other parent. To avoid premature convergence, new individuals
undergo a mutation, with a given probability: mutation exchanges
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the position of two randomly chosen columns. The new generation
is obtained by replacing with the new offspring all the individuals,
but an elite set of the fittest ones and a steady set chosen at random
(step 8). Before starting the next iteration, a refinement operator
explores the 2-OPT neighborhood of most promising individuals
and replaces them with local optima (step 9). GAG terminates
after a fixed number of generations, returning the best individual
found so far.

With respect to standard genetic algorithms, GAG introduces some
new features, which have experimentally shown to significantly
impact on its performance, and are mainly related to the fitness
function definition and to the refinement operator. The fitness
function is used to guide the selection mechanism and, accord-
ing to the twofold aim of GAG, both MOS and TOS has to be
taken into account. MOS is related to critical subsequences and is
very unlikely to change under small sequence perturbations. Fur-
ther indicators are thus necessary to discriminate fittest individuals
and, as discussed in [7], TOS is not enough: in fact, both MOS
and TOS measure the whole sequence and may hide good local
features. We thus propose two new indicators, based on relations
between close columns in a given sequence φ : NEW , which sums
up the 1s in one column of Mφ not contained in the previous one,
and IOS, the maximum increment in the number of 1s from one
column of M̄φ to the following one. Summarizing, the fitness of
an individual is a weighted sum of MOS, TOS, NEW and IOS.
Further, we propose to dinamically change the weights during the
evolution (step 10), and three settings are used to obtain different
search phases: during the first generations, emphasis is on MOS
optimization, with negligible weights to TOS, NEW and IOS; then
GAG switches to a second setting, aiming at obtaining better TOS,
while diversifying the population and emphasis is on TOS, NEW
and IOS; finally, the search is guided again toward MOS optimiza-
tion and the related weight is increased, to minimize λ and find
a good feasible solution. Concerning the refinement operator, a
standard implementation of the 2-OPT local search may be com-
putationally expensive. Several speeding-up tricks has been de-
vised, whose details are beyond the scope of this short paper. We
just mention that the refinement is applied with a low frequency
to a few individuals, and that an incremental neighbor evaluation
has been implemented, based on some invariance properties of the
stack matrix (the same incremental evaluation is applied to off-
spring generated by crossover).

3. EXACT BRANCH-AND-CUT PROCEDURE

Given a matrix A ∈ Rm×n, the minor AIJ is the submatrix of A
defined by the ordered subsets I and J of rows and columns, re-
spectively. Let [A]p,q be the set of all minors of A of size p× q.
Given two matrices A,B ∈Rm×n in the following we will denote
by 〈A,B〉 the inner product of A and B. A {0,1}-matrix A has the
consecutive ones property for rows (or, briefly, A is C1P) if the
columns of A can be permuted so to obtain a strict C1P matrix,
that is a {0,1} matrix such that in each row the ones appear con-
secutively, i.e. in each row they can not appear two 1s separated
by one or more 0s. According to this definition we can now state
our formulation for GMLP as follows: given M ∈ {0,1}m×n and
λ ∈ Z+, minimize ∑i∈{1,...,m}, j∈{1,...,n}X(i, j) with

X is C1P (1)
X(i, j) ≥ M(i, j), ∀i ∈ 1, . . . ,m, ∀ j ∈ 1, . . . ,n (2)

λ ≥
m

∑
i=1

X(i, j), ∀ j ∈ 1, . . . ,n (3)

X ∈ {0,1}m×n. (4)

A feasible solution X of the previous system is then a {0,1}-matrix
(constraint (4)), obtained by turning 0s of M into 1s (constraints

(2)), and such that there exists a sequence φ of its columns such
that X = M̄φ (constraint (1)). Constraints (3) ensure that the num-
ber of stacks contemporary open by the solution X does not ex-
ceed the given value λ and the objective function corresponds to
TOS. Still, in order to obtain an integer linear program, we have
to translate constraint (1) into linear inequalities. Tucker [11] gave
a characterization of the C1P matrices using five special matrices
T 1

k ,T
2

k ,T
3

k ,T
4,T 5, called Tucker minor. In particular, T 4 and T 5

have fixed dimension, while T 1
k ,T

2
k , and T 3

k have dimension de-
pending on parameter k (for example, the minor T 1

k for k = 4 is
shown in Figure 5(a)). Tucker proved that a matrix A ∈ {0,1}m×n




1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
1 0 0 0 0 1







1 1 0 0 0 −1
−1 1 1 0 0 0
−1 0 1 1 0 0
−1 0 0 1 1 0
−1 0 0 0 1 1
1 −1 0 0 0 1




(a) (b)

Figure 5: The Tucker minor T 1
4 (a) with the corresponding co-

efficients of the Oswald-Reinelt matrix F14 (b) defining the valid
inequality 〈F14 ,XIJ〉 ≤ 11.

is C1P if and only if none of its minors is a Tucker minor. More
recently, Oswald and Reinelt used the Tucker characterization in
order to provide a description of the C1P matrices in terms of lin-
ear integer programming. Indeed they first defined the {0,1,−1}
matrices F1k , F2k , F3, and F4 (see Figure 5(b) for an example) and
proved the following:

Theorem 1 ([12, 13]). A matrix X ∈ {0,1}m×n is C1P if and only
if all the following OR-inequalities are satisfied:

〈F1k ,XIJ〉 ≤ 2k+3, ∀ XIJ ∈ [A]k+2,k+2, ∀ k ≥ 1; (5)

〈F2k ,XIJ〉 ≤ 2k+3, ∀ XIJ ∈ [A]k+2,k+3, ∀ k ≥ 1; (6)

〈F3,XIJ〉 ≤ 2k+3, ∀ XIJ ∈ [A]4,6; (7)

〈F4,XIJ〉 ≤ 2k+3, ∀ XIJ ∈ [A]4,5; (8)

We can then use such a characterization to get a linear integer for-
mulation of GMLP by replacing constraint (1) with the set of in-
equalities (5),...,(8). Observe that here, differently from the for-
mulation proposed by Baptiste in [6], one does not need to take
explicitly into account the order of the columns of X . Therefore,
let X∗ be the optimal solution of such a linear integer optimiza-
tion program. Then X∗ is a C1P matrix and we can now apply
the so-called PQ-tree procedure [14] that, in linear time, returns a
columns sequence φ∗ that turns X∗ into a strict C1P matrix.

Observe here that, as it corresponds to the number of minors of the
input matrix M, the number of constraints (5) and (6) grows expo-
nentially with the size of M (the number of inequalities of type (7)
and (8), even if not exponential, is bounded by a high polynomial
in m and n). This implies that the proposed formulation cannot be
used explicitly but its linear relaxation must be solved by a cutting
planes procedure. Oswald and Reinelt [13] defined a polynomial
time algorithm to exactly separate inequalities (5),. . . , (8), but here
we implemented a heuristic separation routine that is similar to the
one proposed in [12]. In particular, given a fractional solution X̃ ,
we round its values to the corresponding closest integers so to ob-
tain the matrix X̄ and then, using the PQ-tree algorithm [14], we
check if X̄ is C1P. In case X̄ is not C1P, the PQ-tree algorithm pro-
duces as output a Tucker minor of X̄ and we use the corresponding
Oswald and Reinelt inequality as a cutting plane. Although, be-
cause of the rounding procedure, the separation routine we imple-
mented is not exact, all the integer solution that do not correspond
to C1P matrices are cut off. This implies that the solution provided
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by the branch-and-cut algorithm described above is the optimal so-
lution of the GMLP instance given as input.

4. COMPUTATIONAL RESULTS

The proposed approach for GMLP has been implemented in C++
and run on a 2.1 GHz Intel Core2 processor. For the branch-and-
cut procedure, we have used the SCIP 1.00.7 framework [15] and
Cplex 11.0 as linear programming solver. The algorithm is cur-
rently under extensive test: in this abstract we present preliminary
results on a benchmark of real instances from VLSI industry pro-
posed in [5]. Concerning GAG, we have experimentally set the
number of generations to min{20n,500}, the number of individ-
uals to min{10n,500} and, besides other parameters, the fitness
function weights shown in Table 1. The results are reported in

Up to iteration MOS TOS NEW IOS
35% 0.70 0.16 0.07 0.07
50% 0.10 0.50 0.20 0.20

100% 0.95 0.05 0.00 0.00

Table 1: GAG fitness function weight settings.

Table 2 and compare GAG with the Constructive Genetic Algo-
rithm [9] (CGA). Instance name and size are shown in the first
column. Column λ is the threshold on MOS, corresponding to the
minimum MOS found by GAG. The same MOS is also found by
CGA and, for all the instances, it corresponds to proven optimal
or best known (instance W4) MOS. Following columns summa-
rize the results of 10 trials of CGA and GAG. SRλ is the success
rate, that is, the percentage of trials obtaining a MOS = λ . TOS,
Avg and Dev are, respectively, the best found TOS, the average
TOS and the standard deviation over the feasible sequences hav-
ing MOS = λ . Note that Avg and Dev refer to the top five trials,
as just this information is available from [9]. T(s) is the average
computational time, in seconds, over all the 10 trials. The branch-
and-cut procedure has been run, with a time limit of 1 hour, with
the aim of improving over the TOS provided by GAG, or prove its
optimality under the constraint MOS ≤ λ : the last two columns
of Table 2 report the obtained TOS (proven optima in bold) and
the time to prove optimality or to find the improved solution (in
italics). First, we observe that, for two instances, CGA provides
non-feasible TOS (in italics), as they are below the optimal solu-
tion. For all the remaining instances but one, GAG provides bet-
ter TOS. GAG shows also more reliable: it finds the best MOS
more frequently than CGA and it has lower average TOS (except
W4). Running times are comparable, taking into account that CGA
ran on a 266 MHz processor. We remark that the TOS shown in
Table 2 come from feasible sequences, that is, sequences whose
MOS does not exceed λ . In fact, minimizing TOS and MOS is
not equivalent, as shown in [2], and GAG was able to find non-
feasible solutions with better TOS: for example, one trial on W4
obtained TOS = 1633 with MOS = 28 and one trial on v4000 ob-
tained TOS = 52 with MOS = 6. Concerning B&C, it proves the
optimality of four instances, and improves over the TOS provided
by GAG in two cases (MOS is always equal to λ ).

5. CONCLUSIONS

We have presented a genetic approach (GAG) and a branch-and-
cut procedure (B&C) for GMLP, a pattern sequencing problem
dealing with TOS minimization under restrictions on MOS. GAG
introduces a dynamic weighted sum of TOS, MOS and other new
performance indicators as fitness function, to take into account
both global and local features of the pattern sequences. B&C is, to
our best knowledge, the first algorithm designed to find proven op-
timal TOS under constraints on MOS: it is based on the properties

of C1P matrices and it is flexible enough to accommodate different
objectives or performance constraints. Preliminary results on real
instances show that GAG normally outperforms previous literature
results, and that, in some cases, B&C is able to prove the optimal-
ity of the proposed GMLP solutions. Ongoing research includes
a better calibration of GAG parameters, extensive tests to better
assess the performance of the approach, more sophisticated fitness
function weights setting (cycling between settings, choosing set-
tings based on landscape analysis etc.), and the improvement of
B&C efficiency on large instances.
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CGA GAG B&C
Inst. (m×n) λ SRλ TOS Avg Dev T(s) SRλ TOS Avg Dev T(s) TOS T(s)
Wli (11×10) 4 100% 18 18.0 0.0% 0.5 100% 24 24.0 0.0% 0.0 24 5
Wsn (17×25) 8 100% 104 106.6 3.6% 1.5 100% 97 97.6 0.6% 0.3 96 48
v4000(10×17) 5 100% 53 53.3 1.7% 0.5 40% 58 58.3 5.0% 0.1 56 42
v4050(13×16) 5 100% 41 41.4 1.3% 0.5 100% 38 38.8 1.2% 0.1 38 23
v4090(23×27) 10 90% 95 96.8 1.7% 2.0 100% 109 109.0 0.0% 0.4 – –
V4470(37×47) 9 100% 246 262.4 5.6% 66.5 100% 237 242.6 1.3% 4.0 – –
X0 (40×48) 11 80% 303 305.2 0.6% 75.6 100% 298 298.8 0.1% 5.6 – –
W1 (18×21) 4 100% 39 39.8 4.6% 1.0 100% 39 39.8 2.8% 0.2 39 4
W2 (48×33) 14 100% 235 257.2 8.5% 18.5 100% 233 233.0 0.0% 1.9 – –
W3 (84×70) 18 50% 677 751.6 11.9% 306.3 100% 675 677.6 0.3% 82.2 – –
W4 (202×141) 27 30% 1730 1805.0 3.3% 5224.7 70% 1701 2000.0 12.0% 94.6 – –
– no optimal solution nor improvement after 1 hour computation

Table 2: Results on VLSI instances.

[14] K. S. Booth and G. S. Lueker, “Testing for the consecutive
ones property, interval graphs, and graph planarity using pq-
tree algorithms,” J. Comput. Syst. Sci., vol. 13, pp. 335–379,
1976.

[15] T. Achterberg, “Scip: Solving constraint integer programs,”
Mathematical Programming Computation, vol. 1, no. 1, July
2009.
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ABSTRACT

We derived a framework in integer programming, based on the
properties of a linear ordering of the vertices in interval graphs,
that acts as an edge completion model for obtaining interval graphs.
This model can be applied to problems of sequencing cutting pat-
terns, namely the minimization of open stacks problem (MOSP).
By making small modifications in the objective function and using
only some of the inequalities, the MOSP model is applied to an-
other pattern sequencing problem that aims to minimize, not only
the number of stacks, but also the order spread (the minimization
of the stack occupation problem), and the model is tested.

Keywords: Integer programming, Interval graphs, Sequencing cut-
ting patterns

1. INTRODUCTION

Cutting stock operations require advanced planning. The classic
cutting stock problem consists in defining the cutting patterns with
a cost minimization criterion that usually depends on the waste of
the cutting process. But even after the cutting patterns are defined,
there is more optimization that can be done in order to reduce the
cost of the operations. The sequence in which the cutting pat-
terns will be processed on the cutting equipment can be a relevant
factor for the efficiency of the operations, for the organization of
the work area space, for the fulfillment of the customers’ orders
on time, or for the fastness of the deliveries to customers. These
concerns gave rise to several pattern sequencing problems, such as
the minimization of open stacks and the minimization of the order
spread.

In literature, pattern sequencing problems have been studied both
alone and integrated with the determination of the cutting patterns.
The most used approach is to solve the problem combining two
stages, a first stage where the cutting patterns are defined and a
second stage where the sequence of the implementation of the cut-
ting patterns is decided. This work is devoted to the second stage,
when the cutting patterns are already determined but the sequence
in which they will be processed is still an open issue. The main
problem addressed is the minimization of the maximum number
of open stacks, also called MOSP.

This problem has been widely studied in literature, but there are
several other pattern sequencing problems, such as the minimiza-
tion of the order spread (MORP) and the minimization of discon-
tinuities (MDP).

The Minimization of Open Stacks Problem (MOSP) comes from
the flat glass cutting industry, but it also has many applications

in other cutting industries (wooden panels, steel tubes, paper,...)
as well as in other fields such as production planning, VLSI cir-
cuit design and in classic problems from graph theory. The MOSP
problem is based on the premise that the different items obtained
from cutting patterns are piled in stacks in the work area until all
items of the same size have been cut. Usually, machines process
one cutting pattern at a time and the sequence in which preset cut-
ting patterns are processed can affect the number of stacks that
remain around the machine.

Due to space limitations and danger of damages on the stacked
items, it is advantageous to find a sequence for the patterns that
minimizes the number of different items that are being cut and
therefore the number of open stacks.

The minimization of open stacks problem is known to have tight
relations with problems in graph theory such as treewidth, vertex
separation and the profile of a matrix. In studying these problems,
we found a type of graphs called interval graphs that can play an
important role in this work.

An interval graph is an undirected graph G such as its vertices can
be put into a one-to-one correspondence with a set of intervals I
of a linearly ordered set (like the real line) such that two vertices
are connected by an edge of G if and only if their corresponding
intervals have nonempty intersection. I is called an interval repre-
sentation for G. [1]

These graphs can be used to describe a solution of the pattern se-
quencing problems, by modeling the duration of the intervals in
time in which the same piece type is being cut. Using several prop-
erties of this type of graphs we will see that it is possible to derive
a general framework that can be used to model the minimization
of open stacks problem and to model many related problems.

MOSP is modeled as an interval graph completion problem. An
initial integer programming model was derived, using the addition
of arcs to the graph and the properties of interval graphs to achieve
a solution, and based on the following characterization of interval
graphs by Olariu:

A graph G = (V,E) is an interval graph if and only if there exists
a linear ordering ϕ : V → {1, ...,N} such that ∀i, j,k ∈ V : ϕ(i) <
ϕ( j)< ϕ(k) we have [ik] ∈ E⇒ [i j] ∈ E. [2]

The model is strengthened with inequalities derived from the rela-
tionship between the chromatic number of a graph and the number
of intersecting intervals.

The MOSP model is applied to different problems. By making
small modifications in the objective function and using only some
of the inequalities, the MOSP model is applied to the minimum
interval graph completion problem. Another pattern sequencing
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problem that aims to minimize, not only the number of stacks, but
also the order spread (the minimization of the stack occupation
problem) is considered, and the model is tested.

There is also another pattern sequencing problem called the Min-
imization of Tool Switches (MTSP) which is addressed with this
framework, using the similarities between this problem and the
MOSP, but for this problem the model has a limited use.

With the choice being integer programming, the formulation de-
veloped in this work can later be integrated in other integer pro-
gramming models for cutting stock problems, namely to create a
combined model of the stages one and two where the cutting stock
patterns are defined and sequenced.

2. MODELING THE MINIMIZATION OF OPEN STACKS

Consider a cutting machine that processes just one cutting pattern
at a time. The items already cut that are equal are piled in stacks by
the machine. The stack of an item type remains near the machine if
there are more items of that type to be cut in a forthcoming pattern.
A stack is closed and removed from the work area only after all
items of that size have been cut, and immediately before starting
to process the next cutting pattern. After a pattern is completely
cut and before any stack is removed the number of open stacks is
counted. The maximum number of open stacks for that sequence
of patterns is called the MOSP number.

There are often space limitations around the cutting machines,
there is danger of damages on the stacked items, difficulty in dis-
tinguishing similar items, and in some cases there are handling
costs of removing the stack temporarily to the warehouse. It is ad-
vantageous to minimize the number of open stacks, and that can be
done simply by finding an optimal sequence to process the cutting
patterns.

MOSP has been proved to be a NP-hard problem [3].

As suggested in [4], an instance of the MOSP can be associated
with a graph having a vertex for each item that is cut and an edge
between two vertices if the corresponding items are present in the
same cutting pattern.

To optimize the number of stacks, it is convenient to find the best
sequence to process the cutting patterns. Considering that the pat-
terns do not appear explicitly in the MOSP graph constructed in
this way, how will we find that sequence for the cutting patterns?
We will focus on finding a sequence to open the stacks, rather than
on sequencing the cutting patterns. That is not a problem, because
it is possible to take a solution for the ordering of the vertices of
the graph and construct a sequence for the corresponding cutting
patterns [5].

Given an instance of the problem, we first build a graph G=(V,E),
associating each item cut from the patterns to a vertex and creating
an arc joining vertex i and j if and only if items i and j are cut
from the same pattern. This graph may not be an interval graph
at the start, but we will add some arcs to it in such a way that it
will become one. We need this graph to become an interval graph
because, if we associate each item to the interval of time in which
the stack of that item is open, we can use the graph to model what
intervals should occur simultaneously and what intervals should
precede others. According to the sequence in which the cutting
patterns are processed, there may be more or less open stacks si-
multaneously. Each arc of the future interval graph means that, for
a period of time, the two stacks (the respective vertices of the arc)
will remain both open. The initial graph contains only the arcs that
must be there, in any possible sequence in which the patterns can
be processed. The rest of the arcs that are added later to the graph
will differ according to the sequence of the patterns. It is the choice
of these arcs that defines which are the other simultaneously open

stacks. Our model for this problem consists in finding out which
edges should be added to the original MOSP graph G = (V,E) in
order to get an interval graph H = (V,E ∪F) that minimizes the
maximum number of simultaneously open stacks.

2.1. The variables

We set an ordering for opening the stacks by assigning a number
to each item cut, with a bijective function ϕ : V →{1, ...,N}. This
linear ordering of the vertices is set by the decision variables xi j:

xi j =

{
1 if ϕ(i)< ϕ( j)
0 otherwise ∀i, j ∈V

Notice that xii = 0 for any i ∈V and also that we have

xi j = 1⇔ x ji = 0

These variables are setting an orientation into the arcs, for us to
keep track of the sequence of the items in the current instance. If
xi j = 1 then item i starts being cut before the item j is, even though
the corresponding stacks may overlap or not, i.e., in spite of having
an arc between the two vertices or not.

The other decision variables that will be used are concerned to the
arcs that are necessary to add to the original graph G = (V,E) to
get an interval graph H = (V,E ∪F) and, together with variables
x, determine which intervals will overlap in the desired interval
graph. To decide which of these additional arcs are to be added,
we define a variable yi j for each arc [i j] that did not exist before in
the graph:

yi j =

{
1 if [i j] /∈ F and ϕ(i)< ϕ( j)
0 if [i j] ∈ F or ϕ(i)≥ ϕ( j) ∀i, j ∈V : [i j] /∈ E

Notice that yi j is 1 when the arc [i j] is NOT added, because the
variable yi j works like an “eraser”variable. To get an interval
graph, if we decided to add to the original graph all the arcs that
were missing, and then remove some of them - the ones that we
do not need to have an interval graph, then variable y is 1 for these
additional arcs which are to be removed.

Variables y depend on the linear ordering of vertices, so it follows
that there is an anti-reflexive relation:

yi j = 1⇒ y ji = 0

When yi j = 1, the arc [i j] is not needed in the interval graph, so,
by definition of interval graph, if there is not an arc [i j], then the
intervals i and j do not intersect. Consequently, one of the intervals
should finish before the other one starts. As i ≺ j, the interval i
opens and finishes before the interval j starts. It means that the
stacks for items i and j will never be open at the same time, so
they can share the same stack space.

To explain the relations between the intervals horizontally, we will
add an extra set of variables z, based on the asymmetric represen-
tatives formulation for the vertex coloring problem by Campêlo et
al. [6]. The value of the optimum of the MOSP is equal to the size
of the biggest clique in the solution graph ω(H) and, because inter-
val graphs are perfect graphs, it is equal to the chromatic number
of the graph χ(H), which is the number of colors needed to as-
sign to the vertices of the graph such that there are no two adjacent
vertices of the same color.

If we assign colors to the vertices of the desired interval graph,
such that no two adjacent vertices have the same color, we can
count the maximum number of simultaneously open stacks by count-
ing the minimum number of different colors needed, because si-
multaneously open stacks will get different colors, and stacks that
do not overlap can have the same color.

ALIO-EURO 2011 – 48



Proc. of the VII ALIO–EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4–6, 2011

The variables that we will use are:

zi j =

{
1 if vertex i represents vertex j
0 otherwise ∀i, j ∈V : [i j] /∈ E

Note that if i ∈V is a representative vertex then zii = 1.

We will use the variable K ∈N to denote the maximum number of
simultaneously open stacks.

2.2. The main model

Using this variables we present the following integer programming
model for the MOSP:

Minimize K

Subject to:
0≤ xi j + x jk− xik ≤ 1 ∀i, j,k = 1, ...,N, i < j < k (1)

yi j− xi j ≤ 0 ∀i, j = 1, ...,N, i < j, [i j] /∈ E (2)
yi j + x ji ≤ 1 ∀i, j = 1, ...,N, j < i, [i j] /∈ E (3)
yi j− xk j ≤ 0 ∀i, j,k = 1, ...,N,k < j, [i j] /∈ E, [ik] ∈ E (4)
yi j + x jk ≤ 1 ∀i, j,k = 1, ...,N, j < k, [i j] /∈ E, [ik] ∈ E (5)

0≤ yik− yi j + xk j ≤ 1 ∀i, j,k = 1, ...,N,k < j, [i j], [ik] /∈ E (6)
0≤ yi j− yik + x jk ≤ 1 ∀i, j,k = 1, ...,N, j < k, [i j], [ik] /∈ E (7)

j−1
∑

i=1
xi j +

N
∑

i= j+1
(1− x ji)−

N
∑

i=1
[i j]/∈E

yi j +1≤ K ∀ j = 1, ...,N (8)

yi j + yki ≤ 1 ∀i, j,k = 1, ...,N with [i j], [ik] /∈ E, [ jk] ∈ E (9)
yi j + y jk ≤ 1 ∀i, j,k = 1, ...,N with [i j], [ jk] /∈ E, [ik] ∈ E (10)
yi j + ylk ≤ 1 ∀i, j,k, l = 1, ...,N with [i j], [kl] /∈ E, [ jl], [ik] ∈ E (11)

yi j + y jk− yik ≤ 1 ∀i, j,k = 1, ...,N with [i j], [ jk], [ik] /∈ E (12)

yik + yki + y jl + yl j ≤ 1 ∀i, j,k, l = 1, ...,N with i 6= j 6= k 6= l,

[ik], [ jl] /∈ E, [i j], [ jk], [kl], [li] ∈ E
(13)

yil + yli + yik + yki + y jl+

+yl j + y jm + ym j + ymk + ykm ≤ 3
∀i, j,k, l,m = 1, ...,N with i 6= j 6= k 6= l 6= m,
[ik], [il], [ jl], [ jm], [km] /∈ E, [i j], [ jk], [kl], [lm], [mi] ∈ E

(14)

N

∑
i=1

zii = K (15)

N

∑
i=1

[i j]/∈E

N

∑
j=1

[i j]/∈E

zi j = N (16)

N

∑
i=1

[i j]/∈E

zi j = 1 ∀ j = 1, ...,N (17)

zi j ≤ yi j ∀i, j = 1, ...,N with [i j] /∈ E (18)
zi j + zik− y jk− yk j ≤ 1 ∀i, j,k = 1, ...,N with [i j], [ik], [ jk] /∈ E (19)

zi j ≤ zii ∀i, j = 1, ...,N with [i j] /∈ E (20)
zi j + zik ≤ zii ∀i, j,k = 1, ...,N with j < k, [i j], [ik] /∈ E, [ jk] ∈ E (21)

zi j + zik + zil ≤ zii
∀i, j,k, l = 1, ...,N with j < k < l,

[i j], [ik], [il] /∈ E, [ jk], [kl], [l j] ∈ E
(22)

zi j + zik + zil + zim ≤ zii
∀i, j,k, l,m = 1, ...,N with j < k, j < l,k < m,

[i j], [ik], [il], [im] /∈ E, [ jk], [ jl], [ jm], [kl], [km], [lm] ∈ E
(23)

zil + zli + zik + zki + z jl+

+zl j + z jm + zm j + zmk + zkm ≤ 2
∀i, j,k, l,m = 1, ...,N with i 6= j 6= k 6= l 6= m,
[ik], [il], [ jl], [ jm], [km] /∈ E, [i j], [ jk], [kl], [lm], [mi] ∈ E

(24)

xi j ∈ {0,1} ∀i, j = 1, ...,N with i < j (25)
yi j ∈ {0,1} ∀i, j = 1, ...,N with i 6= j, [i j] /∈ E (26)
zi j ∈ {0,1} ∀i, j = 1, ...,N with [i j] /∈ E (27)

K ∈ N (28)

Having developed a fully functional integer programming model
for the minimization of open stacks problem, we then explore
some variants of this model.

3. MINIMUM INTERVAL GRAPH COMPLETION

The main idea behind the integer programming model presented is
the completion of the MOSP graph with suitable fill edges, with
the purpose of constructing an interval graph. There are several
edge completion problems documented in literature [7]. Here we
address the Minimum Interval Graph Completion, which searches
for the minimum number of fill edges that should be added to a
graph to obtain an interval graph. With small changes in the ob-
jective function and using some of the previous constraints, we
can build an integer programming model for this problem in Graph
Theory.

We will not need the variables zi j because the number of stacks
is irrelevant in the minimum interval graph completion problem.
Therefore, inequalities (8), (15) to (24), (27) and (28) are droped
for this case.

The objective is simply completing the graph with the smallest
number of edges to obtain an interval graph. The sum of all vari-
ables y gives the number of edges that are not added to the graph
G when completing it to an interval graph H. By maximizing this
sum, we get a minimum number of added edges.

More formally, the objective function for the minimum interval
graph completion problem is

max ∑
[i j]/∈E

yi j (29)

4. MINIMIZING THE STACK OCCUPATION

The model we have developed for the minimization of open stacks
can be used in another pattern sequencing problem, where the ob-
jective is to find an optimal sequence to process the cutting patterns
in order to minimize the occupation of the stacks.

The problem we address now is similar to minimizing the flow
time of the orders: besides having the minimum number of open
stacks, we also want to minimize the sum of the time that the stacks
remain open within the system.

The sequence in which preset cutting patterns are processed can
affect the flow and total completion time, so it is desirable to opti-
mize the occupation of the stacks to eliminate unnecessary disper-
sion.

When considering the MOSP, it is usual to find more than one
optimal solution, in the sense that there is more than one sequence
of the cutting patterns that achieves the same maximum number
of open stacks. We may be interested in choosing between these
optimal solutions of the MOSP according to a different criterion.
A natural choice is the minimization of the order spread.

Noticing that in most instances there are alternative optimal solu-
tions for the MOSP, we tried to take the problem further and added
a second step with a new objective function: the minimization of
the order spread. This pattern sequencing problem similar to the
MOSP is also related with the minimum interval graph completion
problem.

Our model consists in finding out which arcs should be added to
the original MOSP graph G = (V,E) in order to get an interval
graph H = (V,E ∪F) that minimizes the stack occupation while
keeping the minimum number of simultaneously open stacks.

The model we present is divided in two steps. In a first step, the

ALIO-EURO 2011 – 49



Proc. of the VII ALIO–EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4–6, 2011

minimum number of open stacks is determined, and then in a sec-
ond step, we search for a new sequence of the patterns that im-
proves the total stack spread while using the optimal number of
open stacks.

In the first step the formulation is the same as before, with the
objective to minimize the maximum number of open stacks. Then,
in the second step, the objective becomes the minimization of the
stack spread. To minimize the average order spread is equivalent
to minimizing the total stack spread. This is also equivalent to
minimizing the number of fill-in zeros obtained in the matrix of
the description of the cutting patterns after the columns have been
rearranged to match the sequence in which the patterns will be
processed.

This is done by minimizing the number of arcs that are added to the
MOSP graph in order to obtain an interval graph. As the variables
yi j are 1 when an arc is not added to the graph, we can minimize
the number of added arcs by maximizing the sum of the variables
yi j . Therefore the objective function in step 2 is expression (29).

To guarantee that the optimal number of open stacks does not in-
crease from step 1 to step 2, some of the inequalities have to be
modified accordingly. Let us denote the optimal number of open
stacks found in step 1 by MOSP∗. For step 2, in the inequalities
(8) and (15), the variable K is replaced by MOSP∗.

5. COMPUTATIONAL RESULTS

The integer programming models were tested on the instances of
the Constraint Modeling Challenge 2005, available at:
http://www.cs.st-andrews.ac.uk/ ipg/challenge/instances.html

The instances were provided by the participants in the challenge
and present different kinds of difficulty, such as size, sparseness
and symmetry. Computational tests were performed with ILOG
OPL Development Studio 5.5 on an IntelrCore2 Duo T7200
@2.00GHz 0.99GB RAM. For each instance, the best objective
value found by the model, the best lower bound, the gap, the num-
ber of nodes of the search tree and the runtime were recorded.

In small instances we found the optimal solution for MOSP in just
a few seconds. In larger instances we found the optimal solution
in a few seconds as well, but it takes too long to prove that it is
optimal, specially in instances with many symmetries. In really
large instances the models could not be started because there was
not enough memory to handle so many variables and inequalities.

For the problem of minimizing the stack occupation, in the second

step we were able to obtain the optimal solution in every instances
tested. This second step allowed to reduce the order spread in
almost every instance, while maintaining the same optimal number
of open stacks. This reduction was very significant in many cases,
decreasing around 75% of the number of added edges.

For the Minimum Interval Graph Completion Problem, in all of
the instances tested, the optimal solution was reached and proved
optimal.
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ABSTRACT

This work presents OptFrame, a computational framework for the
development of efficient heuristic based algorithms. The objective
is to provide a simple C++ interface for common components of
trajectory and population based metaheuristics, in order to solve
combinatorial optimization problems. Since many methods are
very common in literature, we provide efficient implementations
for simple versions of these methods but the user can develop
“smarter” versions of the methods considering problem-specific
characteristics. Moreover, parallel support for both shared-memory
and distributed-memory computers is provided. OptFrame has
been successfully applied to model and solve some combinato-
rial problems, showing a good balance between flexibility and ef-
ficiency.

Keywords: Framework, Metaheuristics, General Variable Neigh-
borhood Search, TSP, Eternity II

1. INTRODUCTION

In the development of optimization systems it is common to face
up with combinatorial NP-Hard problems. To produce algorithms
that solve such problems is often a hard and long task, since the
algorithm must solve the problem with low gaps in short compu-
tational time. That is, the heuristic algorithm must find good so-
lutions at each execution. The solutions should be good enough
for the application that uses the method and the elapsed time to
generate them must be acceptable in terms of the application. One
way of speeding up the development of such algorithms is by using
tools that provide classic algorithms for combinatorial problems,
both in practical and theoretical cases. This fact often motivates
the use of a framework.

The architecture of a framework, that typically follows the object-
oriented paradigm, defines a model for code reuse [1]. This fact
justifies the development of frameworks that seek to find good
solutions for optimization problems by means of heuristics and
metaheuristics. Mainly because metaheuristics are essentially in-
dependent of the addressed problem structure. In the context of
metaheuristics development, the developers that do not use any
framework or library in general expend much effort by writing and
rewriting code. Thus, the focus that should be at the problem and
its efficient resolution is often directed to many programming as-
pects.

This work presents OptFrame1, a white-box object oriented frame-
work in C++ for the development of efficient heuristic based algo-
rithms. Our objective is to provide a simple interface for com-
mon components of trajectory and population based metaheuris-
tics. Since many methods are very used in literature we provide
efficient implementations for simple versions of these methods but
the user can develop smarter versions of the methods considering
problem-specific characteristics.

The present work is organized as follows. Section 2 describes
some optimization frameworks in literature. Section 3 defines im-
portant optimization concepts about metaheuristics that are behind
OptFrame architecture. In Section 4 we present OptFrame archi-
tecture in details. Section 5 concludes the work with some appli-
cations and benchmarks on the framework.

2. FRAMEWORKS IN OPTIMIZATION

Many authors have already proposed frameworks for optimiza-
tion problems, among which we cite: TabOO Builder [2], NP-Opt
[3], HotFrame [1], EasyLocal++ [4], ParadisEO [5], iOpt [6] and
jMetal [7]. Now, we present some of them in details.

In [3] it is presented NP-Opt, a computational framework for NP
class problems. The framework proposes to minimize code rewrit-
ing when the focused problem is changed. NP-Opt supports five
distinct problems: Single Machine Scheduling, Parallel Machine
Scheduling, Flowshop Scheduling with job families, Grid Matrix
Layout (VLSI design) and non-linear continuous function opti-
mization. The built-in heuristic methods are based on Memetic and
Genetic Algorithms, so as Multiple Start. The authors of NP-Opt
points to a code reuse of 75% when dealing with a new problem.
The framework is programmed in Java language.

[1] present the C++ computational framework HotFrame, that shares
some similarities with OptFrame, proposed in this work. Hot-
Frame, so as OptFrame, was firstly designed for Iterated Local
Search, Simulated Annealing and Tabu Search metaheuristics. And
also in this sense HotFrame is very complete, since the authors
show many implementation details and many variations of these
metaheuristics. According to the authors a framework provides
adaptable software components, which encapsulate common do-
main abstractions. To develop a framework requires solid knowl-
edge in the considered domain.

1OptFrame website: http://sourceforge.net/projects/
optframe/
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[4] point that local search is a common interest theme of scientific
community, at the same time that there isn’t a standard software
in this sense. So, the authors propose EasyLocal++, a compu-
tational object-oriented framework for the design and analysis of
local search algorithms. According to the authors the architecture
of EasyLocal++ allows code modularization and the combination
of basic techniques and neighborhood structures. Some successful
applications of EasyLocal++ are showed and according to the au-
thors EasyLocal++ provides flexibility enough for the implemen-
tation of many scheduling problems.

ParadisEO [5] is a white-box object-oriented framework written
in C++ and dedicated to the reusable design of parallel and dis-
tributed metaheuristics. This framework is based on a conceptual
separation of the solution methods from the problems they are in-
tended to solve. According to the authors, this separation gives the
users maximum code and design reuse. ParadisEO provides some
modules that deals with population based metaheuristics, multiob-
jective optimization, single-solution based metaheuristics, and it
also provides tools for the design of parallel and distributed meta-
heuristics. ParadisEO, as the OptFrame, is one of the rare frame-
works that provide parallel and distributed models. Their imple-
mentation is portable on distributed-memory machines as well as
on shared-memory multiprocessors, as it uses standard libraries
such as MPI, PVM and PThreads.

The Intelligent Optimization Toolkit (iOpt), proposed by [6] can be
seen as an IDE for the rapid construction of combinatorial prob-
lems. The iOpt takes as input problems modeled in one-way con-
straints and uses metaheuristics to solve them. The authors show
how to model the Vehicle Routing Problem with iOpt and good
results are reported. Finally, the authors conclude that a better un-
derstanding of the problem can be achieved by a fairer comparison
between heuristic methods.

jMetal [7] is an object-oriented Java-based framework aimed at
facilitating the development of metaheuristics for solving multi-
objective optimization problems (MOPs). According to the au-
thors, this framework provides a rich set of classes which can be
used as the building blocks of multi-objective metaheuristics; thus,
taking advantage of code-reusing, the algorithms share the same
base components, such as implementations of genetic operators
and density estimators, so making the fair comparison of different
metaheuristics for MOPs possible.

In general, frameworks are based on previous experience with the
implementation of many methods for different problems. In this
work we also review some important concepts of combinatorial
problems and metaheuristics, in order to propose an architecture
that is both problem and heuristic independent. The following sec-
tion shows the theoretical modeling of combinatorial problems be-
hind OptFrame architecture.

3. METAHEURISTICS

We present now some important concepts of metaheuristics and
combinatorial optimization problems.

Let S be a set of discrete variables s (called solutions) and f : S→R
an objective function that associates each solution s ∈ S to a real
value f (s). We seek any s∗ ∈ S such that f (s∗) 6 f (s),∀s ∈ S for
minimization problems, or f (s∗) > f (s),∀s ∈ S for maximization
problems. The solution s∗ is called a global optimum.

A function N associates a solution s ∈ S to a set N(s) ⊆ S (called
neighborhood of s). This is also an important concept in the sub-
ject of heuristic based algorithms. This way, a neighbor s′ of s
is such that s′ = s⊕m, where m is called a move operation. The
cost of a move m is defined as f̂ = f (s′)− f (s), which means that
s′= s⊕m =⇒ f (s′)= f (s)+ f̂ . So, a local optimum (in terms of a

neighborhood N) is a solution s′ such that f (s′)6 f (s),∀s ∈ N(s′)
for minimization problems, or f (s′) > f (s),∀s ∈ N(s′) for maxi-
mization problems.

Many combinatorial optimization problems are classified as NP-
Hard and it is common to use heuristic algorithms to find good
solutions for these problems. These methods have the capabil-
ity of finding good local optimums in short computational times.
Classical local search heuristics stop on the first local optimum
found. However, metaheuristics can go beyond the local optimum
and thus these methods are able to produce final solutions of better
quality.

4. OPTFRAME

OptFrame is a white-box object oriented framework in C++. In
the following sections its implementation and design aspects are
presented and discussed.

4.1. Representation and Memory

The OptFrame framework is mainly based on two important struc-
tures: the solution representation and the memory.

The Representation is the data structure used to represent a valid
solution for a specific problem. For example, for the Traveling
Salesman Problem (TSP) [8] a user may wish to represent the so-
lution as an array of integers. In this case, the representation in this
heuristic approach for TSP is vector < int > (in C++ language).

On the other hand, the Memory is a set of auxiliary data structures
needed for a smarter version of the method.

4.2. Solution and Evaluation

There are two important container classes2 in OptFrame: Solution
and Evaluation. Solution carries a reference to a Representation of
the problem, while a Evaluation carries a reference to a Memory
structure. To develop a smarter version of the method, the infor-
mation in the Memory structure along with an earlier evaluation
can be used to reevaluate a Solution in a faster way, for example.

4.3. Evaluators

The Evaluator concept is very important in OptFrame. It encapsu-
lates the function f : S→ R (defined in Section 3) as an specific
case of its function f : S→ E, where E = (R,R,M). The tuple E
can be seen as the Evaluation class defined in Subsection 4.2.

The first value of the tuple E is the objective function value itself
and the second one is an infeasibility measure value. By eval-
uating a solution this way you can implement heuristic methods
that are able to see unfeasible solutions, by giving a high penalty
value to the infeasibility measure value. When the infeasibility
measure value is zero the solution is considered feasible. So, the
evaluation function value over a solution consists in the sum of
ob jective_ f unction_value+ in f easibility_measure_value.

The third value M of the tuple E is called memory defined in Sub-
section 4.1. In this context the memory can record some steps of
the evaluation algorithm, so they won’t be repeated in future evalu-
ations. This way, some future computational effort can be avoided.

2What we name here as a container class is in some ways related to with
Proxy Pattern [9] since the idea is to carry a reference to an object (repre-
sentation or memory) and to delete it when the container itself is destroyed.
But in this case a container is also used to provide some extra operations
over the carried object like printing, reference counting and cloning.
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There is also a more general definition for the evaluation method
where the function f is defined by f : (S,E)→ E. This way it
is possible to develop smarter versions of a Evaluator by using
informations of a previous evaluation E.

4.4. Moves

A move operation defines a neighborhood structure. In OptFrame
the Move class has two most important methods: canBeApplied
and apply.

The canBeApplied method of a Move object m returns true if the
application of m to a solution s will produce a valid solution. Oth-
erwise it returns false. This is method is often used before the
apply method.

The apply method of a Move m to a solution s transforms s into a
neighbor s′ and returns another Move m that can undo the changes
made by m. Since complete copies of solutions are expensive op-
erations it is possible to avoid them by developing efficient imple-
mentations of the reverse Move m.

4.5. Neighborhood Structures

There are three types of neighborhood structure in OptFrame: NS,
NSSeq and NSEnum.

NS is the simplest definition of a neighborhood structure. It only
requires the user to define a move(s) method, that returns a random
move operation of the neighborhood type. Although not in focus
of this paper, it is possible to define neighborhood structures for
continuous problems optimization using this kind of structure.

NSSeq is a more elaborated version of NS. It also requires the user
to define a getIterator(s) method, that returns an object capable
of generating moves of the neighborhood structure in a sequential
way. The returned object must implement the NSIterator interface,
that itself implements the Iterator Pattern [9].

NSEnum is the most complete definition of a neighborhood struc-
ture in OptFrame. It provides an enumerable set of move opera-
tions for a given combinatorial problem. Although it only requires
the user to define the move(int) and size() methods, with these
methods it is possible to define default implementations for the
move(s) and getIterator(s) methods of NS and NSSeq.

4.6. Heuristic based methods

Heuristic methods are mainly divided in two classes: trajectory
based and population based methods [10].

In order to maximize the code reuse and to favor testing of Hybrid
Metaheuristics [11], all heuristic methods should be implemented
using the Heuristic class abstraction. With this abstraction we have
already been able to implement the following methods: First Im-
provement, Best Improvement, Hill Climbing and other classical
heuristic strategies [12]; Iterated Local Search, Simulated Anneal-
ing, Tabu Search, Variable Neighborhood Search and other basic
versions of many famous trajectory based metaheuristics [13]; and,
finally, the basic versions of population based metaheuristics Ge-
netic Algorithm and Memetic Algorithm [13].

So, there are four definitions of the method exec and the user must
implement at least two of them. For trajectory based heuristics, the
user must implement:

void exec(Solution){ ... }
void exec(Solution, Evaluation){ ... }

For population based heuristics:

void exec(Population){ ... }
void exec(Population, FitnessValues){ ... }

where: Population is a list of Solutions and
FitnessValues is a list of Evaluations.

The first one is the simplest version of the method while the second
is a more elaborated version. But if the user wish to implement
only one of them it is possible to implement one and the other one
only calls the first.

4.7. Other structures

Some metaheuristics may require specific structures, but they can
also be defined in specific files, e.g., Perturbation for Iterated Local
Search; Mutation and Crossover operators for Genetic and Memetic
Algorithms.

5. COMPUTATIONAL EXPERIMENTS AND
CONCLUDING REMARKS

This work presents OptFrame, a white-box object oriented frame-
work in C++ for the development of efficient heuristic based algo-
rithms. Our objective is to provide a simple interface for common
components of trajectory and population based metaheuristics.

OptFrame’s architecture is intended to minimize the differences
among code and theoretical concepts of combinatorial optimiza-
tion. Thus, this paper describes a C++ modeling of the frame-
work, but this model can also be applied to other programming
languages, since generic programming features are available.

As a benchmark for the framework, we propose to implement a
heuristic algorithm based on General Variable Neighborhood Search
[14] for two different optimization problems.

The first problem is the classical Traveling Salesman Problem, and
the second is the Eternity II Puzzle optimization problem (more
details on [15]). We also want to show the flexibility of the de-
veloped interface by implementing the proposed heuristic in two
different programming languages: C++ and Java3.

To guarantee that the algorithms will follow the same paths (even
on different languages), we have implemented the Mersenne Twister
[16] random number generator, using the same seeds for both tests.

Table 1 shows the average time (in seconds) of 10 executions of the
proposed algorithm. “Java GCJ” is a compiled version of the Java
code (using the most optimized flags); “Java JRE” is an interpreted
version of the Java code; and “C++” is a compiled version of the
code using GCC compiler (with the most optimized flags).

Table 1: Computational experiments

Java GCJ (s) Java JRE (s) C++ (s)
Eternity II 121.60 33.08 8.35
TSP 115.52 33.45 7.32

As expected, in both problems C++ got the lowest computational
times, while the compiled Java version got the highest times. The
interpreted version of Java was faster than the compiled one, but
slower than C++ version.

This way, OptFrame showed to be a good tool for a fair comparison
between heuristic methods for different optimization problems and
even with different programming languages.

3The Java version of OptFrame is called JOptFrame and it is also avail-
able on http://sourceforge.net/projects/joptframe/
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OptFrame is a free software licensed under LGPLv3. The develop-
ment version and newer stable version of OptFrame are available at
http://sourceforge.net/projects/optframe/. It
has been successfully applied to model many realistic optimiza-
tion problems.

Users are invited to visit our homepage and collaborate with the
project. Code reuse must be maximized, with clear abstractions
based on optimization concepts, but always keeping in mind that
the target user should use only simple C++ on his/her code.
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ABSTRACT

The Relaxation Adaptive Memory Programming (RAMP) meta-
heuristic approach has been applied to several complex combina-
torial optimization problems, exhibiting an extraordinary perfor-
mance by producing state-of-the art algorithms. We describe some
of these applications and consider modeling techniques and imple-
mentation details that proved effective in enhancing RAMP algo-
rithms.

Keywords: RAMP, Scatter Search, Cross-Parametric Relaxation,
Adaptive Memory, Metaheuristics

1. INTRODUCTION

In recent years, innovations in metaheuristic search methods have
expanded our ability to solve hard problems, and have increased
the size of problems that can be considered computationally tracta-
ble. Advances have notably come from designs of variable-depth
neighborhood constructions [1, 2] and the application of adap-
tive memory search methods originated by the framework of Tabu
Search [3, 4], and from recent developments in the area of evolu-
tionary methods represented by the frameworks of Genetic Algo-
rithms [5], Evolutionary Programming [6] and Scatter Search [7].

Some of the most significant advances derive from a marriage of
the adaptive memory Tabu Search approaches with the evolution-
ary method of Scatter Search (SS). Scatter Search embodies many
of the principles of Tabu Search, and the union of these methods is
typically implicit in SS applications.

A new advance has occurred with the emergence of Relaxation
Adaptive Memory Programming (RAMP), a method that integrates
AMP with mathematical relaxation procedures to produce a uni-
fied framework for the design of dual and primal-dual metaheuris-
tics that take full advantage of adaptive memory programming [8].

The RAMP metaheuristic has been applied to several complex
combinatorial optimization problems, exhibiting an extraordinary
performance by producing state-of-the art algorithms. We describe
some of these applications and consider modeling techniques and
implementation details that proved effective in enhancing RAMP
algorithms.

2. RAMP

The Relaxation Adaptive Memory Programming framework is em-
bodied in two approaches, its basic form (Simple RAMP or just

RAMP) and its primal-dual extension (PD-RAMP). The RAMP
method, at the first level, operates by combining fundamental prin-
ciples of mathematical relaxation with those of adaptive memory
programming, as expressed in tabu search. The extended PD-
RAMP method, at the second level, integrates the RAMP approach
with other more advanced strategies. We identify specific com-
binations of such strategies at both levels, based on Lagrangean
and surrogate constraint relaxation on the dual side and on scat-
ter search and path relinking on the primal side, in each instance
joined with appropriate guidance from adaptive memory processes.
The framework invites the use of alternative procedures for both its
primal and dual components, including other forms of relaxations
and evolutionary approaches such as genetic algorithms and other
procedures based on metaphors of nature.

The implementation model of a RAMP algorithm can be seen as
an incremental process, starting with one of the simplest forms of
the method and successively applying more complex forms, ad-
justing the design of the algorithm based on the analysis of the
results obtained in previous levels of implementation in the quest
for attaining the best results possible.

An instance of such an incremental approach may be illustrated by
the application of the RAMP method to the Capacitated Minimum
Spanning Tree (CMST) [9]. In this application, the development of
the RAMP algorithm involved the following incremental steps: (1)
the design of a basic surrogate constraints relaxation coupled with
a projection method based on a constructive heuristic; (2) the de-
sign of an enhanced surrogate relaxation using cutting planes; (3)
the development of tabu search procedure used as an improvement
method; (4) the implementation of a subgradient-based procedure
to appropriately connect primal with dual components of the algo-
rithm; (4) the development of a scatter search solution combination
method to create compound memory structures.

Recent applications featuring the design and implementation of
effective RAMP algorithms in a variety of settings ranging from
facility location to assignment and resource allocation demonstrate
the effectiveness of this approach. These problems are classi-
cal in combinatorial optimization and arise in numerous applica-
tions. The results obtained for these recognizably difficult prob-
lems clearly demonstrate the superiority of the RAMP method
comparatively to the current state of the art algorithms for the so-
lution of these problems.

3. CONCLUSIONS

In spite of its freshness, the RAMP framework has already shown
great potential by obtaining excellent results with every applica-
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tion of the method developed so far. In fact, in all these appli-
cations, the method revealed impressive effectiveness, frequently
attaining optimal solutions for the problems tested, and in many
cases, where the optimal solutions are unknown, the method finds
solutions with better quality than the previously best known.
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ABSTRACT

We consider a variant of the well-known single node fixed charge
network flow set with constant capacities. This set arises from the
relaxation of more general mixed integer sets such as lot-sizing
problems with multiple suppliers. We provide a complete polyhe-
dral characterization of the convex hull of the given set.
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1. INTRODUCTION

We consider mixed integer sets of the form

X = {(w,z,y) ∈ Rn
+×Bn×B |

∑
j∈N

w j ≤ Dy, (1)

w j ≤Cz j, j ∈ N (2)
}

where N = {1, . . . ,n}.
These sets are much related with the well-known single node fixed
charge network flow set

W = {(w,z) ∈ Rn
+×Bn | ∑

j∈N
w j ≤ D,w j ≤Cz j, j ∈ N}

while binary variables z j are associated with the arcs incident to
the node (see Figure 1), indicating whether the arc is open or not,
binary variable y in associated with the node itself. These binary
variables allow us to model cases where there are fixed costs asso-
ciated to the use of each arc and node, respectively.

��
��
?Dy

ppp HHj
��*

w1 ≤Czl

wn ≤Czn

Figure 1: Single node fixed charge set.

Here we investigate the polyhedral description of the convex hull
of X , denoted by P. This study is motivated by the interest in
tightening more general mixed integer sets, and, in particular, the
single-item Lot-sizing with Supplier Selection (LSS) problem. In
the LSS problem a set of suppliers is given, and in each time pe-
riod one needs to decide a subset of suppliers to select and the
lot-sizes. Let T be the set of production periods and N be the set
of suppliers. We assume that dt > 0 is the demand in period t ∈ T ,
ht is unit holding cost, f pt and pt represent the production set-up
cost and variable production cost in period t, respectively, and c jt

and f s jt are variable and fixed sourcing set-up cost for supplier j
in period t. D and C are production and supplying capacities. In
addition, several types of decision variables are defined. We let xt
be the quantity produced in period t; st be the stock level at the end
of period t ∈ T ; w jt be the quantity sourced from supplier j ∈ N
in period t ∈ T . We define also the binary variables yt indicating
whether there is a setup for production in period t or not, and z jt
taking value 1 if and only if supplier j is selected in period t. The
LSS problem can be formulated as follows (see [5]):

Min ∑
t∈T

htst + ∑
t∈T

∑
j∈N

(pt + c jt)w jt + ∑
t∈T

f ptyt + ∑
t∈T

∑
j∈N

f s jtz jt

s.t. st−1 + xt = dt + st : ∀t ∈ T, (3)
xt ≤ Dyt : ∀t ∈ T, (4)

xt = ∑
j∈N

w jt : ∀t ∈ T, (5)

w jt ≤Cz jt : ∀ j ∈ N,∀t ∈ T, (6)
s0 = s|T | = 0, (7)

xt ,st ≥ 0 : ∀t ∈ T, (8)
w jt ≥ 0 : ∀ j ∈ N,∀t ∈ T, (9)
yt ∈ {0,1} : ∀t ∈ T, (10)
z jt ∈ {0,1} : ∀ j ∈ N,∀t ∈ T. (11)

For a fixed t, set X arises from (4)-(6), (9)-(11). Valid inequalities
for W can be converted into valid inequalities for X .

The polyhedral description of the convex hull of W, denoted by
Q is given [4]. In [2] is studied the polyhedral characterization
a similar set where lower bounds are imposed on the flow on the
arcs. Valid inequalities for SNFC sets with multiple upper and
lower bounds also in [3].

We study the polyhedral characterization of P. Although X is very
close related to W, and valid inequalities for X can be easily con-
verted into valid inequalities for W and vice-versa, we show that P
has, in general, many more facet-defining inequalities than Q. Our
main contribution is the full polyhedral description of P.

2. POLYHEDRAL RESULTS

In this section we provide a polyhedral characterization of P and
establish the main differences between polyhedra P and Q. We
assume D >C > 0 and assume that C does not divide D.

We start by an intuitive result.

Proposition 2.1. P and Q are full dimensional polyhedra.

It is well-known, see [4], that in addition to inequalities defining
W , the following set of facet-defining inequalities is enough to de-
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scribe Q.

∑
j∈S

(w j− rz j)≤ D−d D
C
er, S⊆ N, |S| ≥ dD

C
e, (12)

where r = D−bD
C cC.

Polyhedral description of P is somewhat more complex. It is not
difficult to verify the following property relating valid inequalities
for the two sets.

Proposition 2.2. The inequality

∑
j∈N

α jw j + ∑
j∈N

β jz j ≤ α

is valid for W, if and only if

∑
j∈N

α jw j + ∑
j∈N

β jz j ≤ αy

is valid for X .

One can also check that facet-defining inequalities for Q are con-
verted into facet-defining inequalities for P. However, the converse
does not hold in general.

Next we introduce two families of valid inequalities for P.

Proposition 2.3. Let D >C > 0 and assume D is not a multiple of
C. The inequality

w j ≤Cy, j ∈ N, (13)

is valid for X .

Proof: Validity of (13) follows from (2) and z j ≤ 1.

�

Proposition 2.4. Let D > C > 0 and assume D is not a multiple
of C. Define r = D−bD

C cC. Let S1,S2 ⊆ N such that S1 ∩ S2 = /0
and 0 ≤ |S1| < dD

C e, dD
C e ≤ |S1|+ |S2| ≤ n. Then the following

inequality is valid for X .

∑
j∈S1

w j + ∑
j∈S2

(w j− rz j)≤ (D− kr)y (14)

where k = dD
C e− |S1|.

Proof: We prove the validity as follows. If y = 0, then constraint
(1) implies that w j = 0,∀ j ∈ N. Since w j = 0, z j ≥ 0,∀ j ∈ N, and
r > 0, so the inequality (14) is satisfied.
If y = 1, then we take a k = dD

C e− |S1|. Inequality (14) can be
represented in the following way.

∑
j∈S1∪S2

w j ≤ D+ r( ∑
j∈S2

z j− k) (15)

We consider the following two cases.

(i) If ∑ j∈S2 z j ≥ k, then r(∑ j∈S2 z j− k)≥ 0. So,

∑
j∈S1∪S2

w j ≤ D≤ D+ r( ∑
j∈S2

z j− k)

which shows that (15) is satisfied.

(ii) If ∑ j∈S2 z j = k− a with a ≥ 1, then we must prove that
∑ j∈S1∪S2 w j ≤ D−ar. So by the assumption, definitions of
k and r, and the fact that C > r,

∑
j∈S1∪S2

w j = ∑
j∈S1

w j + ∑
j∈S2

w j ≤C |S1|+ ∑
j∈S2

Cz j

=C(|S1|+ ∑
j∈S2

z j) =C(|S1|+ k−a)

=C(dD
C
e−a) =C(bD

C
c+1−a)

=CbD
C
c−C(a−1)≤CbD

C
c− r(a−1)

= D− r− r(a−1) = D−ar

Therefore (14) is valid for X .

�

A key point not shown here is that (13) and (14) define facets
of P. From Proposition 2.2, valid inequalities for X are valid for
W. However, considering for instance (14) with S1 6= /0, the corre-
sponding valid inequality for W

∑
j∈S1

w j + ∑
j∈S2

(w j− rz j)≤ D− kr,

do not define a facet of Q since every point lying in the face defined
by the inequality must satisfy z j = 1, j ∈ S1.

Example 2.5. Consider an instance with n = 4, D = 11, and
C = 4. Using the software PORTA we obtain 57 facet-defining
inequalities for P and 18 facet-defining inequalities for Q. Con-
sidering the case with y, we have the following examples of facet-
defining inequalities for k = 1,2, and 3.

w1 +w2 +w4−3z2 ≤ 8y : k = 1,
w1 +w2 +w3−3z2−3z3 ≤ 5y : k = 2,
w1 +w2 +w3−3z1−3z2−3z3 ≤ 2y : k = 3.

Note that for k = 3, there exist 5 facet-defining inequalities for P
and these inequalities appear in Q as a facet-defining inequalities
by setting y = 1. However for k = 1 and k = 2 the corresponding
inequalities for Q, obtained by setting y = 1 are not facet-defining.

Next we establish the main result.

Theorem 2.6. The defining inequalities of X with the inequalities
(13) and (14) suffice to describe the convex hull of P.

3. CONCLUSION AND FUTURE RESEARCH

We provide a polyhedral description of a mixed 0-1 set which can
be regarded as a variant of the single node fixed charge network
flow set where setups are associated to the node and to each arc.
We consider the constant capacitated case. Although this set is
much related to the well-known set W (where there is not binary
variable associated to the node) we have shown that many new
facets appear that can not be obtained from facets of the convex
hull of W. Some results established here can easily be general-
ized for the case with different capacities on the arcs. Currently
we are following this direction of research as well as investigat-
ing the new facet-defining inequalities that might occur for the
set with constant lower bounds whose polyhedral description was
studied by Constantino [2] and the set with constant lower and up-
per bounds whose polyhedral description was given by Agra and
Constantino[1].
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ABSTRACT

Nowadays, companies are forced to think about their environmen-
tal impact and their levels of pollution. In the production setting,
pollution stems from the setup of the machinery, the functioning
of the machinery during production as well as from holding inven-
tory. Bearing in mind this environmental awareness, the choice of
a production plan can be modeled as a Multi-Objective Economic
Lot-Sizing problem, in which we aim at minimizing the total lot-
sizing costs including production and inventory holding costs, as
well as minimizing the total production and inventory emission
costs. Different multi-objective optimization models can be ob-
tained depending on time horizon in which the emissions are min-
imized. We can minimize the emission costs for the whole plan-
ning horizon, yielding a bi-objective model (BOLS), or we can
minimize the emission costs in each period of the planning hori-
zon yielding a truly multi-objective optimization model (MOLS).
In this talk, we aim at describing Pareto efficient solutions for both
(BOLS) and (MOLS). We first show that, in general, this task is
NP-complete. We then present classes of problem instances for
which these Pareto efficient solutions can be found in polynomial
time.

Keywords: Lot-sizing, Pollution, Pareto efficient solutions

1. INTRODUCTION

Nowadays, companies are forced to think about their environmen-
tal impact and their levels of pollution. In the production setting,
pollution stems from the setup of the machinery, the functioning
of the machinery during production as well as from holding inven-
tory. Bearing in mind this environmental awareness, the choice of
a production plan can be modeled as a Multi-Objective Economic
Lot-Sizing problem. This is a generalization of the Economic Lot-
Sizing Problem (ELSP) in which we aim at minimizing the total
lot-sizing costs including production and inventory holding costs,
as well as minimizing the total production and inventory emission
costs.

Consider a planning horizon of length T . For period t, let ft be
the setup lot-sizing cost, ct the unit production lot-sizing cost, ht
the unit inventory holding lot-sizing cost, and dt the demand. Sim-
ilarly, for period t, let f̂t be the setup emission cost, ĉt the unit
production emission cost and ĥt the unit inventory emission hold-
ing cost. Let M be a constant such that M ≥ ∑T

t=1 dt .

Let us consider the following biobjective economic lot-sizing model
(BOLS):

minimize
( T

∑
t=1

[ ftyt + ctxt +ht It ],
T

∑
t=1

[ f̂tyt + ĉtxt + ĥt It ]
)

subject to (BOLS)

xt + It−1 = dt + It t = 1, . . . ,T (1)
xt ≤ Myt t = 1, . . . ,T (2)
I0 = 0 (3)
yt ∈ {0,1} t = 1, . . . ,T
xt ≥ 0 t = 1, . . . ,T
It ≥ 0 t = 1, . . . ,T

where yt indicates whether a setup has been placed in period t,
xt denotes the quantity produced in period t, and It denotes the
inventory level at the end of period t. In the following, we will
refer to a production period as a period in which production oc-
curs, i.e., xt > 0. The first objective in (BOLS) models the usual
lot-sizing costs, i.e., the production and inventory holding costs
over the whole planning horizon. The second objective models
the total emission of pollution across the whole planning horizon.
Constraints (1) model the balance between production, storage and
demand in period t. Constraints (2) impose that production level
is equal to zero if no setup is placed in period t. Constraints (3)
impose that the inventory level is equal to zero at the beginning of
the planning horizon. The last three constraints define the range in
which the variables are defined.

Alternatively, we can define a (truly) multi-objective economic lot-
sizing model, where the emission of pollution is minimized in each
period of the planning horizon. The model reads as follows:

minimize
( T

∑
t=1

[ ftyt + ctxt +ht It ],

f̂1y1 + ĉ1x1 + ĥ1I1, . . . , f̂T yT + ĉT xT + ĥT IT

)
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subject to (MOLS)

xt + It−1 = dt + It t = 1, . . . ,T
xt ≤ Myt t = 1, . . . ,T
I0 = 0
yt ∈ {0,1} t = 1, . . . ,T
xt ≥ 0 t = 1, . . . ,T
It ≥ 0 t = 1, . . . ,T.

When the lot-sizing cost function is concave, the classical ELSP
is solvable in polynomial time in T , see [12]. More efficient al-
gorithms for special cases have been developed in [1, 4, 11]. In
this paper, we aim at describing Pareto efficient solutions for both
(BOLS) and (MOLS). In Section 2, we show that, in general, this
task is NP-complete. Therefore, in Sections 3 and 4, we propose
classes of problem instances for which this task can be performed
in polynomial time. We conclude the paper with Section 5.

2. PARETO OPTIMAL SOLUTIONS

When more than one objective function is optimized, Pareto effi-
cient solutions are sought. These can be found by minimizing one
of the objective functions, for instance, the lot-sizing costs, while
constraining the rest of objectives.

Given B̂ ∈ R+, the following problem defines a Pareto efficient
solution for (BOLS):

minimize
T

∑
t=1

[ ftyt + ctxt +ht It ]

subject to (P(B̂))

xt + It−1 = dt + It t = 1, . . . ,T
xt ≤ Myt t = 1, . . . ,T
I0 = 0
yt ∈ {0,1} t = 1, . . . ,T
xt ≥ 0 t = 1, . . . ,T
It ≥ 0 t = 1, . . . ,T

T

∑
t=1

[ f̂tyt + ĉtxt + ĥt It ] ≤ B̂. (4)

Given (b̂t) ∈ RT
+, the following problem defines a Pareto efficient

solution for (MOLS):

minimize
T

∑
t=1

[ ftyt + ctxt +ht It ]

subject to (P((b̂t)))

xt + It−1 = dt + It t = 1, . . . ,T
xt ≤ Myt t = 1, . . . ,T
I0 = 0
yt ∈ {0,1} t = 1, . . . ,T
xt ≥ 0 t = 1, . . . ,T
It ≥ 0 t = 1, . . . ,T

f̂tyt + ĉtxt + ĥt It ≤ b̂t t = 1, . . . ,T. (5)

Both models, (P(B̂)) and (P((b̂t))), can be found in [2]. We
may observe that if the emission constraints are not binding, both

(P(B̂)) and (P((b̂t))) reduce to an ELSP and, therefore, are poly-
nomially solvable. Also, it is not difficult to see that the Capac-
itated Lot-Sizing problem (CLSP) is a particular case of Prob-
lem (P((b̂t))). Propositions 1 and 2 show that, in general, both
(P(B̂)) and (P((b̂t))) are N P-complete.

Proposition 1. Problem (P(B̂)) is N P-complete.

Proposition 2. Problem (P((b̂t))) is N P-complete.

3. POLYNOMIALLY SOLVABLE SCENARIOS FOR
(P(B̂))

In the following we discuss several scenarios for which (P(B̂))
can be solved in polynomial time.

Recall that, for a given B̂, (P(B̂)) yields a Pareto efficient solu-
tion of (BOLS). When possible we also discuss the running time
of a procedure that describes the whole efficient frontier, i.e., the
running time of solving the parametric problem (P(B̂)), for all
B̂≥ 0.

3.1. Setup emissions

If ĥt = 0, for all t, and f̂t and ĉt are stationary, then (P(B̂)) is poly-
nomially solvable. First note that ∑T

t=1 xt = ∑T
t=1 dt . Therefore, if

the production emissions are stationary, then ∑T
t=1 ĉtxt = ĉ∑T

t=1 dt .
Now (4) can be written as

T

∑
t=1

yt ≤ bB̃c,

where B̃ = 1
f̂
(B̂− ĉ∑T

t=1 dt). Thus, the problem can be written as
an ELSP with a bound on the number of production periods. Let
Fn(t) be the optimal cost of the subproblem consisting of periods
1, . . . , t with n production periods. Clearly, we can solve the lot-
sizing problem with a bound on the number of production periods
if we have at hand the values Fn(T ) for n = 1, . . . ,T .

The values Fn(t) can be found by the following dynamic program-
ming recursion

Fn(t) = min
i=n,...,t

{Fn−1(i−1)+C(i, t)},

where C(i, t) is the total lot-sizing cost incurred for satisfying the
demand in interval [i, t] by production in period i. Note that there
are n− 1 production periods in the interval [1, i− 1] and there is
1 production period in the interval [i, t]. This recursion is initial-
ized by F0(0) = 0 and F0(t) = ∞ for t = 1, . . . ,T . Clearly, this
Dynamic Programming (DP) algorithm runs in O(T 3) time. A
similar recursion can be found in [7]. In [9], it is shown that all
values Fn(t) can be found in O(T 2) time when the lot-sizing costs
are such that there are no speculative motives to hold inventory.
The same running time is shown in [3] in case of stationary setup
costs.

Back to (P(B̂)), its optimal solution value is equal to

min
n≤bB̃c

Fn(T ),

which can be found in O(T 3) time. (Savings can be achieved by
noting that the maximum number of production periods is B̃, yield-
ing an algorithm that runs in O(T 2B̃) time.) If the lot-sizing costs
are such that there are no speculative motives to hold inventory,
(P(B̂)) can be solved in O(T 2) time.

The following proposition shows that if f̂t are general, (P(B̂)) is
N P-complete.
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Proposition 3. If ĉt = ĥt = 0, for all t, Problem (P(B̂)) is N P-
complete.

For the class of problem instances in this section, the efficient fron-
tier of (BOLS) can de described in polynomial time too, since we
only need to solve (P(B̂)) for T possible values to B̂, namely
B̂ = n f̂ , where n = 1, . . . ,T . Thus, the efficient frontier can be
found in O(T 3) time, while for the special cases mentioned above,
it can be found in O(T 2) time.

3.2. Production emissions

If f̂t = ĥt = 0, for all t, and ĉt are stationary, it is trivial to see
that (P(B̂)) is polynomially solvable. This can be easily seen by
noticing that the problem is feasible if

T

∑
t=1

dt ≤ B̃.

where B̃ = B̂
ĉ . If the problem is feasible, then constraint (4) is

redundant and the problem reduces to an ELSP.

If ĉt are general, the complexity of problem (P(B̂)) is unknown.
In this case, constraint (4) reads

T

∑
t=1

ĉtxt ≤ B̂,

i.e., it imposes an upper bound on the weighted productions.

For the class of problem instances in this section, the efficient fron-
tier of (BOLS) can clearly be described in polynomial time for this
scenario.

3.3. Inventory emissions

Suppose that for the lot-sizing costs we have ft = f and ct = c,
while for the emissions we have f̂t = f̂ , ĉt = ĉ and ĥt = α ht .
We will show that in this case (P(B̂)) is solvable in polynomial
time by fixing the number of production periods. Note that such a
problem instance satisfies the Zero Inventory Order property, i.e.,
xt It−1 = 0 for all t, because of the non-speculative motives as-
sumption (both in the emission and lot-sizing cost).

Two observations are given before we present the procedure to find
the optimal solution. First, for a production plan with n production
periods, constraint (4) can be written as

α
T

∑
t=1

ht It ≤ B̂− f̂ n− ĉ
T

∑
t=1

dt . (6)

Second, because both the setup and the unit production lot-sizing
costs are stationary, the objective function of (P(B̂)) boils down
to

T

∑
t=1

( ftyt + ctxt +ht It) = f n+ c
T

∑
t=1

dt +
T

∑
t=1

ht It .

Thus, when the number of production periods is fixed, minimizing
the total lot-sizing costs is equivalent to minimizing the total in-
ventory cost. Moreover, the objective function also minimizes the
left hand side of (6).

The following procedure solves the problem to optimality. Given
n= 1, . . . ,T , solve the ELSP with n production periods, this can be
done in polynomial time, as already shown in Section 3.1. If the
inventory levels of the optimal solution satisfy (6), this solution is
kept. After evaluating all possible values of n, we will have at most
T solutions, from which we choose the solution having the lowest
lot-sizing costs.

Notice that if ĥt are general, the complexity of problem (P(B̂)) is
unknown. In this case, constraint (4) can be rewritten as

T

∑
t=1

ctxt ≤ B̂−
T

∑
t=1

ĥt

t

∑
τ=1

dt ,

where ct = ∑T
τ=t ĥt . Therefore, this reduces to a problem of the

form given in Section 3.2, and thus its complexity is unknown.

Again, for the class of problem instances in this section, we can
describe the whole efficient frontier in polynomial time. From
above, it is clear that the only possible Pareto efficient solutions
will be the ones returned by the ELSP with n production periods,
n = 1, . . . ,T . Also, it is clear that the total inventory levels of these
solutions will become the breakpoints of B̃ in the Pareto efficient
frontier.

4. POLYNOMIALLY SOLVABLE SCENARIOS FOR
(P((b̂T )))

In the following, we discuss several scenarios for which (P((b̂t)))
can be solved in polynomial time.

4.1. Setup emissions

In this section, we show that (P((b̂t))) is polynomially solvable
if ĉt = ĥt = 0. In this case, constraint (5) implies yt = 0 if f̂t > b̂t ,
and otherwise it is redundant. This can be easily incorporated into
the dynamic programming approach that solves the ELSP in poly-
nomial time, without increasing the running time, and therefore
remaining polynomial.

4.2. Production emissions

In this section, we show that (P((b̂t))) is polynomially solvable
if f̂t = ĥt = 0. In this case, constraint (5) can be written as a con-
straint on xt . The new capacity constraints are stationary and there-
fore the problem can be solved in polynomial time, [5] and [8].

4.3. Inventory emissions

In this section, we show that (P((b̂t))) is polynomially solvable
if f̂t = ĉt = 0. In this case, constraint (5) can be written as a con-
straint on It . This problem was shown to be polynomially solvable
in [10].

4.4. Setup, production and inventory emissions

In this section, we show that (P((b̂t))) is polynomially solvable
under the following assumptions. With respect to the lot-sizing
costs, we assume that the setup costs are non-increasing and there
are no speculative motives to hold inventory. With respect to the
emissions, we assume that all parameters are stationary.

Definition 4. We will say that period t is a tight period if

f̂tyt + ĉtxt + ĥt It = b̂t .

As usual in the literature, we will refer to a regeneration period as
a period in which the inventory level at the end of the period is
equal to zero, i.e., It = 0. We will refer to a subplan as the sub-
problem defined by two consecutive regeneration points. Without
loss of optimality, we can assume that the inventory levels within
a subplan must all be positive. We will decompose the problem
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into subplans using the regeneration periods, and define a straight-
forward Dynamic Programming algorithm to solve (P((b̂t))). In
order to show that the problem is polynomially solvable we need
to show that the costs of a subplan can be calculated in polynomial
time. Let us therefore focus on a given subplan, and its optimal
costs.

Proposition 5. There is at most one non-tight production period
in a subplan.

Proposition 6. Without loss of optimality, the only possible non-
tight production period in a subplan is the first period.

Proposition 7. There exists an optimal solution satisfying It−1 <
dt for any production period t.

Proposition 8. Consider a subplan [u,v] and a period t (u< t ≤ v)
with outgoing inventory It and satisfying the properties:

• x̄t
def
= (b̂− f̂ − ĥIt)/ĉ > 0,

• Īt−1
def
= It − x̄t +dt > 0.

Then period t is a tight production period in the subplan with pro-
duction quantity x̄t .

We can now use Proposition 8 to construct an optimal solution to
any non-degenerate subplan [u,v] (i.e., it does not decompose into
multiple subplans) in a backward way. Assume that we arrive in
some period t > u, that It is known (note that Iv = 0 in the initial-
ization of the procedure) and we want to determine xt and It−1. We
consider the following cases:

• x̄t ≤ 0: The subplan is infeasible, since constraint (5) is vi-
olated for period t or some period before t. Note that x̄t is
the maximum production quantity in period t without vio-
lating the emission constraint. It follows from the proof of
Proposition 8 that any feasible production quantity in pe-
riod s (s < t) is at most equal to x̄t . In other words, any
period with a positive production amount before period t
will violate the emission constraint.

• x̄t > 0 and Īt−1 ≤ 0: In this case period t cannot be a tight
production period, since production would be too much.
Therefore, we set xt = 0 and It−1 = It + dt . Note that the
subplan would be degenerate in case Īt−1 = 0.

• x̄t > 0 and Īt−1 > 0: By Proposition 8 period t is tight.
Hence, we set xt = x̄t and It−1 = Īt−1.

This procedure is applied until we arrive at period u. If 0 < du +
Iu+1 ≤ x̄u, then subplan [u,v] is feasible and non-degenerate with
a production quantity equal to xu = du + Iu+1.

For given periods u and v, the cost of subplan [u,v] can be de-
termined in linear time. Hence, a straightforward implementa-
tion would lead to an O(T 3) time algorithm. However, note that
when determining subplan [1,v], we also find subplans [u,v] for
u = 1, . . . ,v. This means that all subplans can be found in O(T 2)
time, and so the optimal solution to the problem.

5. CONCLUSIONS

In this paper, we have studied lot-sizing models incorporating pol-
lution emissions, and modeled them as multi-objective problems.
We have shown that finding Pareto efficient solutions to this prob-
lems is, in general, an NP-complete task. We have presented classes
of problem instances for which these Pareto efficient solutions can
be found in polynomial time.
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ABSTRACT

In this paper, we present a mixed integer linear programming model
for the traveling salesman problem that considers three-dimensional
loading constraints. Computational tests with the proposed model
were performed with randomly generated instances using an opti-
mization solver embedded into a modeling language. The results
validate the model and show that it is able to handle only prob-
lems of a moderate size. However, the model can be useful to
motivate future research to solve larger problems, especially when
this problem appears as a sub-problem of another problem, as well
as modeling the more general vehicle routing problem with three-
dimensional loading constraints.

Keywords: Traveling salesman problem, Three-dimensional load-
ing, Combinatorial optimization, Mathematical modeling

1. PROBLEM DESCRIPTION

The vehicle routing literature has been recently merged with the
container loading literature to treat cases where the goods required
by the customers are wrapped up in discrete items, such as boxes.
This effort arises from the attempt to avoid expressing the demands
of the customers simply as their weights or volumes. In other
words, if the demand constraints are seen in one-dimensional point
of view, it is assumed that each demand fills one certain section of
the vehicle or that the cargo shapes up smoothly according to the
vehicle shape. However, when dealing with rigid discrete items,
their geometry may lead to losses of space or even to infeasible
solutions if the vehicle has not enough capacity. If other practical
constraints are also considered ([1]), the coupling of the routing
and loading structures becomes even more complex. Constraints
such as vertical and horizontal stability of the cargo, load bear-
ing strength and fragility of the cargo, grouping or separation of
items inside a container, multi-drop situations, complete shipment
of certain item groups, container weight limit, weight distribution
within a container, among others, are common in the container
loading literature and can also be embedded into vehicle routing
problems.

One of these combined problems, the 3L-CVRP (e.g., [2], [3],
[4]), considers a fleet of identical vehicles that must run minimum
cost routes to deliver boxes to a set of customers, departing from
and returning to a depot. Besides the non-overlap of the three-
dimensional boxes, the constraints that have been usually consid-
ered are the vertical stability of the cargo, the load bearing strength
of the boxes and the multi-dropping of the boxes. The 2L-CVRP

(e.g., [5], [6], [7]) is a particular case of the above problem where
the boxes are too heavy for being stacked and only the floor of the
vehicle is considered for the boxes’ placement. The approaches
used to solve these problems have been mainly heuristic.

In this paper, we address another variant of these combined prob-
lems, named the 3L-TSP. In this problem, a set of customers make
requests of goods, that are packed into boxes, and the objective
is to find a minimum cost delivery route for a single vehicle that,
departing from a depot, visits all customers only once and returns
to the depot, while considering some three-dimensional loading
constraints. Apart the constraints that ensure that the boxes do
not overlap each other, the vertical stability of the cargo, the load
bearing strength of the boxes (including fragility), and the multi-
dropping of the boxes are also taken into account. It is assumed
that the boxes and the vehicle are of rectangular shape, and that the
cargo completely fits inside the vehicle. We present a mixed inte-
ger linear programming model for the problem, aiming to show the
impact of the loading constraints. We are not aware of other papers
that have presented mathematical formulations for the 3L-TSP and
which explicitly deal with such constraints.

2. THREE-DIMENSIONAL LOADING CONSTRAINTS

In a recent study, [8] and [9] presented mathematical formulations
for the container loading problem with cargo stability, load bear-
ing strength and multi-drop constraints. Cargo stability refers to
the support of the bottom faces of boxes, in the case of vertical
stability (i.e., the boxes must have their bottom faces supported
by other box top faces or the container floor), and the support of
the lateral faces of boxes, in the case of horizontal stability. Load
bearing strength refers to the maximum number of boxes that can
be stacked one above each other, or more generally, to the max-
imum pressure that can be applied over the top face of a box, so
as to avoid damaging the box. We note that fragility is a partic-
ular case of load bearing where boxes cannot be placed above a
fragile box, since its top face does not bear any kind of pressure.
Multi-drop constraints refer to cases where boxes that are deliv-
ered to the same customer (destination) must be placed close to
each other in the vehicle, and the loading pattern must take into
account the delivery route of the vehicle and the sequence in which
the boxes are unloaded. The practical importance of incorporating
these constraints to the problem is to avoid loading patterns where
boxes are “floating in mid-air” inside the vehicle, where products
are damaged due to deformation of the boxes that contain them, or
where an unnecessary additional handling is incurred when each
drop-off point of the route is reached. In the present study, we
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have extended these ideas in the context of the traveling salesman
problem.

3. CONCLUSIONS

Computational tests with the proposed model were performed with
randomly generated instances using an optimization solver embed-
ded into a modeling language. The results validate the model and
show that it is able to handle only problems of a moderate size.
However, the model can be useful to motivate future research to
solve larger problems, especially when the 3L-TSP appears as a
sub-problem of another problem, as well as modeling the more
general vehicle routing problem with three-dimensional loading
constraints.
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ABSTRACT

In this paper we propose a constructive heuristic, Rect–TOPOS,
to solve the problem of minimizing the enclosing rectangular area
that contains, without overlapping, a set of rectilinear pieces (e.g.,
L and T shaped pieces). This is a NP-hard combinatorial opti-
mization problem, which belongs to the class of cutting and pack-
ing problems. To evaluate the Rect–TOPOS heuristic computa-
tional tests were performed to validate it for the presented prob-
lem. In these tests, instances with different characteristics were
used, namely the total number of pieces, and the shaped diversity
of the pieces. The results show that this is a heuristic that can
quickly and easily to deal with all the rectilinear shaped pieces.

Keywords: Combinatorial optimization, Cutting and packing, Con-
structive heuristic, Area minimization

1. INTRODUCTION

In the rectilinear packing area minimization problem (RPAMP)
one wishes to pack a set of rectilinear shaped pieces (pieces with
90 or 270 interior angles) while minimizing the area of the enclos-
ing rectangle without overlapped pieces (Figure 1). This problem
arises in many industrial applications such as VLSI design, facility
layout problems, newspaper layout, etc. It is NP-hard combinato-
rial optimization problem [1] and belongs to the class of cutting
and packing problems (C&P), which are combinatorial problems
with a strong geometric component. Approaches to solve C&P
problems can be based on any of the usual techniques available for
solving general combinatorial optimization problems like: mixed
integer programming, heuristics, metaheuristics, etc. Given the
combinatorial nature of these problems, the exact techniques are
not able to deal effectively with instances of large dimension and
it becomes necessary

To solve the RPAMP we propose a variant of the constructive
heuristic TOPOS. The main differences between the proposed vari-
ant, Rect–TOPOS, and TOPOS come from the shapes of the pieces,
rectilinear shapes instead of irregular shapes, and the objective
function, area minimization instead of layout length minimization.
Additionally, the criteria used to select the next piece to place, its
orientation and the best placement point needed to be adapted.

This paper is structured as follows: section 2 presents a detailed
description of the RPAMP; in section 3, the constructive heuristic
proposed, Rect- TOPOS, is presented; in section 4, computational

Figure 1: Rectilinear Packing Area Minimization Problem.

results are shown and, finally, in Section 5 some concluding re-
marks are presented.

2. RECTILINEAR PACKING AREA MINIMIZATION
PROBLEM

The objective of the RPAMP is to pack, without overlapping, a set
of given rectilinear shaped pieces while minimizing the area of the
enclosing rectangle. The dimensions of the pieces are fixed and
they must be placed orthogonally (i.e., with sides parallel to the
horizontal and vertical axes), though a 900, 1800 or 2700 rotation
of the pieces are allowed. This is a two-dimensional problem and,
according to the typology of C&P problems proposed in [2], is
classified as an open dimension problem (ODP) since the dimen-
sions of the enclosing rectangle are unknown.

The RPAMP arises in many real word applications such as the
placement of modules in Very Large Scale Integration (VLSI) cir-
cuits, in the designing of facility, newspaper layouts, etc. For ex-
ample, in VLSI circuits rectilinear shaped pieces appeared to facil-
itate the usage of circuit area and improve the connectivity between
the pieces, increasing the circuit performance. Early works that ap-
peared in the literature to solve area minimization problems only
dealt with rectangles and the main concern was to find efficient
data structures to represent layouts. These representations encode
solutions as sequences, graphs or trees. Over time, new repre-
sentations appeared, justified by improvements in the efficiency
of solution evaluation, the type of encoding schemes, the amount
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of redundancy that exists in the encoding and the total number of
configurations. An early work by Wong et al. [3] proposed an
algorithm for slicing layouts1 using a tree structure. One impor-
tant breakthrough is the introduction of the Sequence Pair (SP), by
Murata et al. [1], for representing non-slicing layouts. This rep-
resentation is based on a pair of sequences that specifies the rela-
tive positions of the rectangles. Many other representations have
emerged after the sequence pair. The existing representations for
the rectangle packing have been adapted to enable its applicability
to problems with rectilinear shaped pieces.

Unlike what happens in most approaches in the literature to the
RPAMP the proposed approach does not deal with representations
of the layout but it works directly on the layout. The next sec-
tion provides a description of the proposed heuristic to solve this
problem.

3. RECT–TOPOS

To solve the RPAMP we propose a variant of the TOPOS algorithm
[4] which was originally developed to solve problems with irregu-
lar shapes2. The main idea behind it is successively adding a new
piece to a partial solution. In the TOPOS algorithm two different
levels are used: a first one to choose the best placement point for
each piece to place in each admissible orientation (nesting strate-
gies) and a second one to choose, from all the possible candidates
from the previous level, the best overall placement (layout evalu-
ation). Three nesting strategies which aim to evaluate the best fit
of two irregular shapes (partial solution and the piece chosen) with
fixed orientations have been used: minimizing the area of the en-
closure of the two pieces, minimizing the length of the enclosure of
the two pieces and maximizing the overlap between the rectangu-
lar enclosures of the two pieces. To evaluate and compare different
layouts three different criteria have been used: the difference be-
tween the area of the rectangular enclosure of the partial solution
and the area of all pieces already placed (waste), the overlap be-
tween the rectangular enclosure of the piece under evaluation and
the rectangular enclosure of each piece already placed and, finally,
the euclidean distance between the centre of the rectangular enclo-
sure of the piece under evaluation and the centre of the rectangular
enclosure of the partial solution.

The overall objective is to minimize the layout length since in these
problems the layout width is fixed.

In our variant, Rect–TOPOS, we follow the same general idea,
successively adding a new piece to a partial solution while mini-
mizing the enclosing rectangular area. We choose to use a single
level to select the next piece to place, its orientation and the best
placement point simultaneously. The existence of a single level
allows choosing the best piece to place between all possibilities
unlike what happens when there are two levels, in which there is
an initial selection of the placement point for each piece to place.
We used the waste and distance evaluation criteria, taken directly
from the criteria used in the second level of the TOPOS, and in-
troduced a new criterion, the perimeter minimization. This new
criterion tries to minimize the perimeter between the piece under
evaluation and the current partial solution.

The third criterion used in TOPOS, overlap maximization, was re-
moved since it is not appropriate for situations where there are a
large number of rectangles to place. In these situations, the en-
closing rectangle of a rectangle is the rectangle itself, it makes no
sense trying to maximize the overlap of two rectangles because
pieces are not allowed to overlap.

1A layout is said to be slicing if it can be obtained by successive hori-
zontal and vertical cuts, from one side to another, which divide it into two
rectangles.

2An irregular shape is a polygon with arbitrary angles.

Figure 2: Construction of L and T-shaped pieces from rectangles.

As in TOPOS, the iterative process needs to have an initial non-
empty partial solution, so we used another criteria to select the
first piece of the partial solution. For this selection we chose to use
3 criteria that favor the selection of the larger pieces: piece with
larger area; piece with larger perimeter or piece with larger width.

4. COMPUTATIONAL RESULTS

This section presents the computational results with the heuris-
tic Rect–TOPOS. The tests were performed on a Linux worksta-
tion equipped with a Intel XEON Dual Core 5160, 3GHz. Al-
though the workstation has two CPUs, only one thread was used
in the tests. The test instances used have different characteristics,
particularly in the total number of pieces, number of pieces with
different shapes (number of types of pieces) and in the shape of
the pieces (rectangular and other shapes with rectangular compo-
nents). To evaluate the heuristic Rect–TOPOS we used the follow-
ing four sets of instances:

• instances of the reference set MCNC (http://vlsicad.
eecs.umich.edu/BK/MCNCbench/HARD/), which is
a benchmark set with origins in the project of VLSI cir-
cuits, in which all the pieces have a rectangular shape and
where the total number of pieces to place does not exceed
50 (APTE, XEROX, HP, AMI33, AMI49);

• instances also composed only by rectangles, however, differ
from the previous one by having higher number of pieces,
from 100 to 500 ( http://www.simplex.tu-tokyo.
ac.jp/imahori/packing/) (RP100, RP200, PCB146,
PCB500);

• instances taken from [5] (NAKATAKE1, NAKATAKE2), [6]
(LIN) and [7](AMI49L, AMI49LT) containing a mix of pieces
that are rectangles, L-shaped and/or T-shaped pieces and
other pieces with rectangular components (U, +, H, etc.);

• instances AMI33LTa and AMI49LTa were generated from in-
stances AMI33 e AMI49 from the MCNC reference set. The
rule used to obtain these two intances was to change ap-
proximately 10% of the total number of rectangles in L
and/or T pieces. Each of the new L or T shaped have in-
teger dimensions and have an area similar to the area of
the original rectangle accordingly to the procedure shown
in Figura 2.

The instances chosen to test and evaluate the heuristic Rect–TOPOS
have very different characteristics, namely in what concerns the
total number of pieces, the number of different pieces types, the
shape of the pieces (rectangular, L-shaped, T-shaped, etc.). This
characteristics are shown in Table 1.

Table 2 summarizes the computational tests performed to test and
evaluate the heuristic Rect–TOPOS. We tested the three criteria
for choosing the next piece to place, its orientation and placement
point previously presented (WASTE, DISTANCE and PERIMETER),
and, for each one of them, we considered the three possibilities
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# Pieces # Rectilinear pieces
Instance Total # Types # Rect. # Others
APTE 9 3 9 —
XEROX 10 10 10 —
HP 11 6 11 —
AMI33 33 31 33 —
AMI49 49 46 49 —
RP100 100 99 100 —
PCB146 146 22 200 —
RP200 200 99 146 —
PCB500 500 417 500 —
AMI49L 28 28 7 21
AMI49LT 27 27 6 21
NAKATAKE1 40 35 30 10
NAKATAKE2 19 19 5 14
LIN 29 21 22 7
AMI33LTa 33 31 30 3
AMI49LTa 33 46 41 5

Table 1: Characteristics of the used instances.

to choose the piece to start the partial solution (AREA, PERIME-
TER and DISTANCE). The values shown in the table are the area
usage, measured as the ratio between the sum of the area of the
placed pieces and the area of the enclosing rectangle obtained.
The bold values are the best result for each instance. Table 2 also
presents, for each instance, the average computational time, mea-
sured in seconds. Note that, for each instance, the computational
times does not show great variability. Finally we present also for
each instance, the best result found in literature, their area usage,
computational time and the publication reference.

From Table 2 we can see that the best results were obtained when
using for choosing the next piece to place and the placement point
the perimeter criterion, except for instances APTE and XEROX.
These two instances are very sensitive to the choice of the first
piece to place as they have a small number of pieces to place, 9
and 10 respectively. Regarding the choice of the first piece, the
results show balance between the three criteria. When comparing
the results obtained with the best published results one should take
into account that the Rect–TOPOS is only a constructive heuristic,
while the best published results were obtained with approaches
based on local search and tree search algorithms. Thus, as ex-
pected, the results obtained with the Rect–TOPOS fall short of the
published ones, but in return the computational times are much
lower. We note that for the PCB500 instance the result obtained
by Rect–TOPOS was better than the best result found in the liter-
ature [10]. Table 2 also allows to show the great impact that the
number of types of pieces have in the Rect–TOPOS heuristic per-
formance. For example, although the PCB146 instance have more
46 pieces in total than the RP100 instance its running time is about
10 times lower because it has only 22 different pieces types while
the instance RP100 has 99 different types.

Figure 3 shows the layout obtained for the PCB500 instance.

5. CONCLUSIONS

In this article we presented a constructive heuristic, Rect–TOPOS,
to the Rectilinear Packing Area Minimization Problem. Rect–
TOPOS is a fast heuristic which is able to easily handle rectilinear
shaped pieces. This heuristic uses several criteria to choose the
next piece to place, its orientation and the placement point. The
quality of solutions proved to be quite satisfactory because it is a
simple heuristic with reduced run times. These features suggest, as
future developments, the incorporation of Rect–TOPOS heuristic

Figure 3: Layout obtained for PCB500 instance.

in an approach based on local procedure. In this approach could,
at the expense of increased run time, improving the already good
results achieved by Rect–TOPOS in situations where this was nec-
essary.
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ABSTRACT

We describe a set of new local search based algorithms for a real
leather nesting problem (LNP) arising in the automotive industry.
The problem consists in finding the best layouts for a set of irreg-
ular shapes within large natural leather hides with highly irregular
contours, and which may have holes and quality zones. Our case
study comes from a multinational company that produces car seats.
The irregular shapes that must be cut from the hides are pieces of
these car seats, and they may contain holes and different quality
zones. A relevant characteristic of the problem addressed is that
the cutting patterns are not subject to any special constraint that
may reduce the set of feasible solutions, and hence simplify the
problem. The directionality constraints arising in the shoe indus-
try are an example of such constraints.

Very few solution methods were proposed in the literature for this
variant of the LNP. The value of the potential savings contrast with
this very small number of contributions. Here, we intend to con-
tribute with new solution methods that embeds a new constructive
heuristic that we proposed recently in [1]

Keywords: Leather nesting, Variable neighbourhood search

1. INTRODUCTION

The leather nesting problem (LNP) consists in finding the best lay-
outs for a set of irregular shapes within the boundaries of natural
leather hides. The leather hides are natural products with irreg-
ular contours and a very inhomogeneous surface with holes and
different quality levels. Here, we address the real case of a multi-
national company that produces car seats. The irregular shapes to
be cut from the leather hides are pieces of these car seats. The cor-
responding LNP is one of the most general 2-dimensional nesting
problem. The pieces may have holes, and the surface from which
they are cut must satisfy minimum quality requirements defined by
the clients. These requirements translate into quality zones within
the pieces, which in turn restrict the position of the pieces within
the hides. The details of this LNP are introduced in Section 2.

The first algorithm reported in the literature for this LNP is due to
Heistermann and Lengauer [2]. These authors developed a greedy
heuristic that starts by identifying a limited and empty region of
the hide where to place one of the available pieces. The selection
of this region can be fixed a priori, or it may vary from one iteration
to another. The placement of the pieces in this region is evaluated
using different criteria such as the area of the piece and the distance
between its contour, the borders of the hide and the current partial
layout. To repair the eventually infeasible layouts that are built in
this way, the authors resort to compaction. The authors argue that
their approach is competitive compared to humans. However, they
present their results without distinguishing the type of instances
from which these results are obtained although this may have a
critical impact on the quality of the layouts. Indeed, in the furniture
industry, for example, the pieces tend to be much larger than in the

automotive industry, and as a consequence, these instances may
lead to better layouts.

More recently, Alves et al.[1] analyzed a set of constructive heuris-
tics for this LNP. These heuristics rely on the computation of no-fit
and inner-fit polygons to ensure feasible placements on the hides.
The authors explored different strategies that use directly the in-
formation provided by these polygons to guide the selection of
the pieces and their placement. Additionally, they explored differ-
ent criteria to evaluate the quality of a placement. An extensive
set of computational experiments on real instances are reported,
which pointed to the efficiency of some of the original heuristics
explored.

We extend the work of [1], and propose new local search based
heuristics that embed the best strategies described in this paper.
We propose three alternative sequence-based neighborhood struc-
tures. These structures depend on the values provided by the eval-
uation function used to assess the quality of the placement points.
The different neighborhoods are obtained by varying the size of the
sets of pieces in the sequence from which a piece can be removed.
The pieces that are removed are replaced by another piece. The
number of candidate pieces is another parameter that define our
neighborhoods. These neighborhoods are explored using the vari-
able neighborhood search metaheuristic described in [3].

In Section 2, we describe the relevant aspects of our LNP. In Sec-
tion 3, we introduce the constructive strategies followed in our
heuristics. In Section 4, we discuss some of the details of our
local search procedures, namely the neighborhood structures.

2. THE LEATHER NESTING PROBLEM

In the LNP, we are given a set of small two-dimensional irregular
shapes (the pieces of the car seats) and a larger irregular shape rep-
resenting the leather hides. The objective is to place the pieces on
the hide so as to minimize the total empty space (or equivalently,
maximize the yield).

The contour of the leather hides is irregular, and their interior is
usually inhomogeneous. It may have holes, defects and regions
with different levels of quality (the quality zones). The holes and
defects of the hides are treated as any other piece that may be al-
ready placed on the surface of the hides. The quality zones are
treated differently. A piece can only be placed on a given region
of the hide only if the quality of this region is greater or equal than
the quality requirements of the piece. In the automotive industry,
four quality zones are used (A, B, C and D). A stands for the best
quality zone. The quality decreases from A to D. Some parts at
the boundaries of the hides are considered as waste because their
quality is too low to cut any piece.

The pieces that must be placed on the hides are also irregular. They
may have holes and different quality requirements. The quality
zone of a piece can never be placed on a region of the hide with
a lower quality. The characteristics of the pieces that must be cut
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from the hides depend on the application. In the shoe industry, the
shapes are small compared to the size of the hides. In the furniture
industry, many of the pieces are large. In the automotive industry,
there is many different pieces. The area of the pieces ranges from
0.1% to 6% of the area of the hides.

A layout consists in the pieces that are placed on the hide, and
their corresponding position and rotation. In our case, a layout is
feasible if and only if all the pieces do not overlap, if all the pieces
are placed inside the usable area of the hide, and if all the quality
constraints are satisfied.

3. PLACEMENT STRATEGIES BASED ON INNER-FIT
POLYGONS

The no-fit polygons (NFP) are used to determine wether two pieces
overlap or not, while the inner-fit polygons (IFP) are used to de-
termine wether a piece is completely contained within another, or
not. As noted in [4], the concepts of NFPs and IFPs allow the
definition of new placement approaches. In [1], we defined new
constructive heuristics that use the information provided by these
polygons to guide the selection of the pieces, and the placement of
these pieces into specific regions of the hides.

The heuristics proposed in [1] can be divided in four stages. The
pieces are first grouped according to a given criterion (area, irregu-
larity, value, for example). These groups are defined such that the
pieces with almost the same attributes are treated with the same
priority. Then, a piece is selected to be placed on the hide. One
of the criteria that we used for selecting a piece was based on the
characteristics of the IFP of this piece with the hide. After a piece
has been selected, we choose a region inside the hide where the
piece will be placed, and we evaluate the possible placement points
inside that region. The point that maximizes a given criterion is se-
lected, and the piece is placed at this point. Note that when a piece
is selected according to the characteristics of its IFP, the region of
the hide where this piece will be placed is inevitably this IFP.

The sequence of pieces that will be used to define our neighbor-
hood structures are obtained with the constructive procedure that
relies on the characteristics of the IFPs. To evaluate a placement
position, we used a function based on the relative area between an
offset of the piece and the area of the polygon resulting from the
intersection of this offset with the current layout and the border of
the hide.

4. VARIABLE NEIGHBORHOOD SEARCH

Our algorithms are based on the variable neighbourhood search
(VNS) metaheuristic. New neighbourhood structures are proposed
based on a representation of the solutions as a sequence of pieces
combined with the constructive heuristic alluded above.

The selection process generates a sequence of pieces. Each piece
is placed in a given region of the hide, which corresponds in fact
to a particular IFP of the piece with the hide. For the smallest
pieces, the IFP that is chosen is the smallest IFP associated to the
piece, while for the largest pieces, the IFP that is selected is the
largest one. The next step of the constructive heuristic consists
in determining the placement position where the piece should be
placed. The possible placement positions of the hide are evaluated
based on the criterion described above. It depends on an offset
of the piece, and the intersection of this offset with the current
layout and the boundary of the hide. For the sake of clarity, we
will designate this value as the fitness of the piece.

Our neighborhood structures depend on the sequence of pieces,
on the values given by the evaluation function for each piece and

on the value of the yield achieved after placing each one of the
pieces of the sequence. Let i j denote the index of the piece in the
sequence with a corresponding yield of j%. We explored three
neighborhood structures using the following definitions:

• for the pieces between i j1 and i j2 , let k be the piece with the
lowest fitness, and g be the group of this piece. The neigh-
borhood solutions consists in all the solutions obtained by
removing k, replacing it by a piece from the group g up to
g− p (p is a parameter with p ≤ g), and completing the
sequence by running the constructive heuristic;

• for the pieces between i j1 and i j2 , we select a subsequence
of n pieces with the lowest total fitness. We replace the
first piece of this set (k of group g) by another piece from
the group g up to g− p. The remaining n− 1 pieces of
the set are replaced by running the constructive heuristic.
The final part of the original sequence remains unchanged.
The corresponding pieces are placed on the hide using the
criteria used in the constructive heuristic;

• for the pieces between i j1 and i j2 , we select n pieces with
the lowest fitness. These pieces are replaced by other pieces
from the corresponding group g up to the group g− p, while
the remaining subsequences of the original sequence re-
mains unchanged.

Note that, in the previous definitions, j1, j2, p, and n are all pa-
rameters that allow to configure the different neighborhoods that
will be explored using VNS.

In our first implementation, we considered the basic version of
VNS described in [3]. The preliminary tests realized on a set of
real instances yield promising results. Further experiments are be-
ing conducted on an extensive set of real instances to analyze the
best set of parameters that should be applied, and also to analyze
the impact of using different constructive heuristics.

5. CONCLUSIONS

The LNP with no specific constraints remains a challenge that de-
serves attention given the potential for savings associated to the
value of the raw material involved. Recently, the authors proposed
new constructive heuristics for this problem. In this extended ab-
stract, we gave some of the details of a local search approach that
extends our previous work on that problem. The methods proposed
are based on three different neighborhood structures that depends
on the sequence of pieces generated by the constructive procedure.
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ABSTRACT

Cutting and packing problems involving irregular shapes, usually
known as Nesting Problems, are common in industries ranging
from clothing and footwear to engineering and shipbuilding. The
research publications on these problems are relatively scarce, com-
pared with other cutting and packing problems with rectangular
shapes, and have been mostly focused on heuristic approaches. In
this paper we propose a new mixed integer formulation for the
problem and derive some families of valid inequalities, as a first
step for developing an exact Branch & Cut Algorithm.

Keywords: Cutting and Packing, Nesting, Integer Programming

1. INTRODUCTION

Nesting problems are two-dimensional cutting and packing prob-
lems involving irregular shapes. These problems arise in a wide
variety of industries like garment manufacturing, sheet metal cut-
ting, furniture making and shoe manufacturing.

There are several types of nesting problems depending on the ro-
tation of the shapes. We can define three types of problems:

• Without rotation: The pieces have a fixed orientation.

• With specific angles of rotation: The pieces can be placed
with any of the specific angles. Usually these angles are 0o,
90o and 180o.

• With rotation: Pieces can be placed with any angle θ ∈
[0,2π[.

In this work we study the nesting problem as the problem of ar-
ranging a set of two-dimensional irregular shapes without over-
lapping in a rectangular stock sheet with fixed width where the
objective is to minimize the require length. We will consider that
pieces cannot be rotated. This problem arises, e.g, in the garment
manufacturing, because in this industry the pattern of the fabric
must be respected. An example of a layout from the garment man-
ufacturing industry is provided in figure 1.

!

Figure 1: An example layout from garment manufacturing

The main difficult of nesting problems is to ensure that the pieces
have a non-overlapping configuration. This question has been stud-
ied deeply in recent years and there are several approaches which
determine when two polygons overlap. Bennell and Oliveira [2]
give a tutorial of the different approaches which study the geom-
etry of nesting problems. The problem is NP-complete and as a
result solution methodologies predominantly utilise heuristics.

We consider the pieces approximately described by polygons. The
most used tool to check if two polygons overlap is the Non Fit
Polygon (NFP). It can be used, along with the vector difference of
the position of the two polygons, to determine whether these poly-
gons overlap, touch, or are separated, by conducting a simple test
to identify whether the resultant vector is inside the NFP.

The formulation proposed in this paper uses the Non Fit Polygons
to create inequalities for separating each pair of pieces. There are
two different formulations using the NFPs. The first one is used
in the Simulated Annealing Algorithm proposed by Gomes and
Oliveira ([1]). In this formulation, they use binary variables and
the big M constant to activate and inactivate each convex region
given by the NFP. Fischetti and Luzzi ([3]) propose a more effi-
cient formulation by defining slices to have a partition of the feasi-
ble places in which to arrange each pair of pieces without overlap.
The slices must be disjoint but they do not specify how they build
them. Our formulation is similar to the Fischetti and Luzzi formu-
lation (FLF), but we consider horizontal slices.

2. MIXED INTEGER FORMULATION FOR NESTING
PROBLEMS

Let P = {p1, . . . , pN} be the set of pieces to arrange in the strip.
We consider that the reference point of each piece is the bottom
left corner of the enclosing rectangle. We denote by (xi,yi) the
coordinates of the reference point of piece pi. Let li (wi) be the
length (width) and let L and W be the length and width of the strip.
We consider that the bottom left corner of the strip is placed at the
origin.

The NFPi j is the region in which the reference point of piece p j
cannot be placed because it would overlap with piece pi (see figure
2). The feasible zone to place p j with respect to pi is a non-convex
polygon or it could be unconnected. In the next section we present
the Horizontal Slices, which consist of dividing this feasible zone
into convex polygons and assigning a binary variable to each one
of these polygons.
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Piece i Piece j 

𝑁𝐹𝑃𝑖𝑗  

Figure 2: NFPi j . If the reference point of p j is in the NFPi j then
p j overlaps pi.

2.1. Horizontal Slices

Let NFPi j := {r1, . . . ,rn} be the NFP of pieces pi and p j such that
rt , ∀t ∈ {1, . . . ,n}, represents the vertices of the NFP in anticlock-
wise order. In order to build the horizontal slices, we require the
NFPi j to be convex. There are two possibilities:

• The NFPi j has no concavities. We define one horizontal
slice for each edge.

• The NFPi j has concavities. We close all the concavities in
order to obtain a convex polygon. In this case we build a
horizontal slice for each edge of the modified NFPi j and
for each created hole. If the polygon has k concavities then
we build k holes of the NFPi j.

To each slice we associate a binary variable bk which takes the
value 1 if the reference point of piece j is in the slice and 0 oth-
erwise. The set of all binary variables associated with a NFPi j is
denoted by V NFPi j . In figure 3 we can find the set of variables
associated to NFPi j . Variable bi j4 corresponds to the concavity of
the NFPi j .

 

Figure 3: Horizontal Slices

2.2. NFP constraints

For each pair of pieces (pi, pk), we use the NFPi j to build the
necessary constraints to place this pair of pieces without overlap.
Let us consider the binary variables bi j ∈ V NFPi j defined above.
Let us denote by mi j the number of binary variables considered in
V NFPi j . Each slice is described by several inequalities. The slices
are limited by Lsup, an upper bound for the length of the strip.

We use the constraints proposed by Fischetti and Luzzi (FLF) [3],
adapting them to our horizontal slices and closed concavities:

αk f
i j (x j− xi)+β k f

i j (y j− yi)≤
mi j

∑
h=1

δ k f h
i j bi jh (1)

where the coefficients αk f
i j and β k f

i j are the coefficients of the NFP-

inequality f and δ k f h
i j are the greatest value the left hand side can

take when slice defined by bi jh is turned on.

Note that for each NFPi j it is necessary that one binary variable
bi jk ∈ V NFPi j takes value one for separating pieces pi and p j .
Then we need the following equalities in the formulation:

mi j

∑
k=1

bi jk = 1, ∀1≤ i≤ j ≤ N (2)

2.3. Bounds for the position of the pieces

Each piece must be placed entirely into the strip so the reference
point must satisfy some bound constraints. The usual bound con-
strains are:

0≤ xi ≤ L− li, ∀i = 1, ...,N (3)
0≤ yi ≤W −wi, ∀i = 1, ...,N (4)

We add to the formulation more bound constraints by lifting these
inequalities. Let Li j (Ri j) and Di j (Ui j) be the subsets of binary
variables such that piece i protrude from the left (right) or below
(over), respectively, of piece j. Let λ k

i j (µk
i j) be the minimum quan-

tity such that piece p j protrude horizontally (vertically) to piece pi
when the slice defined by bk ∈V NFPi j is turned on.

For each one of the inequalities (3) and (4) we build N inequalities
by adding binary variables as follows:

xi ≤ L− li− ∑
bi jk∈Li j

λ k
i jbi jk, ∀i, j ∈ {1, ...,N} (5)

yi ≤ W −wi− ∑
bi jk∈Di j

µk
i jbi jk, ∀i, j ∈ {1, ...,N} (6)

Inequalities (5) indicate that if any binary variable bi jk which forces
piece p j to be placed at the right of piece pi is turned on then the
length of the strip L must be greater than xi + li +λ k

i j. Inequalities
(6) have the same idea in a vertical direction.

We use a similar idea to lift the inequalities on the left of (below)
the strip. In (8) and (9) of the formulation we can see these bound
constraints.

2.4. Mixed Integer Formulation

The Horizontal Slices Formulation (HSF) is the following one:

Objective Function: minL (7)

s.t.

∑
bi jk∈Ri j

λ k
i jbi jk ≤ xi ≤ L− li− ∑

bi jk∈Li j

λ k
i jbi jk, (8)

∀i, j ∈ {1, . . . ,N}
∑

bi jk∈Ui j

µk
i jbi jk ≤ yi ≤W −wi− ∑

bi jk∈Di j

µk
i jbi jk, (9)

∀i, j ∈ {1, . . . ,N}

αk f
i j (x j− xi)+β k f

i j (y j− yi)≤
mi j

∑
h=1

δ k f h
i j bi jh, (10)
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∀1≤ i≤ j ≤ N, ∀k = 1, ...,mi j (11)
mi j

∑
k=1

bi jk = 1, ∀1≤ i≤ j ≤ N (12)

bi jk ∈ {0,1}, ∀1≤ i≤ j ≤ N (13)

The objective function minimizes the required strip length (7).
Constraints (8) constraints (9) are the bound constraints of the
pieces. Inequalities (10) are the corresponding NFP inequalities
and constraints (12) indicate that one slice of each NFP must be
turned on (inequalities (2)).

3. VALID INEQUALITIES FOR NESTING PROBLEMS

In this section we present some valid inequalities for the HSF.
When we relax the integer conditions of the Mixed Integer For-
mulation we usually obtain a non integer solution. The inequali-
ties presented here can be very useful if we want to cut some non
valid solutions. The first kind of inequalities are the LU covers.
These inequalities ensure that the columns of pieces fit into the
strip. The same idea is used in the second inequalities, the cliques
and covers. The third inequalities are the Transitivity Constraints
in which the idea is to place a set of pieces consistently, and do not
turn on variables which are incompatible. Finally, we introduce
the impenetrability constraints relating binary variables with the
variables associated to the reference points of the pieces.

3.1. LU-cover inequalities

Let us consider the polygon of the NFPi j where the reference
point of piece pi is placed at (0,0). Let us denote by Y i j (Y i j)
the maximum (minimum) value of the NFPi j on the Y − axis and
let yi jk (yi jk) be the maximum (minimum) value of the slice on the
Y −axis.

Let us consider that variable bi jk is turned on. If we want to know
how much the piece p j protrudes from the piece pi (or viceversa)
in a vertical way we need to calculate Y i j − yi jk (if yi jk > 0) or
(−1)Y i j − (−1)yi jk (if yi jk < 0). This difference can be viewed
as the quantity of width that the pieces share. Then we com-
pare this difference with the minimum width of the pieces pi and
p j (mini, j{wi,w j}). If the difference is lower than the minimum
width, there is a part of piece p j which protrudes from piece pi. In
case that yi jk < 0 and yi jk > 0 the slice allows to place the refer-
ence point of the two pieces on the same y-coordinate, and in this
case the pieces do not pile up.

Let pi y p j be two pieces. We denote by U∗ij (D∗ij) the subsets of
binary variables which define slices of the NFPi j such that, when
they are turned on, they put p j above pi (p j below pi):

U∗ij := {bi jk | Y i j− yi jk < wi j}
D∗ij := {bi jk | (−1)Y i j− (−1)yi jk < wi j}

where wi j := min{wi,w j}.
Let C = {p1, . . . , pr}, 1 < r ≤ N, be a subset of r pieces, and let
U ′st ⊆U∗st , U ′st 6= /0 and D′st ⊆ D∗st , D′st 6= /0, ∀1 ≤ s < t ≤ r. We
denote by UD′st :=U ′st ∪D′st . Note that U ′st = D′ts ∀ps, pt ∈C.

Proposition:
Let

δ := max
τ∈π{C}

{
r−1

∑
t=1

∑
l∈U ′τ(t)τ(t+1)

qτ(t)τ(t+1)lbτ(t)τ(t+1)l}

and let qτ(t)τ(t+1)l be the amount of overlapping along the Y-axis
between piece τ(t + 1) and τ(t) when bτ(t)τ(t+1)l is turned on.
π{C} is the set of all the permutations of the pieces in C. There-
fore, δ is the maximum overlap between the pieces of C in any
order.

If inequality (14) is satisfied, then constraint (15) is a valid in-
equality for the Nesting problem. We say that constraint (15) is a
LU-cover inequality.

r

∑
s=1

ws−δ > W (14)

r−1

∑
s=1

r

∑
l=s+1

∑
k∈UD′sl

bslk ≤
r−1

∑
s=1

(r− s)−1. (15)

3.2. Cliques and covers

These constraints are based on the same idea of the LU covers in-
equalities but in this case we consider a fixed permutation of the r
pieces, e.g {p1, . . . , pr}, and we have to check whether condition
(14) is satisfied by the given permutation. In this case we only
consider the NFPs that separate adjacent pieces in the order given
by the permutation. That implies that inequality (15) has fewer
variables.

We present only the case of three pieces, but it could be general-
ized to r pieces. The case of the three pieces, called cliques, has a
right hand side of 1, and the case of r (r > 3) pieces, called covers,
has a right hand side of r−2.

Proposition:
Let us consider three pieces, pi, p j and pk. If there are two sub-
sets U ′1 ⊆ U jk, U ′2 ⊆ Ukl ,U ′2 6= /0, such that ∀s ∈ U ′1 and ∀t ∈ U ′2
ys

i j ik
+ yt

ik il
>W −wl is satisfied, then inequality (16) is valid.

∑
s∈U ′1

b jks + ∑
s∈U ′2

bkls ≤ 1. (16)

These inequalities could also be define in a horizontal sense.

3.3. Transitivity Inequalities

These constraints are designed to forbid incompatible slices being
turned on. In other words, if two slices separating pieces 1− 2
and 1− 3 are turned on, the relative position of pieces 2− 3 can
be limited and there could exist slices from NFP23 such that are
incompatible with the previous ones.

In this section we present only the transitivity inequalities involv-
ing three pieces. This idea could be generalized considering n
pieces, but it would be more complicated with more computational
effort.

Proposition:
Let us consider 3 pieces, i, j y k. Let bi j1, bik1 and b jk1 be three
variables defining, respectively, one slice of the NFPi j, NFPik and
NFPjk. If bi j1 = bik1 = 1 they define a region for the relative posi-
tion of pk with respect to p j. If the slice defined by b jk1 does not
intersect this region then these three variables cannot be equal to 1
simultaneously and the corresponding transitivity constraint is:

bi j1 +bik1 +b jk1 ≤ 2 (17)

If there are other variables of NFPi j incompatibles with bik1 and
b jk1 then can be added to the right hand side of (17).
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3.4. Impenetrability Inequalities

The Impenetrability inequalities are based on the study of the sum
of the coordinates of the pieces. If we relax the integer conditions
of the variables and we solve the problem, then it is usual to find
that all the pieces have been placed close to the origin. The idea of
these inequalities is to move the pieces beyond the origin, depend-
ing on which binary variables are positive.

Let pi and p j be two pieces, 1 ≤ i < j ≤ N. Then, we study how
much the value of the sum S := xi+x j +yi+y j could be improved
using the binary variables. The idea is to minimize S in each one
of the slices defined by the NFPi j. An Impenetrability constraint
has the following form:

S≥
mi j

∑
k=1

ωk
i jbi jk, (18)

where the coefficients ωk
i j are the solutions of the linear problem

which consist of minimizing S subject to the constraints that define
the slice bi jk. These inequalities are valid by construction.

It would be interesting to add to the inequality other variables
corresponding to other NFPs. Let us consider pr and a variable
birl ∈V NFPir. If we want to include this variable to the right hand
side of (18), we have to study in which way the coefficients ωk

i j
have to be modified. This study requires to check all the coeffi-
cients every time we want to include a new variable.

4. CONCLUSIONS

In this paper we have proposed a new Mixed Integer Formulation
for the Nesting Problem. The HS formulation modifies the FL
formulation in two ways. On the one hand, the definition of hori-
zontal slices, which restrict the vertical position of the pieces. On
the other hand, the lifted bound constraints. The use of horizontal

slices allows us to fix many binary variables to 0. We have also
introduced some new valid inequalities, which have been found
studying the linear relaxation of the formulation. Again, the hori-
zontal slices are very useful for defining strong valid inequalities.
In these two aspects, the proposed formulation seems to improve
the previous ones, as a preliminary computational experience has
shown.

This work can be considered the first part of a study about this
problem that will lead us to the design and implementation of ex-
act and heuristic procedures. More concretely, in the second phase
of our work we are developing a Branch-and-Cut algorithm. The
formulation and the valid inequalities presented in this paper are
the basic components of the algorithm, but other important ques-
tions have to be addressed, such as the branching strategy and the
development of efficient separation algorithms for identifying vio-
lated inequalities.
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ABSTRACT

Matheuristic algorithms have begun to demonstrate that they can
be the state of the art for some optimization problems. This paper
puts forth that they can represent a viable option also in an ap-
plicative context. The possibility to get a solution quality valida-
tion or a model grounded construction may become a significant
competitive advantage against alternative approaches. This view
is substantiated in this work by an application on the problem of
determining the best set of locations for a constrained number of
traffic counters, to the end of estimating a traffic origin / destina-
tion matrix. We implemented a Lagrangean heuristic and tested
it on instances of different size. A real world use case is also re-
ported.

Keywords: Matheuristics, Traffic counters, Location problems,
Real world applications

1. INTRODUCTION

Matheuristic algorithms are the state of the art for some optimiza-
tion problems [1, 2, 3] and, besides their theoretical involvement,
they can represent a viable option also in an applicative context. In
fact, the possibility to get an online validation of the solution qual-
ity, for example by means of a bound, or a model grounded con-
struction which justifies construction choices, may be a significant
competitive advantage against alternative approaches. In spite of
the relative youth of this application field, several works have in
fact reported about the possibility to use matheuristics techniques
for implementing applications targeted for real-world deployment.

This possibility is substantiated also in this work by an applica-
tion on the problem of determining the best locations for a given
number of traffic counters, to the end of estimating a traffic Origin
- Destination matrix (OD matrix) of traffic flows. The applica-
tion supports a planner in inferring the OD matrix by determining
where to locate counters in such a way that the chosen positions
will be the most informative for the specific estimation algorithm
that shall be used.

The problem is already known in the literature, where it was pre-
sented under the name of Network Count Location Problem (NCLP).
A problem closely related to the NCLP is the Link Count Location
Problem (LCLP), which asks to determine the best position of a
counter along a link. In this work we are only interested in the

NCLP, possibly leaving the LCLP as a further study.

The most relevant literature contributions for the NCLP include
the work of Ehlert et al. [4], where they propose a MIP-based
tool which was put to actual use on a road network of 1414 di-
rected links, divided into 23 O/D zones. This approach is related
to the one we put forth here, while different approaches were used
by Yang and Zhou [5], who used selection rules, and by Bell and
Grosso [6, 7], who used path flows estimations. Overviews are
also available for this problem, for recent ones see Cascetta and
Pastorino [8] and Wang et al. [9].

2. PROBLEM SPECIFICATION

The general context in which the problem arises is that of inferring
an OD matrix of traffic flows. Within this framework, the NCLP
asks to determine which is the best positioning for a set C of traf-
fic counters, that is, the positions which provide most information
to a subsequent OD estimation algorithm. This should take into
account also the possibility of having pre-installed fixed counters
which cannot be moved and whose information must be consid-
ered for the subsequent OD estimation.

One possible formulation of the problem is the following.

Given a road network N represented by a multigraph G = (V,A),
with V =Vs ∪Vc and A = As ∪Ac where As is the subset of actual
road network arcs, representing the different lanes of the roads of
interests (or the carriageways in case of motorways), Vs the subset
of its endpoints (crossways of the road network), Vc is a subset of
dummy nodes, each of which is associated with an origin or with a
destination and Ac is a subset of dummy arcs, which connect each
origin or destination node to all nodes in Vs belonging to the zone
modeled by that origin or destination.

We want to determine the arcs where the counters of set C are to be
most conveniently located. That is, we want to determine the arc
subset Ā, Ā⊆ As, on whose arcs a traffic count f̄i j will be obtained.

An obvious precondition is the ability to determine an estimate of
the traffic flow fi j on each arc (i, j) ∈ A. Details on a possible
procedure for this can be found in Gabrielli et al. [10, 11]. An
actual traffic count, f̄i j, could also be already available for the arcs
of a subset of As.

The OD matrix is modeled as an index set Λ= [`] of OD pairs, each
of them with an associated demand ω` ∈ Ω. Demands will even-
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tually distribute over traffic flows ϕp, running on directed paths
p, p ∈ Π`, where Π` is the index set of paths for OD pair ` and
Π =

⋃
`∈Λ Π`. The objective asks to minimize an additive gener-

alized cost, which can be computed for each arc (i, j) in relation
to the time needed for traveling through the arc, in accordance to
Wardrop’s principle, and it is a function ci j( fi j) of the flow through
it. The basic traffic assignment problem is thus as follows:

(TAP) min ∑
(i, j)∈A

ci j( fi j) (1)

s.t. ∑
p∈Π`

ϕp = b`, ` ∈ Λ (2)

fi j = ∑
p∈Π

δ p
i jϕp ≤ ui j (i, j) ∈ A (3)

Here b` represents the origin to destination demand for OD pair
`, δ p

i j is a constant equal to 1 if arc (i, j) belongs to path p, 0
otherwise, and ui j is the theoretical capacity of arc (i, j).

A significant problem to be faced in this kind of applications is the
inherent unreliability of the OD matrix. The matrix is usually ob-
tained from interviews and/or inductions from geographic and eco-
nomical data, and it is therefore intrinsically approximated. More-
over, OD data is possibly obsolete. This motivated substantial re-
search aimed at updating OD matrices, including several methods
based on actual traffic counts on road arcs.

The OD matrix estimation problem was modeled as a constrained
quadratic optimization problem. Input data are the flows ϕp on
each path p ∈ Π, the old OD matrix, ¯Ω = [ ¯ `]ω , the set F̄ = { f̄i j}
of the sampled flows for each arc in Ā, a lower bound L` and an
upper bound U` for each OD pair ` ∈ Λ.

The new OD matrix is computed as a trade-off between the ob-
jective of minimizing the quadratic difference from Ω̄ and that of
minimizing the difference of the flows fi j induced in each arc in
Ā with f̄i j , where the f̄i j are measured by actual traffic counters,
under constraints on L` and U`. To compute it, we need the us-
age ratio of each arc (i, j) for each pair `, which is computed as

ρ`
i j =

∑p∈Π`
δ p

i jϕp

∑p∈Π`
ϕp

, where Π` is the index set of all paths for OD
pair ` as computed by the assignment. The formulation of the OD
refinement problem becomes as follows:

(ODP) min ∑̀
∈λ

(ω`− ω̄`)
2 + γ ∑

(i, j)∈A

(
∑
`∈Λ

ω`ρ`
i j− f̄i j

)
(4)

s.t.L` ≤ ω` ≤Ui j ` ∈ Λ
(5)

where γ is a user-defined parameters which biases the result toward
having an OD matrix structurally close to the old one and away
from having assignments close to the sampled ones, or vice-versa.

To determine subset Ā we propose to use the following model. The
model is based on an operational assumption: each counter, when
placed on a two way road, is able to provide data for both driving
directions. Therefore, one counter will provide data for two arcs in
A, when the two correspond to the driving directions of a two-way
road. We need anyhow to have counting data associated to arcs in
order to provide the needed input to the OD estimator.

In the model, we associate a binary variable xi j to each arc (i, j) of
the road network N. Each network arc (i, j) ∈ N could correspond
to one arc (i, j)∈ A or to a pair of arcs (i, j)∈ A, ( j, i)∈ A, depend-
ing on whether it is a one-way or a two-way road. The xi j variable
is equal to 1 iff the arc will be chosen for hosting a counter. Fur-
thermore, we associate a binary variable ξp to each possible path p

between origins and destinations in N (i.e., between nodes in Vc).
The model tries to minimize the number of OD pairs (i.e., the num-
ber of paths) which won’t be sampled by any counter. Variables ξ
act as slacks in the covering constraints, permitting to cover a path
with an expensive slack variable if no counter can be used. The
price cp of each ξp variable could also be a function of prior OD
values, when available. The problem asks then to solve the follow-
ing Set Covering problem with an additional knapsack constraint:

(TCL) min ∑
p∈Π

cpξp (6)

s.t. ∑
(i j)∈N

ap
i jxi j +ξp ≥ 1, p ∈Π (7)

∑
(i j)∈N

xi j ≤ n, (8)

xi j,ξp ∈ {0,1} (i, j) ∈ N, p ∈Π (9)

where n is the cardinality of C and ap
i j is a coefficient equal to 1 if

arc (i, j) enters path p, 0 otherwise. Notice that x variables can be
fixed to trivially account for pre-installed counters.

3. A LAGRANGEAN SOLUTION

Formulation TCL can be effectively solved for small to mid sized
problem instances. This is already enough for a number a of real
world applications, thus a direct use of a MIP solver is an option
to consider when facing an actual case. However, instances could
become too big to be solved to optimality within a required time
limit. In these cases heuristics are in order. We propose a La-
grangean approach for designing a metaheuristic able to effectively
cope with big TCL instances.

3.1. Lagrangean relaxation

Formulation TCL can be simplified by relaxing the covering con-
straints 7, or the knapsack constraint 8 or both. After some prelim-
inary testing, we went for option one and we relaxed the covering
constraints, keeping the knapsack. The relaxed formulation be-
comes the following.

(LTCL) min ∑
p∈Π

(cp−λp)ξp− ∑
p∈Π

∑
(i j)∈N

λpap
i jxi j + ∑

p∈Π
λp

(10)

s.t. ∑
(i j)∈N

xi j ≤ n, (11)

xi j,ξp ∈ {0,1}, (i, j) ∈ N, p ∈Π (12)
λp ≥ 0 p ∈Π (13)

The deriving subproblem, with given penalties, can be easily solved
by inspection, by setting to 1 all ξ variables with negative coeffi-
cient and by choosing the n variables of type xi j with greater coef-
ficients.

3.2. Lagrangean Metaheuristics

Formulation LTCL can be used both for obtaining a bound on the
optimal solution cost and a feasible, high quality solution. We
went along, implementing a Lagrangean metaheuristic [12] for the
TCLP, based on a subgradient solution of the Lagrangean dual of
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formulation LTCL. The general structure of the algorithm is as in
Boschetti, Maniezzo [13]:

LAGRHEURISTIC()
1: identify an "easy" subproblem LR(λ)
2: repeat
3: solve subproblem LR(λ) obtaining solution x
4: check for unsatisfied constraints
5: update penalties λ
6: construct problem solution using x and λ
7: until (end_condition)

where subproblem LR corresponds to LTCL, and penalty updates
is implemented as an adaptive subgradient algorithm, as specified
in Boschetti et al. [12].

In our case, each iteration of the subgradient algorithm directly
provides also a feasible problem solution, as the inspection of
LTCL variable costs permits to determine a subset of n arcs, which
will be those suggested for locating the traffic counters. A simple
local search is used (and needed) to fine-tune the solutions.

4. USE CASES

We implemented an operational solution, coding the above algo-
rithm in c# under .Net framework 4. The solution comprises also
an IP optimization of formulation TCL, empowered by CoinMP
(for which a c# wrapper is freely available [14]). Data was im-
ported and exported from ESRI ArcGis [15] and preprocessed in
PostGIS [16]. We had the possibility to test our approach on three
real-world instances, defined on data of three municipalities in
northern Italy.

The main characteristics of the instances are summarized in Table
1, where the columns show:

• id: an identifier of the instance

• Surf: the surface of the municipality, in square Km

• Inh: the number of inhabitants of the municipality

• Dens: the resident population density of the municipality

• Nodes: the number of nodes of the road graph

• Arcs: the number of arcs of the road graph

• Zones: the number of zones for which the OD movements
are to be estimated

• Count: the number of counters to locate

In all instances the number of counters to locate is to be intended
as a number in addition to those already installed in the territory.

Municipality Road graph
id Surf Inh Dens Nodes Arcs Zones Count
A 56.89 10651 187 795 1898 14 25
B 45.13 25375 562 1904 5210 12 24
C 7.58 10275 1355 3469 8136 13 28

Table 1: Real world instances.

Notwithstanding with the relative small scale of the tested instances
- which is anyway aligned with that of the biggest instances so far
presented in the literature - the results were of interest. Each in-
stance could be solved in less than 10 seconds on a 3 GHz Pentium
Duo machine with 2 Gb of RAM, providing solutions which were
of interest for the final user.

Figures 1 present input data (top) and final solution (bottom, counted
arcs in red) for instance A, the smallest of the three. A noteworthy

Figure 1: Instance A: OD zones and transfer paths (top), counted
arcs (bottom).

characteristic of the solution was that the counting locations were
set on nonintuitive arcs. In several cases in fact it is suggested to
count traffic flows composed by many paths, which can be disam-
biguated considering the whole set of observations.

Figure 2 present a wide area view of the territory of interest for in-
stance B, as several zones were defined outside of the municipality
of interest because significant flows were originated far from the
municipality. It was requested to also determine the flows specifi-
cally originated from the (relatively) far origins. In fact, some arcs
correspond to highway tracts. The different zones internal to the
municipality are here condensed in the central cluster. Again, the
solution was able to provide a feasible scenario of interest for the
operator.

Finally, figure 3 presents a wide area view of instance C, where the
smallest roads are not drawn. The same considerations made for
instance B can be applied also here.

In conclusion, we like to point out how the proposed procedure
proved effective in the operational contexts where it was tested. A
strong point we like to make is that the procedure was used in an
operational process, dealing with real-world data and constraints
and operating on a legacy field system, thus providing an endorse-
ment for the use of matheuristics in real-world applications.

We are now considering bigger size instances. We are confident
that the procedure can be used also for bigger municipalities as
its primary use is for the location of additional counters, and the
already located ones do not increase the instance complexity.
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Figure 2: Instance B: OD zones and transfer paths.

Figure 3: Instance C: OD zones and transfer paths.
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ABSTRACT

We study a real-world distribution problem arising in the automo-
tive field, in which cars and other vehicles have to be loaded on
auto-carriers and then delivered to dealers. The solution of the
problem involves both the computation of the routing of the auto-
carriers along the road network and the determination of a feasible
loading for each auto-carrier. We solve the problem by means of
a heuristic algorithm that makes use of simple greedy and local
search strategies for the routing part, and more complex mathe-
matical modeling and branch-and-bound techniques for the load-
ing part. Preliminary computational results show that good savings
on the total routing distance can be obtained within small compu-
tational efforts.

Keywords: Vehicle routing, Matheuristics, Auto-carrier transporta-
tion

1. INTRODUCTION

The automotive industry represents a very important sector of mod-
ern economies, as confirmed by the weight of turnover in GDP
(3.5% in Europe in 2009) and on the number of vehicles that cir-
culate on roads (224 million vehicles in Europe in 2009). One
of the main logistic issues in this sector concerns the delivery of
vehicles (e.g., cars, vans or trucks) to dealers.

Usually vehicle manufacturers do not deliver their products di-
rectly, but rely on special logistic companies. These companies
receive the vehicles from the manufacturers, stock them in storage
areas and deliver them to the dealers when ordered. The deliveries
are provided by special trucks, called auto-carriers, composed by a
tractor and perhaps a trailer, both usually equipped with upper and
lower loading planes. An example of a typical auto-carrier is de-
picted in Figure 1. The depicted loading is composed by identical
vehicles, but, in most of the cases, loadings involving heteroge-
neous vehicles occur.

The loading capacity of an auto-carrier strongly depends on the
vehicles dimensions and shapes. To increase such capacity auto-
carriers are usually equipped with particular loading equipments.
For example, vehicles may be partially rotated and the upper load-
ing planes may be translated vertically and/or rotated, see again
Figure 1. Both upper and lower planes can also be extended to

Figure 1: An example of an auto-carrier with four loading planes,
carrying nine vehicles.

increase their lengths. Additional loading constraints come from
transportation laws, that impose maximum height, length and weight
of the cargo. Note that the width is negligible, because vehicles
cannot be transported side-by-side on the auto-carriers.

The dealers are spread out over large areas, and it is infrequent that
a single dealer order can fill exactly the capacity of one or more
auto-carriers. For this reason the companies are forced to load
different orders from different dealers into the same auto-carriers.
Note also that the auto-carriers are rear-loaded and the loadings
must preserve a Last In First Out (LIFO) policy: it must always
be possible to unload a vehicle at a dealer without moving other
vehicles directed to following dealers.

This work is devoted to the study of a real-world case derived from
the everyday activity of one of these logistic companies. The com-
pany delivers vehicles all over Italy through a large fleet of het-
erogeneous auto-carriers. Their activity involves multiple days,
multiple depots, pickups-and-deliveries, not to mention the uncer-
tainties that typically arise in routing problems. In this work we
limit the study to one day (i.e., deliveries cannot be postponed)
and one depot (the main depot of the company), and focus on the
minimization of the number of kilometers traveled.

Despite these assumptions, the resulting combinatorial problem
is very complex, as it requires not only the solution of a two-
dimensional non-convex loading problem for each auto-carrier, but
also the routing of the auto-carriers along the road network. Both
these two sub-problems are NP-hard. Moreover, the size of the
problems we address is very large: on average 800 vehicles are
delivered everyday to about 200 dealers in the instances that were
provided to us. It is thus natural to focus on heuristic techniques.

We developed a constructive heuristic and some local search tech-
niques based on classical ideas from the vehicle routing literature.
Any time one of these techniques has to determine the feasibil-
ity of the loading associated to a route, it invokes a given loading
algorithm. Such algorithm is based on an approximation of the
original non-convex two-dimensional loading problem, which is
solved by means of 1) an integer linear model or 2) a combinatorial
branch-and-bound technique. Our approach can be seen as a par-
ticular matheuristic algorithm, see Maniezzo et al. [1], because it
integrates heuristic search techniques (for the routing) with math-
ematical modeling and exact techniques (for the loading).

The remaining of the paper is structured as follows. In Section 2
we formally describe the problem and briefly review the relevant
literature. In Section 3 we present the approach we developed, and
in Section 4 we finally present some preliminary computational
results.

2. PROBLEM DESCRIPTION AND LITERATURE
REVIEW

In the following we use the term vehicle to denote a transported
item (e.g., a car, a truck, a van), and the term auto-carrier to denote
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a truck that transports vehicles. We are given an heterogeneous
fleet of auto-carriers. More in details, we are given T auto-carrier
types. Each auto-carrier type t has a maximum weight capacity
Wt and is formed by Pt loading planes. There are Kt auto-carriers
available for each type t (t = 1, . . . ,T ).

We are also given a complete graph G = (N,E), where N = {0,1,
. . . ,n} is the set of vertices and E the set of edges connecting each
vertex pair. Vertex 0 corresponds to the depot, whereas vertices
{1, . . . ,n} correspond to the n dealers to be served. The edge con-
necting dealers i and j is denoted by (i, j) and has an associated
routing cost ci j (i, j = 0, . . . ,n). The cost matrix is symmetric and
satisfies the triangular inequality.

The demand of dealer i consists of a set of mi vehicles. Each ve-
hicle k demanded by dealer i has weight wik (i = 1, . . . ,n; k =
1, . . . ,mi), and a particular two-dimensional shape, whose details
will be discussed in Section 3.1. The demand of a dealer has to
be completely fulfilled. This can be done by using one or more
auto-carriers (i.e., split deliveries are allowed). Let M denote the
total number of vehicles to be transported.

We denote a route by the triplet (S,τ,φ), where S ⊆ {1, . . . ,M} is
a set of vehicles to be transported, τ is an auto-carrier type, and
φ : S→ N is a function that gives the order in which a vehicle is
delivered along the route. In particular all vehicles k demanded by
the first dealer visited in the route have φ(k) = 1, those demanded
by the second dealer visited in the route have φ(k) = 2, and so on
(k = 1, . . . , |S|). A route (S,τ,φ) is said to be load-feasible if

(i) the sum of the weights of the vehicles in S does not exceed
the weight capacity of auto-carrier τ;

(ii) there exists a feasible loading of the vehicles in S on the Pτ
platforms of auto-carrier τ;

(iii) when visiting the dealer in position ι̃ in the route, all vehi-
cles k having φ(k) = ι̃ can be downloaded directly from the
auto-carrier, without moving vehicles directed to dealers to
be visited later on along the route.

Checking Condition (i) is easy, whereas checking Conditions (ii)
and (iii) involves the solution of a complex two-dimensional non-
convex loading problem, whose details are shown in Section 3.1.

The Auto-Carrier Transportation Problem (A-CTP) calls for the
determination of a set of routes such that each route is load-feasible,
the demands of the dealers are completely fulfilled and the total
cost is minimum.

The (A-CTP) belongs to the class of integrated loading and rout-
ing problems. It can be seen as a (particularly difficult) variant of
the Capacitated Vehicle Routing Problem with Two-dimensional
Loading Constraints (2L-CVRP), see Iori et al. [2]. In the 2L-
CVRP the demands are sets of two-dimensional rectangular items
and have to be loaded into two-dimensional rectangular loading
spaces. Apart from the A-CTP, other variants of the 2L-CVRP
that model real-world distribution problems have been studied by
Gendreau et al. [3] (furniture distribution) and Doerner et al. [4]
(timber distribution). We refer the reader to Iori and Martello [5]
for a recent survey on routing problems involving loading con-
straints. For what concerns vehicle routing in general, we refer to
the books by Toth and Vigo [6] and Golden et al. [7]. The latter
also contains a comprehensive survey (Archetti and Speranza [8])
on routing problems involving split deliveries.

Other auto-carrier problems have been addressed in the literature.
Agbegha et al. [9] focused their attention on the loading problem,
and modeled it by dividing the auto-carrier into slots and assigning
vehicles to slots. Incompatibilities arise as some vehicles cannot
be assigned to adjacent slots. Tadei et al. [10] studied a large auto-
carrier problem by considering both routing and loading aspects.
They solved the loading problem by using the concept of equiva-
lent length (in practice the length occupied on a plane by a vehicle

after an possible rotation). They considered the case of deliveries
occurring in multiple days and solved it through a heuristic based
on an integer programming formulation.

3. A SOLUTION APPROACH

We developed simple heuristic algorithms based on classical strate-
gies for the capacitated vehicle routing problem. We start with a
randomized closest neighbor heuristic. We initialize a route by se-
lecting a random vehicle among those to be delivered and a random
auto-carrier among the available ones. We then extend the route by
selecting the vehicle to be delivered whose dealer is closest to that
of the last loaded vehicle. At any iteration we invoke the algorithm
to be described below in Section 3.1 to check the feasibility of the
loading. We continue extending the current route as long as the
loading remains feasible. We then re-iterate by initializing a new
route, until all vehicles are loaded.

The solution obtained by the above heuristic is optimized by using
three simple local search procedures. The first one, denoted move
1-0, attempts to move all the vehicles assigned to a dealer in one
route to another route. If the loading is feasible and the total cost
of the involved routes is reduced, then the move is performed. The
local search re-iterates, in a first-improvement fashion, until no
further cost reduction is possible. The two other local search al-
gorithms operate in a similar manner but have larger complexities.
Local search swap 1-1, resp. swap 2-1, attempts to exchange all
the vehicles demanded by a dealer, resp. two dealers, in one route
with all the vehicles demanded by another dealer in another route.
Also the local search procedures invoke the algorithm of Section
3.1 whenever they need to check the feasibility of a loading.

3.1. Solution of the loading problem

In this section we present an algorithm to determine if a given route
(S,τ,φ) is load-feasible or not. As mentioned before, the exact so-
lution of the two-dimensional non-convex loading problem is NP-
hard and particularly complex in practice. Hence we content us
with an approximate model of such problem. The reliability of the
approximate modeling was tested together with the logistic com-
pany, by using their historical delivery database. Out of 20,335
auto-carrier loadings performed by the company (hence feasible),
the model reported the correct answer for 20,210 cases, proving to
be 99% accurate. Similar results were obtained for loadings that
were known to be infeasible. In the following we denote homoge-
neous a loading that involves identical vehicles, and heterogeneous
one that involves different vehicles.

The first easy check that our algorithm performs is based on the
vehicles weights: if their sum is greater than the auto-carrier ca-
pacity, then the load is infeasible. Otherwise we perform a second
quick check. For each type of vehicle and auto-carrier, the lo-
gistic company provided us what they define the load-index, i.e.,
the maximum number of such vehicles that can be loaded on such
auto-carrier. For example, the load-index is nine for the vehicle
and auto-carrier depicted in Figure 1. We use dikτ to denote the
load-index, i.e., dikτ stands for the maximum number of vehicles
having the same shape of vehicle k demanded by dealer i that can
be loaded into auto-carrier τ .

Let i(k) denote the dealer demanding vehicle k. We compute d̃ =

∑k∈S 1/di(k)kτ and consider feasible a loading having d̃ ≤ 1. Note
that the load-index is a very approximate information and hetero-
geneous loadings may be feasible also when d̃ > 1. For this reason,
whenever 1 < d̃ ≤ 1.2 and the loading is heterogeneous we invoke
an integer linear program (ILP) to determine the feasibility. We
consider infeasible homogeneous loadings with d̃ > 1 and hetero-
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geneous loadings with d̃ > 1.2.

To describe the ILP we need some quite tedious but necessary no-
tation. Each loading plane p of auto-carrier τ has length Lpτ and
a possible maximum extension Apτ . Given a plane p, let h(p) de-
note the plane placed side by side horizontally with p, if any (for
example the two lower planes in Figure 1). The total extension of
planes p and h(p) is limited to be at most Ãph(p)τ . A vehicle has a
certain length, and, whenever loaded on a plane, can be rotated by
a certain degree. We denote `kpτ the equivalent length that takes
vehicle k when loaded on plane p of auto-carrier τ .

Similarly to what done for h(p), let us denote v(p) the plane placed
vertically above/below plane p, if any (for example the upper and
lower planes of the trailer depicted in Figure 1). A vehicle be-
ing particularly high when loaded on p may have a side effect on
v(p). For example we might be forced to lower down completely
an upper plane, hence using also completely the length of the lower
plane below, or we might be forced to rotate consistently the up-
per plane, losing in this way a portion of the lower plane length.
To express this constraint we define λkv(p)τ the equivalent length
on plane p used by vehicle k when loaded on plane v(p) of auto-
carrier τ .

We finally define a precedence matrix among planes: let bpq take
value one if loading a vehicle on plane p forbids unloading a ve-
hicle loaded on plane q, 0 otherwise. When bpq = 1 we say that
p precedes q. For example, the right lower plane of Figure 1 pre-
cedes all other planes, whereas the right upper plane precedes only
the left upper plane.

To model the loading problem as an ILP we define xkp = 1 if ve-
hicle k is assigned to plane p, 0 otherwise, for k ∈ S, p = 1, . . . ,Pτ .
We also define ap = length extension of plane p, for p = 1, . . . ,Pτ .
We obtain:

Pτ

∑
p=1

xkp = 1 k ∈ S (1)

∑
k∈S

(`kpτ xkp +λkv(p)τ xkv(p))≤ Lpτ +ap p = 1, . . . ,Pτ (2)

xkp + xlq ≤ 1 p,q = 1, . . . ,Pτ : bpq = 1;
k, l ∈ S : φ(k)> φ(l) (3)

ap +ah(p) ≤ Ãph(p)τ p = 1, . . . ,Pτ (4)

0≤ ap ≤ Ap,τ p = 1, . . . ,Pτ (5)
xkp ∈ {0,1} p = 1, . . . ,Pτ ;k ∈ S (6)

Constraints (1) impose that each vehicle is loaded on a plane. Con-
straints (2) model the maximum length of a plane, but also taking
into account vertical effects. Constraints (3) impose the LIFO pol-
icy. Note that we suppose that vehicles having different order of
visit and being assigned to the same plane can be loaded in such
a way that the LIFO policy be satisfied. Constraints (4) model
the limit on the maximum extension of two planes placed side by
side, and constraint (5) give the appropriate range to the planes ex-
tensions. If model (1)–(6) produces a feasible solution, then we
consider the route load-feasible.

We also developed an alternative strategy to the above model based
on an enumeration tree. At each level of the tree we create a node
by loading any still unloaded vehicle in any plane. For any plane
we keep in memory the available residual lengths. For any dealer
we keep in memory both the length that still has to be loaded,
and the total residual available length in the auto-carrier that can
be used by this dealer. When loading a vehicle in a plane, i.e.,
when creating a node, we update all residual lengths by consid-
ering LIFO policy, horizontal and vertical relations among plat-
forms, if any, and maximum extensions. Whenever the residual
available length exceeds the length that still has to be loaded for a
dealer, we fathom the node. The tree is explored in a depth-first

fashion. In Section 4 we compare the performance of this algo-
rithm, denoted branch-and-bound, with that of the ILP model.

4. PRELIMINARY COMPUTATIONAL RESULTS

We coded our algorithms in C++ and run them on a Pentium Dual-
Core, with 2.70 Ghz and 1.96 GB RAM, running under Windows
XP. We tested the algorithms on instances derived from the real-
world problem. We considered the daily distributions operated by
the logistic company in the month of July 2009, obtaining in total
23 instances, one for each working day. We filled the cost matrix
by computing the distances of the shortest paths, in kilometers,
using a GIS-based software. The fleet we consider is made by two
types of auto-carriers, one with two loading planes and the other
with four.

The results we obtained are reported in Table 1. In the left part
of the table, columns n and M report, respectively, the number of
dealers and the number of vehicles to be delivered. The small-
est instance has 96 dealers requests, for a total of 272 vehicles to
be delivered. The largest instance requires instead the delivery of
1139 vehicles.

We run our algorithms by making use of the two options that we
developed for the solution of the loading problem (see Section
3.1). The results that we obtained using the branch-and-bound are
reported in the middle part of the table. For the starting heuristic
algorithm and for the following local search methods, we present
the objective function value of the best solution obtained, in col-
umn km, and the CPU seconds required by the algorithm, in col-
umn sec. The algorithms are run in sequence, starting from the
closest neighbor heuristic and ending with the Swap (2-1). Each
algorithm starts from the best solution obtained by the previous
one. In the overall columns we report the total CPU time required
by all algorithms (sectot ) and the time spent by the loading proce-
dure (secload). Note that secload is a portion of sectot . The results
that we obtained using the mathematical model are reported in the
right part of the table. We only report, for comparison sake, sectot
and secload . The model has been solved using Cplex 11.

All algorithms using the branch-and-bound option are very fast.
Their execution requires 1.5 seconds, on average, and about 7 sec-
onds in the worst case. About 70% of the cpu time used by the
algorithms is spent in the execution of the loading procedure. In
this case too, as in other routing and loading problems, the load-
ing problem has a crucial effect on the overall problem. The three
local search procedures are effective in reducing the number of
kilometers traveled. The percentage reduction in the number of
kilometers traveled is consistent for move 1-0 (3.11% with respect
to the solution provided by the greedy) and for swap 1-1 (3.92%
with respect to the solution provided by move 1-0), but less signi-
ficative for swap 2-1 (just 0.64% with respect to swap 1-1). The
use of model (1)–(6) instead of the branch-and-bound leads to a
consistent increase in the CPU times. The seconds dedicated to
the computation of the loadings raise from 1.06 to 15.32, on aver-
age. We can conclude that the branch-and-bound is a more suitable
solution method for these instances.

The results show that good savings on the number of kilometers
traveled can be obtained within limited computational effort. On
average we are able to reduce by 7.4% the number of kilometers
that were traveled in the routes carried out by the company in July
2009. We believe further improvement is possible, and for future
research we intend to embed the above local search techniques,
and maybe new ones, into a metaheuristic framework.
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branch-and-bound model (1)–(6)
instance greedy move (1-0) swap (1-1) swap (2-1) overall overall

day n M km sec km sec km sec km sec sectot secload sectot secload
01-Jul 228 832 57,132 0.05 56,184 0.16 54,179 0.92 53,347 0.06 1.19 0.59 14.06 13.35
02-Jul 221 1139 69,999 0.02 68,087 0.50 66,676 0.55 66,550 0.19 1.25 0.59 12.27 11.65
03-Jul 195 737 46,463 0.03 44,540 0.64 43,160 0.28 43,002 0.08 1.03 0.75 7.95 7.55
06-Jul 243 1063 69,135 0.05 65,565 0.47 61,262 1.30 60,968 0.17 1.98 0.94 25.95 24.58
07-Jul 165 629 33,469 0.02 31,362 0.14 30,249 0.30 30,179 0.05 0.50 0.28 7.86 7.55
08-Jul 206 810 52,028 0.05 48,444 0.38 46,417 0.98 46,066 0.13 1.53 0.98 19.91 19.33
09-Jul 200 941 57,682 0.05 56,522 0.77 54,866 1.80 54,538 0.42 3.03 2.57 29.20 28.53
10-Jul 199 803 47,632 0.03 45,187 0.69 44,097 0.25 43,884 0.08 1.05 0.80 10.42 10.08
13-Jul 244 1030 63,989 0.03 62,724 0.72 60,075 1.44 59,906 0.09 2.28 1.30 34.34 33.24
14-Jul 227 826 48,729 0.03 48,281 0.20 46,729 1.26 46,649 0.11 1.61 0.75 20.92 20.22
15-Jul 211 729 53,214 0.03 51,464 1.75 48,830 0.56 47,689 0.22 2.56 2.05 22.11 21.52
16-Jul 206 833 51,402 0.06 50,068 0.28 47,426 1.17 46,988 0.09 1.61 1.16 18.89 18.23
17-Jul 200 801 52,972 0.14 51,517 0.36 48,993 0.36 48,873 0.11 0.97 0.72 6.27 5.92
20-Jul 198 707 37,734 0.03 36,862 0.41 36,195 0.48 35,939 0.08 1.00 0.58 16.28 15.94
21-Jul 209 940 69,137 0.14 68,084 4.78 65,110 1.86 64,906 0.14 6.92 6.07 18.94 17.80
22-Jul 189 614 41,558 0.05 40,661 0.26 39,424 0.39 39,324 0.02 0.72 0.41 7.33 6.97
23-Jul 251 875 58,995 0.02 56,465 0.41 54,628 2.06 54,526 0.13 2.61 1.91 34.37 33.30
24-Jul 198 811 50,619 0.05 49,699 0.24 47,946 0.51 47,651 0.08 0.88 0.31 10.00 9.65
27-Jul 162 552 28,910 <0.01 28,320 0.09 27,407 0.14 27,279 0.03 0.27 0.16 5.05 4.94
28-Jul 176 556 30,479 <0.01 29,421 0.16 28,622 0.17 28,419 0.02 0.34 0.24 5.78 5.67
29-Jul 221 690 44,343 <0.01 43,339 0.36 41,200 0.48 40,652 0.13 0.97 0.50 16.20 15.78
30-Jul 204 614 42,935 <0.01 40,857 0.49 37,745 0.50 37,470 0.09 1.08 0.74 19.31 18.87
31-Jul 96 272 24,195 0.02 23,815 <0.01 23,168 0.06 22,900 <0.01 0.08 0.03 1.80 1.72
average 49,250 0.04 47,716 0.62 45,844 0.77 45,552 0.11 1.54 1.06 15.88 15.32
% km reduction 3.11 3.92 0.64

Table 1: Preliminary computational results.
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ABSTRACT

A new simple MIP heuristic, called Randomized Neighborhood
Search (RANS) is proposed, whose purpose is to produce within
short time bounds high quality solutions especially for large size
MIP problems as the ones characterizing real industrial applica-
tions. Starting from a feasible incumbent solution, RANS explores
a neighborhood randomly defined by calling a MIP solver as a
black box tool. RANS rationale is similar to the one of other MIP
heuristics recently appeared in literature but, differently, it exploits
only a randomization mechanism to guide the MIP solver. RANS
has some self-tuning rules so that it needs as single input parameter
the maximum computation time. This paper also presents a pro-
cedure for generating a first feasible solution based on the same
randomization concepts, that can be used as an initialization al-
ternative for particularly hard instances. RANS effectiveness is
shown by an experimental comparison with other MIP heuristics.

Keywords: Mixed Integer Programming, MIP heuristics, Neigh-
borhood search

1. INTRODUCTION

Mixed integer programming (MIP) is a flexible method for mod-
eling complex optimization problems, as the ones emerging from
many application contexts. A general MIP model (P) can be de-
fined as finding z = min{ f (x) : Ax = b, x ∈ S}, i.e., minimizing a
linear objective function f : S→ R subject to a set of linear con-
straints, where the set of decision variables is partitioned in general
as S = B∪ I∪C, being B, I and C respectively the sets of binary, in-
teger and real variables. In addition, let denote G the set of general
integer variables, i.e. G = B∪ I.

MIP belongs to the class of NP-hard problems and many research
and practical MIP problems are still very difficult to solve. There-
fore, complex combinatorial optimization problems from both aca-
demic research and real world applications have been tackled by
specialized heuristics or metaheuristics. However, recently, a num-
ber of approaches, called matheuristics, have been proposed to
melt or to associate ideas from metaheuristics with MIP solver al-
gorithms (e.g., [1, 2, 3, 4, 5]).

In this paper a new simple but effective heuristic approach is pro-
posed, which is able to face complex MIP problems exploiting a
MIP solver for finding the solution to a sequence of smaller sub-
problems. The method, called RAndomized Neighborhood Search
(RANS), iteratively performs local search steps seeking for an im-
proved incumbent solution by calling a MIP solver as a black box
exploring device. RANS adopts concepts similar to the Iterated
Greedy (IG) algorithm proposed in [6] for scheduling problems:
IG is a simple algorithm which starts from a feasible incumbent
solution and iterates a destruction step followed by a construc-
tion step in order to seek for an improved solution. RANS has
a self-tuning mechanism to settle the dimension of the MIP sub-
problems, so that they should be neither too much trivial nor hard

to solve. Experimental tests show that this very simple random
strategy that uses only hard fixing is quite effective in tackling very
tough problems, in particular being able to provide quite good re-
sults (i.e., with a reduced gap from the best known solution) in
short computation times.

This paper also presents a heuristic method, called RElaxed RAn-
domized Neighborhood Search (RERANS), to find an initial fea-
sible solution for MIP problems that exploits randomization simi-
larly to RANS. The idea is to progressively build the solution solv-
ing a sequence of partially relaxed MIP problems where only a
subset of randomly chosen variables from G are left integer con-
strained, whereas the remaining ones are continuous relaxed. Ac-
tually, since RERANS needs solving a series of sub-problems, this
method is not competitive with respect to other state-of-art gen-
eral purpose algorithms for fast generating an initial solution, as
for example the Feasibility Pump (FP) [7]; however, it may be
specifically useful whenever MIP solvers or other initialization ap-
proaches need a very large time to succeed.

2. LITERATURE REVIEW

MIP heuristic methods recently appeared in literature are Local
Branching (LB) [1], Relaxation Induced Neighborhood Search
(RINS) [2], Evolutionary Algorithm for Polishing (Polishing) [3]
and Variable Neighborhood Decomposition Search (VNDS) [4].
These methods generally include a high level component guiding
the solution space exploration through the definition of neighbor-
hoods of the incumbent solution, and a low level component re-
sponsible of the local search (LS), consisting of the definition of
a MIP sub-problem solved by a MIP solver called as a black box
module. All the methods need an initial feasible incumbent solu-
tion, usually provided as the first feasible solution produced by the
MIP solver, and adopt as termination condition the maximum time
limit.

LB, originally proposed in [1], is a strategic external branching
framework exploiting a MIP solver as black box tactical solution
tool. LB was applied to mixed 0-1 integer programming, and sug-
gestions about its extension to general MIP are provided in [2].
The method performs soft variable fixing by means of the so-called
local branching constraints that impose a bound k (the neighbor-
hood radius) on the maximum Hamming distance of the binary
variables from the incumbent xc, so defining the neighborhood of
xc. Whenever the MIP solver improves the incumbent, the lo-
cal branching constraint is reversed and the neighborhood of the
new incumbent is explored. The method, which is exact in prin-
ciple, is practically transformed in a LS heuristic having imposed
a time limit for the execution of MIP solver; it starts with a given
value for the maximum allowed distance k and it both reduces it
whenever the MIP solver does not improve the incumbent and in-
creases it during a diversification step. LB was successively re-
implemented in [2] as a heuristic to improve the incumbent that
is called within the standard branching exploration framework of a
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MIP solver whenever a new incumbent is found. The authors in [2]
show that the proposed reimplementation outperforms the original
method.

RINS [2] is a heuristic to seek for improved incumbent that is
called at nodes of a standard branching scheme. The method de-
fines the neighborhood to be explored by performing a set of hard
variables fixing, in particular fixing the integer and binary vari-
ables that have the same values in the incumbent xc and in xr,
which is the solution of the linear relaxation of the considered
node. When invoked at a node of the branching scheme, RINS
does not consider any branching cuts introduced but only global
bounds and cuts. An advantage of RINS is its simplicity: it is
embedded in MIP solvers so that diversification is implicitly pro-
vided by standard branching; it has no distinction between general
integer and binary variables; it has no control on the neighborhood
dimension. Therefore, being RINS potentially very time consum-
ing, a frequency parameter is used to limit number of nodes where
the method is called.

Polishing [3] is a solution improving heuristic that, similarly to
RINS, is called at nodes of the MIP solver branch-and-cut explo-
ration tree, but it operates exploiting evolutionary algorithm con-
cepts. Polishing maintains a fixed size population of the best P so-
lutions found so far and when invoked it first generates M mutated
solutions and then it performs C solution combinations. Mutation
is used to increase both the diversity and the number of the so-
lutions in the population: it is performed first randomly selecting
a seed solution and then solving a MIP sub-problem having hard
fixed a subset of randomly selected integer variables to the seed
values. The fraction of variables to be fixed is initialized to 50% of
the total number of variables and successively adapted (increased
by 20% if the MIP sub-problem has no solution or no improvement
is found; decreased by 25% if only the seed solution is found; un-
changed if a new incumbent is found). Combination is performed
extending the hard fixing mechanism of RINS: two solutions (or
all the solutions) are selected from the population as parents, and a
MIP sub-problem is solved having hard fixed the variables whose
values agree in the parents. The new solution found is added to
the population if better than the worst solution currently included.
Similarly to RINS, a node limit L is imposed for sub-problem so-
lution. Other algorithm parameters are the population dimension
P, the number M of mutations and the number C of combination
performed.

VNDS is a method very recently introduced in [4] that can be con-
sidered an evolution of Variable Neighborhood Search Branching
(VNSB) [8]. Both algorithms differ from the LB and RINS ap-
proaches as they do not adopt a branching scheme as high level
component but a Variable Neighborhood Descent (VND) search
strategy which performs a local search by changing the neighbor-
hood structure to avoid to be trapped in local optima. VNDS is a
two-level VND scheme. At first level the absolute distances be-
tween incumbent and linear relaxation solution components, δ j =∣∣∣xc

j− xr
j

∣∣∣ for j∈B (only binary variables were considered in [4]),
are computed and sorted in not decreasing way. Then, at second
level, the k variables with smaller δ j are fixed and the consequent
sub-problem is solved by a MIP solver. If this improves the in-
cumbent, a VND-MIP step is started, otherwise k is reduced and
the process is iterated. The VND-MIP implements a VND where
neighborhoods are obtained by LB constraints whose r.h.s. is in-
creased when no improvement is found. VNDS adopts a mix of
hard and soft fixing and needs to set a wide number of parame-
ters. Therefore, the method appears more complicated than the
ones above outlined also for the need of an appropriate parameter
tuning.

3. THE RANS HEURISTIC

The RANS heuristic is a simple iterative search strategy that op-
erates similarly to an iterated local search. The RANS algorithm
starts from a first feasible solution xc for the original MIP problem
(P) and iterates the following main steps until the maximum time
limit is reached:

1. Solution destruction. A subset F ⊆ G of binary and integer
variables is randomly selected such that |F | = k, where k
is a parameter initialized as k = 0.1 · |G| and automatically
tuned at each iteration. Then, a partially fixed MIP sub-
problem (S) is defined, having fixed the variables x j = xc

j
for j ∈ G\F to their value in the incumbent solution.

2. Solution construction (local search). Sub-problem (S) is
solved by calling a MIP solver with the current upper bound
f (xc) and the maximum allowed time for solving sub-pro-
blems tmip as input parameters. Also the parameter tmip is
automatically determined by the algorithm as a function of
the time needed to solve the linear relaxation of the original
problem (P). If a new best solution is found, the incumbent
for the next iteration is updated.

3. Parameter adjustment and iteration. If the sub-problem (S)
is optimally solved within the available time, then k is in-
creased as k = k · 1.1; otherwise k is reduced as k = k · 0.9
and a new iteration is started. In this simple way the al-
gorithm adjusts the parameter k, which controls the dimen-
sion of the explored neighborhood (that is the number of bi-
nary/integer variables in (S)), depending on the experienced
difficulty in solving sub-problems. Hence, the choice of the
initial value of k is not critical.

It must be noted that, differently from RINS and LB, the proposed
method does not operate within any branching framework, but at
higher level can be viewed as an iterated LS. In fact, the solution
perturbation, that in iterated LS produces a new starting solution,
here consists in the definition of a partial solution obtained from
a random destruction; then the LS, that here is the resolution of a
sub-problem, re-constructs a complete solution. RANS neighbor-
hood definition is based only on hard fixing. The neighborhood of
the incumbent is randomly defined and its dimension is controlled
by k so that the exploration is terminated in reasonable short time.
The maximum time for solving sub-problems tmip is determined
(in seconds) as max{Tmin,3 · trel}, where trel is the time needed to
solve the linear relaxation of (P) and Tmin is the minimum time al-
lotted to the MIP solver, which can be fixed once for all taking into
account of the performances of the used computer and MIP solver.
Actually the choice of Tmin is not critical due to the self-tuning
mechanism used for parameter k: anyway Tmin should be chosen
in order to let the MIP solver a sensible minimum time for explor-
ing the branching tree also for problems whose linear relaxation
is solved in few seconds. Note that setting a maximum time limit
tmip for solving sub-problems is not critical also in case of huge
instances, because the auto-tuning of parameter k always allows
reducing the neighborhood size so that sub-problems can be opti-
mally solved. After few tests it was fixed Tmin = 30s taking into
account the behavior of Cplex solver on some “easy” instances.
Note that the self-tuning of k controlling the sub-problem diffi-
culty is similar to the adaptation of the fraction of variables to be
hard fixed in Polishing mutation.

Besides the basic behavior described in the above three main steps,
a differentiation mechanism is introduced in RANS to reduce the
risk of stagnation, that is to remain blocked in a local optimum.
It must be observed that, when an incumbent solution is not im-
proved after several iterations, an advantage of the random hard
fixing is that it is quite unlikely cycling over the same sub-problems.
However, this implicit differentiation may not always be sufficient.
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Hence a simple mechanism is devised based on maintaining a pool
of solutions, corresponding to the set of last discovered incum-
bents, and to randomly backtrack to one of them whenever a max-
imum number of not improving iterations is reached. In particular,
the last 10 incumbent solutions are recorded in the pool and the
maximum number of not improving iterations is fixed equal to 30
(these latter values were chosen after a few tests). As for RINS in
[2], it must be observed that the purpose of the proposed method
is to face very difficult MIP problems, finding good solutions in
computation times that are acceptable for real world applications.
On the other hand, RANS may not be competitive on problems
solved without difficulty by standard MIP solvers neither it can be
used to prove optimality.

3.1. The initialization method

The RERANS is a method that can be activated to find an initial
feasible solution in the cases where the MIP solver or other initial-
ization heuristics are not able to succeed within the allowed time
limit. The algorithm iterates the resolution of partially relaxed (R)
problems determined from (P) by linearly relaxing all the binary
and integer variables in G with the exclusion of a subset T ⊆ G
of variables that remain binary/integer constrained (T is initially
empty). At each iteration, c variables randomly chosen among the
relaxed ones are added to T (c is initialized equal to 0.1 · |G|) and
r binary/integer constrained variables in T are relaxed (r is initial-
ized equal to 0 and it is set to a positive value whenever the MIP
solver is not able to find a solution to a sub-problem). The MIP
solver is called to provide within tmip the first feasible solution x0

for problem (R). If it succeeds, then a new partially relaxed prob-
lem is defined: first, for each binary/integer constrained variable
one deviational constraint

x j−δ+
j +δ−j = x0

j , j ∈ T (1)

is added (or possibly updated if already present in the relaxed prob-
lem solved in the previous iteration), penalizing the deviational
variables δ+

j and δ−j in the objective function with a large penalty
cost. Then, the value of c is updated as c = 1.2 · c and r is reset to
0. When instead the MIP solver is not able to provide a feasible
solution for (R) in the given time limit, the algorithm performs a
rollback of the previous choices: the last c variables added to T
are removed from T and the last r variables removed from T are
reinserted in T. Then, the value of c is reduced as c = 0.8 · c and
the value of r is set equal to r = min{c,0.2(|T |− c)}, so that the
number of removed variables is upper bounded by the number of
variables binary/integer constrained at the next iteration. The in-
troduction of deviational constraints at an iteration h corresponds
to soft fixing the variables that were in T at iteration h-1 so that
they are driven towards the values of the feasible solution found
at iteration h-1. Differently to hard fixing, this is a mechanism to
memorize the feasible integer values found at an iteration for vari-
ables in T, without preventing the possibility that the same vari-
ables assume different values in the feasible solution generated at
the next iteration (and consequently updating the deviational con-
straints). Similarly to RANS, parameter c is self-tuned in order to
adjust the number of variables in T to control the difficulty (i.e.,
the time needed) to solve the partially relaxed problems. Finally,
we adopt in RERANS a random backtracking strategy that is acti-
vated whenever no feasible solution is found for a partially relaxed
problem within the given time limit. In these cases problem (R)
is considered too difficult to solve and then a subset of r variables
are removed from T, i.e., are linearly relaxed. Since a well-known
difficulty of backtracking in hard fixing is choosing the right vari-
ables to unfix, also in this case we believe that a random choice
can be a simple and effective general purpose strategy.

4. COMPUTATIONAL RESULTS

The performance of RANS was tested on a collection of 56 bench-
mark instances which includes the ones referred to in [2] and in
[4], plus other instances from MIPLIB [9] selected among the
ones optimally solved in more than one hour or still not opti-
mally solved by a commercial solver. The RANS algorithm was
implemented in C++ and the tests were performed on a 2.4GHz
Intel Core 2 Duo E6600 computer with 4GB RAM, using Cplex
12.2 (configured to use only 1 thread) as general purpose MIP
solver. The code of the implemented algorithm can be found at
http://www.discovery.dist.unige.it/rans.cpp.

As the purpose is to evaluate the effectiveness of the compared
methods in producing quality solutions within reasonable short
time bounds (so verifying their suitability for industrial applica-
tions), a maximum time limit of one hour was fixed. RANS was
compared with Cplex and other four methods: LB, RINS, Polish-
ing and VNDS. Similarly to [4] only pure methods were consid-
ered, in particular LB, RINS and Polishing implementations di-
rectly incorporated within the Cplex branch-and-cut framework
(note that for LB this choice corresponds to the re-implementation
proposed in [2]). Therefore, the Cplex parameters were set in order
to fix the node limit for sub-MIPs to 1000 for LB and RINS, and
the RINS frequency to 100. These are the same settings adopted
in [2] and [4]. As Polishing is considered a more time-intensive
heuristic than the others, in Cplex it is not called throughout branch
and cut like other heuristics but invoked only once after at least
one feasible solution is available. Therefore, the Cplex parameters
were set so that Polishing is invoked after the first feasible solution
is found, so imposing operational conditions similar to the ones of
RANS and leaving the Polishing evolutionary algorithm exploit at
best the available time. The original VNDS code, kindly made
available by Authors in [4], was used and two slightly different
configurations were tested. The first, labeled VNDS1, corresponds
to the second one adopted in [4] (there denoted as “VNDS 2”), and
imposes the maximum time for solving sub-problems (tsub) and for
the VND-MIP procedure (tvnd) as tsub = tvnd = 1200s. The sec-
ond configuration, labeled VNDS2, was instead characterized by
tsub = tvnd = 300s.

Being a randomized algorithms, 5 runs were executed for RANS
and Polishing for each instance, then computing the average ob-
jective value. Similarly to [2], the used performance index was the
ratio between the objective value obtained by the different meth-
ods and the best known solution, when available, or the best result
obtained during these tests. Then, as in [2], the geometric mean
(which is less sensitive to outliers) was adopted to perform an ag-
gregate evaluation of the results. Note that for the sake of brevity
only aggregate results are here shown. The results were aggregated
according to the total number of binary and integer variables, as re-
ported in Table 1. From this table RANS appears the most effective
method for the Global group that includes all the instances. Table
1 highlights the aggregate results separating the instances of very
small dimension from the others, and further subdividing this latter
subset into medium (from 100 to 10.000 binary/integer variables)
and large size (more that 10.000 binary/integer variables). Apart
for the very small size instance group, in which a depth branching
is required to find the optimal solution, the performances of RANS
are always the best ones.

The overall behavior of the compared methods is shown in Figure
1 where is depicted the evolution of the geometric mean of objec-
tive ratios averaged over the whole benchmark set. Again Figure
1 highlights the effective behavior of RANS in finding good solu-
tions within short time.

Finally, note that only for 3 instances the Cplex solver was not
able of finding the initial solution within the tmip bound. In these
cases the the starting solution was generated by the RERANS pro-
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Global (56) 1.45 3.00 2.93 1.51 4.05 3.82 2.03

<=100 (3) 6.44 6.00 4.66 5.00 6.33 6.66 16.0

>100 (53) 1.17 2.84 2.83 1.32 3.92 3.66 1.24

100-10000 (36) 1.15 1.21 1.19 1.19 1.61 1.57 1.21

>10000 (17) 1.20 6.28 6.31 1.58 8.67 7.95 1.30

Table 1: Aggregated average results
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Figure 1: The evolutions of geometric means of objective ratios.

cedure. In Table 2 the comparisons between RERANS with Cplex
and Cplex with the incorporated FP for the three benchmark in-
stances, i.e. momentum2 (m2), rdrplusc21 (rd21), and van, ini-
tialized by RERANS are reported. For this simple test a 3600s
time limit was fixed and the algorithm was stopped when the first
feasible solution is found. The table shows both time ratios (time
for first feasible solution/shortest time among the three methods
for first feasible solution) and objective ratios for each instance
and method. It can be observed that the time performances of
RERANS for these challenging instances were quite good.

Time ratio Objective ratio
m2 rd21 van m2 rd21 van

Cplex 7.358 1.000 11.98 1.000 1.000 11.39
Cplex+FP - 2.425 8.000 - 1.094 11.39
RERANS 1.000 1.096 1.000 1.046 1.027 1.000

Table 2: RERANS performance results

5. CONCLUSIONS

This paper proposes RANS, a new heuristic approach to find in
reasonably short time high quality solutions to difficult MIP prob-
lems. Perhaps the most relevant advantage of RANS is in its con-
ceptual simplicity: the paper shows that the randomization strategy
used in RANS is effective with respect to other methods, some of
them quite complicated, as highlighted by the comparative experi-
mental campaign performed on a benchmark made of widely ref-
erenced instances. Another advantage is that RANS does not need
any parameter setting or tuning apart from choosing the maximum
available time; this feature is mainly due to the adopted parame-
ter self-tuning mechanism that adapts the neighborhood dimension
according to the experimented difficulty in solving the partially
fixed MIP problems in the maximum time available.
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borhood search and local branching,” Computers & Opera-
tions Research, vol. 33, no. 10, pp. 3034 – 3045, 2006.

[9] A. Martin, T. Achterberg, T. Koch, and G. Gamrath, “Miplib
2003,” 2010. [Online]. Available: http://miplib.zib.de/

ALIO-EURO 2011 – 88



Proc. of the VII ALIO–EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4–6, 2011

Towards an Ant Colony Optimization algorithm for the Two-Stage Knapsack
problem

Stefanie Kosuch ∗

∗ Institutionen för datavetenskap (IDA)
Linköpings Universitet, Sweden
stefanie.kosuch@liu.se

ABSTRACT

We propose an Ant-Colony-Optimization algorithm for the Two-
Stage Knapsack problem (TSKP) with discretely distributed
weights. Three heuristic utility measures are proposed and com-
pared. We argue why for the proposed measures it is more efficient
to place pheromone on arcs instead of vertices or edges of the com-
plete search graph. Numerical tests show that the algorithm is able
to find near optimal or even optimal solutions after a relatively
small number of generated solutions.

Keywords: Two-stage model, Knapsack problem, Ant-Colony op-
timization, Meta-heuristic, Utility ratio

1. INTRODUCTION

The knapsack problem is a widely studied combinatorial optimiza-
tion problem. Special interest arises from numerous real life appli-
cations for example in logistics, network optimization and schedul-
ing. The basic problem consists in choosing a subset out of a given
set of items such that the total weight (or size) of the subset does
not exceed a given limit (the capacity of the knapsack) and the
total benefit of the subset is maximized. However, most real life
problems are non-deterministic in the sense that some of the pa-
rameters are not (exactly) known at the moment when the decision
has to be made. If randomness occurs in the capacity constraint,
the main question that has to be answered is if a violation of the
capacity constraint (i.e. an overload) could be acceptable. If an
overload cannot be permitted in any case, the model maker has two
possibilities: Either to force the feasible solutions of the resulting
problem to satisfy the capacity constraint in any case. This gener-
ally leads to very conservative decisions and the resulting problem
might even be infeasible or only have trivial feasible solutions. Or
to allow for later corrective decisions at, naturally, additional costs.
This latter model is called a multi-stage decision model in the lit-
erature (for an introduction to stochastic programming models see
e.g. [1]).
In this paper we allow the item weights to be random and study
a two-stage variant of the knapsack problem, denoted T SKP in
the remainder. We assume the weight vector to be discretely dis-
tributed, i.e. to only admit a finite number of realizations with non-
zero probability. In fact, in [2] it has been shown that a stochas-
tic combinatorial optimization problem can, under some mild as-
sumptions, be approximated to any desired precision by replacing
the underlying distribution by a finite random sample.
It is well known that in the case of finite weight distributions the
T SKP can be equivalently reformulated as a deterministic linear
programming problem with binary decision variables (see e.g. [3]).
However, the set of constraints and binary decision variables in
the reformulation grows with both the number of items as well
as the number of scenarios. It is thus typically very large, or
even exponential in the number of items. Consequently, solving

the deterministic equivalent reformulation of the T SKP to opti-
mality is only possible in very restricted cases. Instead, meta-
heuristics should be considered in order to obtain near optimal
or even optimal solutions in shorter computing time. The aim of
this paper is therefore to study some variants of an Ant-Colony-
Optimization (ACO) algorithm for the T SKP (for an introduction
to ACO-algorithms and standard procedures see [4]).
In the last decade, several metaheuristics for Stochastic Combina-
torial Optimization and Integer Programming problems (in the fol-
lowing denoted SIP) have been presented. There are two aspects
why metaheuristics are important tools to solve SIPs: the size of
SIPs (especially in the case of independently discretely distributed
parameters or simply a high number of possible scenarios) and the
question of how to evaluate the objective function. In fact, in most
cases evaluating the objective function of an SIP is NP-hard. In
other cases, no deterministic equivalent reformulation is known
and only approximate values can be obtained (e.g. using Sample
Average Approximation). Both difficulties can be tackled by ap-
plying appropriate metaheuristics (see e.g. [5]).
To the best of our knowledge, no special purpose metaheuristic
for the T SKP has yet been proposed. Our work is, however, in-
spired by previous works on ACO-algorithms for the related Mul-
tiply Constrained Knapsack problem MCKP (see e.g. [6],[7]). We
think that an ACO-algorithm is a good choice to solve the T SKP
due to the possibility to effectively use utility measures. Moreover,
ants are building (new) solutions without needing to evaluate the
objective function, which, in the case of the T SKP, is an NP-hard
problem itself. Thus, evaluation needs only to be done in order to
compare solutions.

2. MATHEMATICAL FORMULATION, PROPERTIES
AND AN APPLICATION

We consider a stochastic knapsack problem of the following form:
Given a knapsack with fix weight capacity c > 0 as well as a set of
n items. Each item has a weight that is not known in the first stage
but comes to be known before the second-stage decision has to be
made. Therefore, we handle the weights as random variables and
assume that the weight-vector χ ∈Rn is discretely distributed with
K possible realizations (or scenarios) χ1, . . . ,χK . The correspond-
ing, non-zero probabilities are denoted p1, . . . , pK . All weights are
assumed to be strictly positive.
In the first stage, items can be placed in the knapsack (first-stage
items). The corresponding first-stage decision vector is x∈{0,1}n.
Placing item i in the knapsack in the first stage results in a reward
ri > 0. At the beginning of the second stage, the weights of all
items are revealed. First-stage items can now be removed and ad-
ditional items be added (second-stage items) in order to make the
capacity constraint be respected and/or increase the total gain.
If item i is removed, a penalty di has to be paid that is naturally
strictly greater than the first-stage reward ri. The removal of item
i is modeled by the decision variable y−i that is set to 1 if the
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item is removed and to 0 otherwise. Similarly, we assume that
the second-stage reward for this item ri > 0 is strictly smaller than
its first-stage reward. If an item is added in the second stage we set
the corresponding binary decision variable y+i to 1. The resulting
Two-Stage Knapsack problem with discrete weight distributions
can be formulated as follows:

Two-Stage Knapsack Problem with discretely distributed weights
(T SKP)

max
x∈{0,1}n

n

∑
i=1

rixi +
K

∑
k=1

pkQ(x,χk) (1)

s.t. Q(x,χ) = max
y+,y−∈{0,1}n

n

∑
i=1

riy+i −
n

∑
i=1

diy−i (2)

s.t. y+i ≤ 1− xi, ∀ i = 1, . . . ,n, (3)

y−i ≤ xi, ∀ i = 1, . . . ,n, (4)
n

∑
i=1

(xi + y+i − y−i )χi ≤ c. (5)

The T SKP is a relatively complete recourse problem, i.e. for ev-
ery feasible first-stage decision there exists a feasible second-stage
decision. Moreover, given a first-stage decision and a realization
of χ , solving the second-stage problem means solving a determin-
istic knapsack problem. Evaluating the objective function for a
given first-stage solution is thus NP-hard.
As a simplified application consider an (online) travel agency that
aims to fill the vacant beds (the deterministic capacity) of a hotel
complex. Clients are travel groups whose exact number of travel-
ers (the "weight" of the group) is still unknown at the moment the
decision which groups to accept has to be made. This randomness
can for example be a result of later cancellations. In order to max-
imize the final occupancy of the beds, the travel agent might allow
an overbooking. If, in the end, the number of beds is not sufficient,
one or more of the groups need to be relocated in neighboring ho-
tels which leads to a loss of benefit. If beds are left unoccupied,
last minute offers at reduced priced might be an option to fill these
vacancies. A simple recourse version of this problem with a set of
hotel sites has been previously considered in [8].

3. THE ACO-METAHEURISTIC

In the remainder we use the following notations:

• A : set of ants

• t: "time", i.e. passed number of construction steps in cur-
rent iteration (t ≤ n)

• Sa(t): set of items chosen by ant a after time t

• τi(t): pheromone level on vertex/arc/edge i at time t

• ηi: utility ratio of item i

• νi: non-utility ratio of item i

• ρ ∈ (0,1): global evaporation parameter

• ρloc ∈ (0,1): local evaporation parameter

• pa
i j(t): transition probability = probability for ant a to go

from vertex i to vertex j at time t

The basic structure of the ACO-algorithm for the T SKP is given
in Algorithm 3.1. Its functioning is detailed in the following sub-
section. The Transition of ants step consists of the transition of the
ants following the transition probabilities and the update of Sa(t).

IT ← 0
while IT < ITMAX do

IT ← IT +1
Initialization
t← 0
while t < n and (∃a ∈A : (n+1) 6∈ Sa(t−1)) do

t← t +1
Compute transition probability
Transition of ants
Local pheromone update

end while
Global pheromone update

end while
return Best found solution

Algorithm 3.1: ACO-algorithm for the T SKP

3.1. The Complete Search Graph

Our search graph is based on the search graph proposed for the
MCKP in [6], i.e. on a complete graph whose n vertices represent
the n items. Note that the ants only construct the first-stage solu-
tion (solution vector x). In order to model the randomness of the
first item chosen by an ant, we add an additional vertex 0 to the
complete graph that is connected to all the other n vertices, with
pa

i0(t) = 0 for all a ∈A and t > 0. Initially, all ants are placed on
this vertex. We denote this vertex as starting vertex.
In the case of the MCKP one has a natural certificate of when an
ant has come to an end of its solution construction: when either
all items have been chosen or when adding any of the remaining
items would lead to the violation of at least one of the constraints.
As for the T SKP even adding all items in the first stage would
yield a feasible solution, we add a termination vertex n+1 which
is connected to all vertices, including the starting vertex.

3.2. Pheromone trails and update procedure

Several choices could be made for the way pheromone is laid by
the ants (see [7]). In the simplest setting, the search graph is non-
directed and pheromone is laid on vertices, i.e. items that are
included in the best solutions found so far have a high level of
pheromone. In the second variant, pheromone is placed on edges
of the non-directed search graph, or, equivalently, pairs of items.
In this setting the probability that an ant chooses a specific item at
time t increases with the number of (good) previously found solu-
tions that contain both this specific item as well as the item the ant
has chosen at time t−1. In the third variant the graph is assumed
to be a complete directed graph and pheromone is laid on arcs, i.e.
directed edges. Contrary to the two former settings, this setting not
only takes into account which items (or item pairs) had been added
to former good solutions, but also in which order. In the following,
when talking of an element, this refers to either a vertex, edge or
arc of the search graph.
We use a local as well as a global update procedure (see e.g. [6]).
The local update procedure is performed after every construction
step. The pheromone level on the elements chosen during this step
by an ant is slightly reduced, in order to diversify the produced
solutions. For an element i the local update rule is as follows:

τi← (1−ρloc) · τi +ρlocτmin (6)

ρloc is the local evaporation parameter: The larger ρloc, the higher
the evaporation and thus the higher the decrease of pheromone on
the chosen elements. τmin is a lower bound for the pheromone
level.
The global update procedure is done once all ants have constructed
their solutions. The evaporation of pheromone on all arcs is the
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first part of the global updating:

τi← (1−ρ) · τi (7)

where ρ is the global evaporation parameter.
In the second part of the global update procedure only the best
found solutions are considered and the pheromone level on these
solutions is intensified. In our setting we intensify the pheromone
level on an element if and only if the element has been chosen in
either the best solution found so far or in one of the λ best solutions
found in the last iteration:

τi← ρ (8)

Note that the maximum pheromone level is 1. If due to the update
procedures the pheromone level on an element falls below a lower
bound τ0, it is set to τ0.
In the case of pheromone on arcs we additionally diversify the so-
lutions by storing the best solution as a set of items. The pheromone
is then increased on all arcs that lead to one of these vertices.

3.3. Heuristic utility measures

An advantage of the T SKP compared to the MCKP is that we have
a clearly defined "relevance factor" for each knapsack constraint:
the probability of the corresponding scenario (see [9] for more in-
formation on utility measures for the MCKP). Our idea is thus to
compute the overall utility ratio of an item as an average over the
utility ratios of those scenarios where the item still fits the capac-
ity. The problem is, however, that, once adding an item would lead
to a violation of the capacity in one or more scenarios, deciding
whether it is more profitable to remove an item and add the new
one, or to discard the current item, is NP-hard. We overcome this
problem by relying on the chosen utility measure: If the utility
measure is chosen wisely, one might get good solutions by always
discarding the current item (in the case of an overload).
While in the case of the MCKP two factors have to be considered
(reward and used capacity), there are 2 more factors that play a role
for the utility of an item in the two-stage setting: the second-stage
reward and the second-stage penalty. This makes the definition of
a good utility measure much more complex.
The utility measure for the termination vertex should depend on
the penalty we would have to pay in the second stage if we add
another item or the reward we could gain in the second-stage if we
do not add any of the remaining items. We thus compute an addi-
tional "non-utility" ratio νi for each item i. The utility ratio of the
termination vertex is then defined as the minimum over these ra-
tios: If for all items the non-utility ratio is high, termination might
be the best choice.
We propose three different choices for the (non-)utility ratios. These
are calculated with respect to the set K of scenarios where the re-
spective item still fits in the knapsack.

Simple measure: Here we define the utility of an item to be the
"average" ratio of first-stage reward and weight.

ηS
i = ∑

k∈K
pk ri

χk
i

(9)

Note that this measure is not the exact mean of the reward-weight
ratios over the scenarios where the item still fits as ∑k∈K pk < 1
is possible. The exact mean would be obtained by dividing ηS

i by
∑k∈K pk. The utility ratios do thus also depend on the probability
that item i still fits the capacity (given by ∑k∈K pk).
We define two non-utility measures. For half of the ants the first
measure is applied and for the other half the second. The first non-
utility ratio is defined to be the "average" ratio of second-stage
penalty and weight over the instances where the item does not fit
in the knapsack any more. Contrary to the utility ratios, these first

non-utility ratios increase with ∑k 6∈K pk. The second non-utility
ratio equals the reward we would gain on average in the second
stage if we do not add the item and assume that it can be added in
any scenario in the second stage.

νS
i = ∑

k 6∈K
pk di

χk
i

νS
i =

K

∑
k=1

pk ri

χk
i

(10)

Difference Measure: We compare what we would gain by adding
an item in the first and not the second stage (ri− ri) with what we
would loose if we would have to remove the item in the second
stage (di− ri):

ηD
i = ∑

k∈K
pk ri− ri

χk
i

νD
i = ∑

k 6∈K
pk di− ri

χk
i

(11)

Ratio measure: Instead of differences we consider ratios:

ηR
i = ∑

k∈K
pk ri/ri

χk
i

νR
i = ∑

k 6∈K
pk di/ri

χk
i

(12)

3.4. Transition probabilities

In this study we only consider the most traditional way of comput-
ing the transition probabilities from the pheromone level and utility
ratio (see e.g. [4]): For a vertex v ∈ {1, . . . ,n+1}, the probability
that an ant a currently sitting on vertex u moves to v is computed
as follows:

π(u,v,Sa(t−1),τ) =
τα

i(u,v)(t)η
β
v (Sa(t−1))

∑n
w=1 τα

i(u,w)(t)η
β
w (Sa(t−1))

(13)

Here α and β are two parameters that control the relative impor-
tance of pheromone level and utility ratio and i(u,v) = v (vertex
pheromone) or i(u,v) = (u,v) (arc or edge pheromone). In the first
iteration we only take the utility ratio into account. As a conse-
quence, the pheromone level on the elements is initialized during
the first global update procedure.

4. SUMMARY OF THE OBSERVATIONS MADE DURING
THE NUMERICAL TESTS

4.1. Comparison of the 3 different variants to lay pheromone
trails

During our tests we observed that, when pheromone is placed on
vertices (or edges), the ants had difficulties to reproduce the best
solution found so far and to search in its local neighborhood (even
with λ = 0). As a consequence, the solution value of the best
solution produced during an iteration was mostly strictly smaller
than that of the the current best solution. This caused severe prob-
lems for the convergence of our ACO-algorithm. In contrast, when
pheromone is laid on arcs, the quality of the best solution pro-
duced during one single iteration generally increased monotoni-
cally (however not strictly). These observations seem to be con-
tradictory to what has been observed in previous studies of ACO-
problems for the MCKP (see [6]). It can, however, be explained
by the fact that our utility measure relies on the order in which the
items have been added. More precisely, the set of items that are
still allowed to be chosen depend heavily on the set of previously
added items.

4.2. Comparison of the 3 different utility measures

For a representative comparison of the convergence behavior of
our ACO-algorithm using the three different measures see Figure
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Figure 1: Representative convergence behavior using different
utility measures

1 (test with pheromone on arcs). Our numerical tests on the cho-
sen test instances showed that the difference measure seems to be
better suited than the two other measures: Using the difference
measure our algorithm found the optimal solution in around 16%
of the tests while the other two measures were only rarely (on some
instances never) able to produce optimal solutions. Concerning the
runs where the optimal solution was not found the average (max-
imum) relative gap was of 0.03% (0.06%) for the difference mea-
sure versus 0.09% and 0.1% (0.18% and 0.19%) for the simple and
ratio measure. The differences in the solution qualities are on the
one hand due to the initial iteration where the ants find much better
solutions based on the difference measure heuristic than based on
one of the other two heuristics. On the other hand, the algorithm
converges much faster to near optimal solutions in the former case
and the quality of the best solution produced per iteration never
decreases even when the best found solution is already close to the
optimum.

5. FUTURE WORK

In case of instances with a high number of scenarios sampling
should be considered. This means that at each iteration a set of
scenarios is sampled whose cardinality is smaller than K. By in-
creasing the sample size during the iterations convergence might
be achieved. Moreover, one obtains a natural additional diversifi-
cation of the produced solutions (see [5] for more details).

In order to evaluate the second-stage expectation for a given found
first-stage solution we solved the K second-stage knapsack prob-
lems independently using an optimal knapsack algorithm from the
literature. If needed, the CPU-time could be decreased by instead
using an FPTAS . By increasing the performance ratio of the used
approximation algorithm during the iterations, convergence might
once more be achieved.
Last but not least, to fully evaluate the competitiveness of an ACO-
approach to solve the T SKP a comparison with other metaheuris-
tics is clearly needed.
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ABSTRACT

In a mechanical structure, it is often the case that many of the parts
are nominally identical. But actually they always differ slightly
in physical and geometrical properties due to variation of material
and manufacturing error. Parts allocation for a structural system
aims at optimizing performance of the manufactured structure by
assigning each of these parts to a proper position in the structure
during the assembling period. In this paper, the parts allocation
problem is addressed and the formulation of it as a nonlinear as-
signment problem (NAP) is presented. A method is developed to
generate an initial solution for it. The technique is tested on bench-
mark examples. All the results show that it could always construct
a high quality starting point from both view of objective and con-
straint violation. Compared to starting with the identity permuta-
tion and randomly generated ones, the standard 2-exchange local
search algorithm starting with initial solutions generated by this
method well solves most of the test problems in the meantime with
a large reduction in total number of function evaluations.

Keywords: Initial solution, Nonlinear assignment problem, Lo-
cal search, Parts allocation

1. INTRODUCTION

During structural manufacturing, we often need to assemble parts
together to create a whole structure. Many of the parts are designed
to be identical and could be swapped with each other without in-
fluence on characteristics of the assembled structure. But due to
variation of material and manufacturing errors, parts that have been
manufactured are always slightly different in some properties from
each other. The parts allocation problem for a structural system is
that, we want to find out how to allocate each of the parts at hand
to the structure so that the assembled one could reach a best me-
chanical performance, such as minimum deflection at some point
under certain loads and certain constraints.

There is a significant feature of this kind of problem, that each
evaluation of a solution requires normally time-consuming com-
putation, e.g. finite element analysis. For a large scale problem,
each such analysis could lasts minutes even hours. Therefore, an
applicable algorithm need not return the global optimum, but in-
stead it has to be able to return a good enough solution with as few
number of function evaluations as possible.

In this paper, the parts allocation problem for structural systems
is formulated as a nonlinear assignment problem. Assignment
problem (AP) is a type of problem in combinatorial optimization,
which aims at finding a way to assign n items to n other items
to obtain the minimum of a defined objective. There are many
polynomial-time algorithms have been developed for linear as-
signment problem (LAP), such as Munkres (Hungarian) algorithm,
shortest path algorithms and auction algorithms [1]. Well-known

nonlinear assignment problems are quadratic assignment problem
(QAP) and 3-index assignment problem (3AP), which have been
shown that both are NP-hard problems [2, 3]. For even more gen-
eral NAPs, so far, heuristic algorithms are widely studied and ap-
plied to find good quality solutions [4, 5].

A high quality initial solution is essential for any heuristic algo-
rithm, which could reduce the total number of function evaluations
while returning a same quality solution. There are several ways
to construct initial solutions, for instance, by taking the identity
permutation, a randomly generated permutation, or a heuristically
determined starting point [4]. For the first two methods, they don’t
include any consideration of a specific problem, so there is no rea-
son to take them as a good starting point.

The outline of this paper is as follows: in Section 2, we present the
formulation of parts allocation problem for structural systems as a
NAP. In Section 3, a procedure to generate an initial solution for
the problem is defined. We apply the technique to some benchmark
examples and present the test results in Section 4. Finally we reach
the conclusion.

2. MATHEMATICAL FORMULATION OF THE
PROBLEM

In this study, we assume the properties of each part that have been
manufactured are measurable and are known. And we take the dif-
ference in properties of area of cross-section (A), Young’s Modu-
lus (E) and coefficient of thermal expansion (CTE) into account.

Consider we have n exchangeable parts have been manufactured
and are to be assembled into n different positions of a structural
system. The objective is to minimize the displacement at certain
point or the maximum stress in the assembled structure under cer-
tain loads. We number the n positions and denote the properties
of parts assigned to each position {A(i),E(i),CT E(i)}, i=1, 2, . . . ,
n. We also number the parts at hand by 1,2,. . . n, and each with
a property set {A j,E j,CT E j}, j=1, 2, . . . , n. To evaluate the dis-
placement of the structure under certain loads, we usually need
to perform a finite element analysis, which mainly solves a large
system of linear equations as follows:

KU = F (1)

where K is the master stiffness matrix that is dependent on proper-
ties A and E of parts at each position, F is the load vector which is
dependent on CTEs, and U is the displacement vector to be com-
puted.

We represent the assignment with a permutation matrix
X = (xi j)n×n, which satisfies following assignment constraints:

n

∑
i=1

xi j = 1, j = 1,2, ...,n, (2)
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n

∑
j=1

xi j = 1, i = 1,2, ...,n, (3)

xi j ∈ {0,1}, i, j = 1,2, ...,n, (4)

and

xi j =

{
1 iff jth part is allocated to position i,
0 otherwise.

(5)

Thus the areas of cross-section at each position could be interpo-
lated with following equation:

[A(1),A(2), . . . ,A(n)]T = X[A1,A2, . . . ,An]
T (6)

Similar interpolation schemes are performed for E and CTE. With
these interpolation formulas, the stiffness matrix and the load vec-
tor are both formulated as a function of entries in the permuta-
tion matrix X. Therefore, the unknown displacement components
are normally highly nonlinear functions of {xi j}. Further, the re-
sponse of stresses in the structure that can be derived from U, are
also nonlinear functions of {xi j}. Finally, we formulated the parts
allocation problems as a nonlinear assignment problem.

3. PROCEDURE FOR GENERATING AN INITIAL
SOLUTION

Through interpolation equation (6), it could be seen that properties
at each position are continuous functions of X if we make a con-
tinuous relaxation of the binary constraints on each xi j. Therefore,
displacements and stresses are also derived to be continuous func-
tions of X. This continuity makes it mathematically meaningful to
evaluate objective at points where entries of X lies between 0 and
1. Based on this fact, we designed a 3-step deterministic way to
generate an initial solution for a parts allocation problem of size n:

Step1. Construct the matrix XS = (xs
i j)n×n, where all the entries

equals to 1/n. And evaluate the objective f S = f (XS).

Step2. Compute ci j = ∂ f/∂xi j at XS, for i, j = 1,2,. . . ,n.

Step3. Construct cost matrix C = (ci j)n×n, and solve the linear
assignment problem min ∑n

i, j=1 ci jx0
i j, where X0 = (x0

i j)n×n
satisfies all the assignment constraints from equation (2) to
equation (4).

We artificially create matrix XS in Step1, which assign all the en-
tries the same value so as to avoid bias of any specific possible
solution. In Step2, we use finite difference method to evaluate the
partial derivatives of f: set stepsize ε be a small positive value, then
ci j ≈ ( f (XS+∆i j)− f S)/ε , where ∆i j is a n×n matrix with all the
entries equal to zero except the one in position (i,j) equals to ε . The
solution X0 in Step3 is just the initial solution we generated.

The procedure could be seen as making a linearization of the ob-
jective function around XS and then finding the point that reduce
the objective most with deepest descent method. Thus, if the prob-
lem is originally a LAP, then the initial solution we generated is
exactly the optimal solution for the problem. For nonlinear as-
signment problems we could also expect to reach a good quality
solution after Step3 if the derivatives of objective with respect to
{xi j} do not change largely at different points.

The number of function evaluations we need to construct the initial
point is n2+1. It could be further reduce to n2 if we simply assume
f S in Step1 is 0, which wouldn’t influence the result in Step3 but
reduce number of function evaluations by one.

4. EXAMPLES AND COMPUTATIONAL RESULTS

To show the quality of the initial solution generated by above method,
we tested on several benchmark examples.

4.1. 10-Bar Truss Allocation Problem

We tested our method first with a 2D 10-bar truss structure shown
in Figure 1. All the bars in the structure are designed to have the
same length of 1000mm, the same circular cross-section of area
A = 1000mm2 and use the same material with Young’s modulus
E = 68.95GPa, CTE = 23.6× 10−6/◦C. Thus all of them could
be swapped with each other. Now assume we have manufactured
ten bars to be allocated into the ten positions of the structure, and
due to manufacturing errors, the properties A, E and CTE of each
bar are different to design slightly. The objective is to find an al-
location of the bars to minimize the displacement of node 1 under
both a uniform thermal load of ∆T = 42.37◦C on the structure and
a downward force of 29.4kN at node 1.

Figure 1: 10-bar truss structure under loads.

We tested with three different situations where all the properties
for each bar are manufactured with maximum error of 5%, 10%
and 50% respectively. And for each error level, we randomly gen-
erated 10 instances from a uniform distribution. The stepsize ε
used in Step2 is 10−3. Munkres algorithm [6] is applied to solve
the derived LAP in Step3.

For each instance, we compute relative error of objective of the
initial solution with respect to that of the global optimum, which
is found by enumerating all the possible permutations with total
number of 10!≈ 3.6×106. The average relative errors are 0.00%,
0.01% and 0.98% for error level of 5%, 10% and 50% respec-
tively. For lower error level, the properties of bars are less dif-
ferent. Therefore the change of the derivatives of objective with
different allocations is less, which leads to higher quality initial
solutions obtained through our method.

After generation of the initial solution, we use a standard 2-exchange
local search algorithm starting with it to solve the problem (LS-
Our). We compared the results with other two methods: one is
using the same algorithm but starting always from the identity per-
mutation (LS-Id); the other one is using the same algorithm but
starting from a randomly generated initial solution (LS-Random).
To reduce the occasionality of this method, we randomly generate
100 initial points for each instance and take the average perfor-
mance to compare with others.

The statistical results of the 30 instances are listed in Table 1,
where we use following notations: eini is the average relative error
of the objective of initial solutions with respect to that of the global
optimum. e f inal is the average relative error of the objective of fi-
nal solutions. psucc is the percentage of successful runs, in which
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the relative error of the final solution is less than 1%. nite is the
average number of iterations and n f unc is the average total number
of function evaluations.

Method eini e f inal psucc nite n f unc
LS-Id 41.4% 0.28% 93% 8.5 384

LS-Random 46.9% 0.22 % 94% 8.0 363
LS-Our 0.33% 0.00% 100% 3.1 242

Table 1: Statistical results with different initial solution.

It could be seen that our procedure could generate quite high qual-
ity initial solutions and increase the ability of the algorithm to
achieve successful solutions. Meanwhile, the average number of
iterations and number of function evaluations is largely reduced
though it requires n2 times function evaluations at the beginning.

4.2. 25-Bar Truss Allocation Problem

4.2.1. Case without constraints

In practice, it is always the case that not all of the parts are designed
to be the same and could be swapped with each other. However,
we could usually divide all of the parts into several groups accord-
ing to their geometry, so that parts in the same group could be
exchanged. For this multiple groups problem, when constructing
the initial solution, we simply treat each group independently by
fixing the entries in permutation matrix of other groups to be 1/ng,
where ng denote the size of the corresponding group.

We tested this kind of problem with a 3D 25-bar truss structure
presented in [7]. All the 25 bars are divided into 8 groups, and each
group has 1,4,4,2,2,4,4,4 bars respectively as colored in Figure 2.
Bars of the same group could be exchanged with each other and
they differ in E, CTE and A. The values of these properties are
designed to be identical as in Section 4.1. Our goal is to minimize
the displacement of node 1 under a uniform thermal load of ∆T =
42.37◦C and some mechanical forces.

Figure 2: 25-bar truss structure.

We applied three different load cases onto the structure, where the
mechanical forces are different as listed in Table 2. We randomly
generated 10 instances with manufacturing error of 5% for each
load case. Statistical results are presented in Table 3.

The global optimum are still found by enumerating all the possible
permutations with total number of approximately 3.2× 107. The
average iteration needed by the algorithm starting from the gen-
erated initial solution is close to 1, which means the procedure is
able to find an initial solution very close to the global optimum.

Load case Nodes Loads
Fx/kN Fy/kN Fz/kN

1

1 4.45 -44.5 -44.5
2 0 -44.5 -44.5
3 2.22 0 0
6 2.67 0 0

2 1 0 89.0 -22.2
2 0 -89.0 -22.2

3

1 4.45 44.5 -22.2
2 0 44.5 -22.2
3 2.22 0 0
6 2.22 0 0

Table 2: Load cases for 25-bar truss structure.

Method eini e f inal psucc nite n f unc
LS-Id 5.25% 0.01% 100% 12.7 406

LS-Random 4.93% 0.01% 100% 12.0 383
LS-Our 0.00% 0.00% 100% 1.2 128

Table 3: Statistical results with different initial solution.

4.2.2. Case with stress constraints

Except the goal to minimize the objective, mechanical structures
are always required to fulfil some constraints, typically like lim-
itation of maximum stress. We further add a stress constraint to
above problem:

σmax/σA−1≤ 0 (7)

where σmax is the maximum stress in the structure, σA is the al-
lowable stress. In our problem, σA is selected to be the maximum
stress when bars are all manufactured without error. And the ob-
jective is still to minimize the displacement of node 1 under differ-
ent loads.

We use penalty method to deal with constraints. Denote t equals
to the left hand side of the constraint equation (7), and introduce
following penalty function to be added to the objective:

p(t) =
{

αt t > 0,
0 t≤ 0, (8)

where α is a large constant so that the penalty of violation in-
creases quickly and large enough to dominate the objective. Sta-
tistical results are shown in Table 4, where vioini is the average
value of positive t of initial solutions.

Method eini vioini e f inal psucc nite n f unc
LS-Id 5.01% 1.36% 0.30% 87% 14.6 468

LS-Random 4.73% 1.07% 0.30% 88 % 14.3 460
LS-Our 1.82% 0.27% 0.20% 93% 6.7 305

Table 4: Statistical results of case with stress constraints.

As could be seen, the procedure could return a starter with both
smaller objective and less violation of the constraint. And the qual-
ity of final solution is higher with a reduction in total number of
function evaluations.

4.3. 72-Bar Truss Allocation Problem

Finally, we applied the procedure on a large scale problem which
contains totally 72 bars in the structure as shown in Figure 3. All
the bars are divided into 4 groups with 8,16,16,32 bars respec-
tively. Still, the properties of bars deviate from design with maxi-
mum error of 5%. We apply two load cases where the mechanical
forces are the same as presented in [7] and the uniform thermal
load are identical as former examples. Our goal is to minimize
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the displacement of node 20 under loads. We randomly generate
10 instances for each load case. The statistical results of cases
without and with stress constraints are presented in Table 5 and 6
respectively.

Figure 3: 72-bar truss structure.

Method eini e f inal psucc nite n f unc
LS-Id 11.8% 0.03% 100% 129 98405

LS-Random 11.6% 0.03% 100% 122 93571
LS-Our 0.16% 0.01% 100% 29.1 23795

Table 5: Statistical results of case without constraints.

Method eini vioini e f inal psucc nite n f unc
LS-Id 11.8% 2.62% 0.17% 100% 136 103676

LS-Random 11.5% 2.62% 0.19% 96.5% 132 100546
LS-Our 4.78% 0.36% 0.24% 85% 70.4 55387

Table 6: Statistical results of case with stress constraints.

The total number of possible combinations is 8!× 16!× 16!×
32! ≈ 4.6× 1066. We have no way to find the global optimum
in this case. So for each instance, we take the best solution ob-
tained by all the three methods as the reference solution and the
relative error are calculated with respect to it.

For this large scale problem, comparing to the total number of
combinations, the number of function of evaluations we need are
much smaller. Although the percentage of successful run is rela-
tive low starting from our initial solution, the average final relative
error is still of the same level. And the reduction on total number
of function evaluations is still significant.

5. CONCLUSION

In this paper, parts allocation problem for structural systems is pre-
sented and formulated into a nonlinear assignment problem. Pro-

cedure for constructing an initial solution for solving this kind of
problem is established.

The procedure has been tested on a 10-bar truss, a 25-bar truss and
a large-scale 72-bar truss allocation problem. The performance
for problems with stress constraints is also studied. All the results
show that our procedure could construct a high quality initial so-
lution for parts allocation problems. A standard 2-exchange local-
search algorithm starting from this initial point is able to solve
most of our test examples with fewer total number of function
evaluations compared with starting from the identity permutation
or randomly generated initial solutions.
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ABSTRACT

We consider an uncapacitated stochastic vehicle routing problem
in which vehicle depot locations are fixed and client locations in a
service region are unknown, but are assumed to be i.i.d. samples
from a given probability density function. We present an algorithm
for partitioning the service region into sub-regions so as to balance
the workloads of all vehicles when the service region is simply
connected (has no holes) and point-to-point distances follow some
“natural” metric, such as any Lp norm. This algorithm can also be
applied to load-balancing of other combinatorial structures, such
as minimum spanning trees and minimum matchings.
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1. INTRODUCTION

Optimal assignment of a workload between several agents is a
common objective that is encountered in resource allocation prob-
lems. Frequently, workloads are assigned in such a way as to min-
imize the total amount of work done by all agents. In other sit-
uations, one may want an equitable assignment that balances the
workload evenly across all agents. Equitable assignment policies
are commonly encountered in queueing theory [1, 2, 3], vehicle
routing [4, 5, 6], facility location [7, 8, 9, 10], and robotics [11, 12],
among others.

Our motivation for this research comes from an industrial affiliate
in the form of a stochastic vehicle routing problem. Our objective
is to partition a geometric region so as to assign workloads to ve-
hicles in an equitable fashion. Partitioning and routing occupy two
different strategic tiers in the optimization hierarchy; partitioning
is done at a (high) tactical management level, while routing opti-
mization is operational and made on a day-to-day basis. Hence, a
natural strategy, especially in the presence of uncertainty, is to seg-
ment the service region into a collection of sub-regions and then
to solve each routing sub-problem induced at the sub-regions in-
dependently of the others. This approach was used, for example,
by [5], who treated the problem as a two-stage optimization prob-
lem (partitioning and routing) and implemented a tabu search and
multistart heuristic to consider the problem of partitioning a pla-
nar graph optimally. This problem is also often considered in the
context of facility location [7, 8, 10] and robotics [12].

In this paper, we give an algorithm that takes as input a planar, sim-
ply connected (not having holes) region R, together with a proba-
bility density f (·) defined on R. Contained in R is a collection of n
depot points P = {p1, . . . , pn}, representing the starting locations
of a fleet of vehicles. We assume (purely for expositional pur-
poses) that each point pi corresponds to exactly one vehicle. The
vehicles must visit clients whose exact locations are unknown, but
are assumed to be i.i.d. samples from the density f (·). Our goal
is to partition R into n disjoint sub-regions, with one vehicle as-
signed to each sub-region, so that the workloads in all sub-regions
are asymptotically equal when a large number of samples is drawn.

For each sub-region Ri, we will solve a travelling salesman prob-
lem, in which the point set consists of a depot point plus all points
in Ri. See figure 1.
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Figure 1: Inputs and outputs to our problem. We begin with a
depot set and a density f (·) defined on a region R (1(a)), which we
then partition (1(b)). This partition should be constructed so that,
when points are sampled independently from f (·) (1(c)), the TSP
tours of all the points in each sub-region are asymptotically equal
(1(d)).

Our problem turns out to be a special case of the equitable par-
titioning problem, in which we are given a pair of densities λ (·)
and µ (·) on a region R and we want to partition R into n sub-
regions Ri with

˜

Ri
λ (·) dA = 1

n
˜

R λ (·) dA and
˜

Ri
µ (·) dA =

1
n
˜

R µ (·) dA for all i. The case where λ (·) and µ (·) are both
atomic measures consisting of gn and hn points for some posi-
tive integers g and h is a well-studied problem in combinatorial
geometry known as a red-blue partition [13, 14, 15], and several
fast algorithms are already known for this problem. Our problem
consists of a “mixed” case where λ (·) is an atomic measure con-
sisting of n depot points and µ (·) represents the TSP workload
over a sub-region when points are sampled from f (·).
The outline of this paper is as follows: first, we describe a neces-
sary condition for optimality of a partition of R that follows imme-
diately from well-known results from geometric probability. Next
we give an algorithm that finds an optimal partition of R when R
is a simply connected polygon. Finally, we present some simula-
tion results that show the solution quality of our algorithm when
applied to some simulated problems and a case study.
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2. SUMMARY OF KEY FACTS AND FINDINGS FROM
RELATED WORK

In this section we summarize the important theoretical results that
form the basis of our partitioning algorithm. We consider the trav-
elling salesman problem (TSP) in a planar region R, where the
distance between two points is Euclidean, or any other “natural”
metric such as the Manhattan or sup norm. The well-known BHH
theorem [16] says that the length of an optimal TSP tour of a set
of points follows a law of large numbers:

Theorem 1. Suppose that {Xi} is a sequence of random points
i.i.d. according to a probability density function f (·) defined on
a compact planar region R. Then with probability one, the length
TSP({X1, . . . ,Xk}) of the optimal travelling salesman tour travers-
ing points {X1, . . . ,Xk} satisfies

lim
k→∞

TSP({X1, . . . ,Xk})√
k

= β
¨

R

√
fc (x)dA (1)

where β is a constant and fc (·) represents the absolutely continu-
ous part of f (·).

It is additionally known that 0.6250≤ β ≤ 0.9204 [17]. This result
was subsequently improved in [18], which showed that a similar
law of large numbers holds for any subadditive Euclidean func-
tional, such as a minimum-weight matching, minimum spanning
tree, Steiner tree, or Delaunay triangulation, with different con-
stants β . Applying a standard coupling argument to (1) gives the
following result:

Theorem 2. Let R be a compact planar region and let f (·) be an
absolutely continuous probability density defined on R. Let {Xi} be
a collection of i.i.d samples drawn from f (·). Let {R1, . . . ,Rn} be
a partition of R. If a partition of R into n disjoint pieces R1, . . . ,Rn
satisfies

¨

Ri

√
f (x)dA =

1
n

¨

R

√
f (x)dA (2)

for i ∈ {1, . . . ,n}, then asymptotically, the lengths of the TSP tours
TSP({X1, . . . ,Xk}∩Ri) will differ by a term of order o(

√
k), where

k is the number of points sampled. Hence, the maximum tour
length over any sub-region Ri differs from the optimal solution by
a term of order o(

√
k).

As a special case, we remark that when f (·) is the uniform distri-
bution on R, if a partition of R into n disjoint pieces {R1, . . . ,Rn}
satisfies

Area(Ri) = Area(R)/n

then asymptotically, the lengths of the TSP tours TSP({X1, . . . ,Xk}∩
Ri) will differ by a term of order o(

√
k).

3. THE EQUITABLE PARTITIONING PROBLEM ON A
SIMPLY CONNECTED SERVICE REGION

3.1. Analysis

The optimality condition defined in theorem 2 is easy to achieve,
in the absence of other criteria; for example, a partition might con-
sist exclusively of vertical lines, with each vertical strip cutting off
˜

strip

√
f (x)dA = 1

n
˜

R

√
f (x)dA. For this reason, we will im-

pose additional constraints on our algorithm that should, in prin-
ciple, give a better solution. Recall that in our original problem
statement, we assumed that our service region R contained a set
of depot points P = {p1, . . . , pn}. A natural constraint to impose
is that each sub-region Ri should contain the depot point that we
have assigned to it.

This still leaves us with considerable freedom; we have not yet
imposed any constraints on the shape of the sub-regions. A further
property that might be desired is that for any two points u,v ∈ Ri,
the shortest path between u and v be contained in Ri. When the
input region R is convex, this constraint is equivalent to requiring
that each sub-region Ri also be convex. When R is not convex, the
property that we desire is called relative convexity [13]: each sub-
region Ri should be convex “relative” to the input region R, so that
the shortest path between u,v ∈ Ri (which may not be a straight
line) must itself be contained in Ri. Our main result in this paper
is the following theorem:

Theorem 3. Given a simply connected region S with m vertices,
a probability density µ (·) defined on S such that

˜

S µ (x) dA = 1,
and a collection of points P = {p1, . . . , pn} ⊂ S where the vertices
of S and the points in P are all in general position, there exists a
partition of S into n relatively convex sub-regions S1, . . . ,Sn with
disjoint interiors, where each sub-region Si contains exactly one
point from P and satisfies

´

Si
µ (x) dA = 1/n. Furthermore, we

can find such a partition in running time O (nN logN), where N =
m+n.

Using theorem 2, by setting µ (·)=
√

f (·), the algorithm described
in theorem 3 partitions S into n sub-regions whose TSP tours (for
points sampled from the density f (·)) are asymptotically equal
when a large number of points is sampled. For purposes of brevity
we will assume that Area(S) = 1 and that f (·) is the uniform dis-
tribution, so our goal is to partition S into relatively convex pieces
of area 1/n, each containing a point pi. The reader is invited to
refer to [19] for the complete generalization of our algorithm and
a proof of its running time. An example of the input and output of
our algorithm is shown in figure 2. We let ∂ denote the boundary

(a) (b)

Figure 2: Inputs S and P (2(a)) and output (2(b)) to our problem,
where µ (·) is the uniform distribution on S. Note that the region
marked Si consists of two polygons joined at a vertex, but still
satisfies our relative convexity constraint.

operator, e.g. ∂S denotes the boundary of S. We let |·| denote the
cardinality operator, e.g. |P|= n. We begin with some definitions:

Definition 1. Let S be a compact, simply connected planar region,
and let P = {p1, · · · , pn} ⊂ S denote a set of n points, where n
is even. A partition {S1,S2} of S into 2 (relatively) convex sub-
regions is said to be an equitable (relatively) convex 2-partition if
we have

Area(S1)

|P∩S1|
=

Area(S2)

|P∩S2|
.

Definition 2. An S-geodesic between two points u and v in a sim-
ple polygon S, written G(u,v |S ), is the shortest path between u
and v contained in S.

Definition 3. A sub-region S̃ of a simple polygon S is relatively
convex to S if, for every pair of points u,v ∈ S̃, the S-geodesic
G(u,v |S ) lies in S̃.

Definition 4. Given two points u and v on ∂S, the left shell L (u,v |S )
consists of all elements of S lying on or to the left of G(u,v |S ). If
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u or v does not lie on ∂S, then we define L (u,v) = L
(

u
′
,v
′
)

,

where u
′
and v

′
are obtained by extending the endpoints of G(u,v |S )

via straight lines to ∂S (see figure 3).

Figure 3: The geodesic G(u,v |S ), its extension points u
′

and v
′
,

and the induced left shell L (u,v |S ) = L
(

u
′
,v
′ |S
)

.

Definition 5. Given a point u on ∂S and a positive integer α <
1, define LShellα (u) := v to be the unique point on ∂S such that
Area(L (u,v|S)) = α .

This section consists of a proof of the following theorem:

Theorem 4. Let x0 and x1 be two points on ∂S. If Area(L (x0,x1 |S ))=
k
n for some integer k≤ n/2 and |L (x0,x1 |S )∩P|> k, then we can
find a relatively convex equitable 2-partition of S and P in running
time O (N logN), where N = m+n.

Note that theorem 4 is more than sufficient to prove theorem 3
when n = 2 j for some positive integer j and f (·) is the uniform
distribution, since we can always meet the necessary conditions of
theorem 4 with k = n/2 (by dividing S in half with any geodesic,
and counting the number of points on either side), and then ap-
ply theorem 4 recursively to both sub-regions. This can also be
used more generally for other n, although we have omitted the dis-
cussion here for brevity (see [19] for the complete result). The
remainder of this section consists of a sketch of a proof of this
theorem.

As in the theorem, let x0 and x1 be two points on ∂S such that
Area(L (x0,x1 |S )) = k

n for some integer k ≤ n/2 and
|L (x0,x1 |S )∩P| > k. Construct another point x2 on ∂S so that
Area(L (x2,x0 |S )) = k

n . Then either |L (x2,x0 |S )∩P| < k or
|L (x2,x0 |S )∩P| > k (if we have equality then we are finished),
and in either case we can derive an equitable 2-partition:

Case 1

Suppose that |L (x2,x0 |S )∩P|> k. Then |L (x0,x2 |S )∩P|< n−
k and Area(L (x0,x2 |S )) = n−k

n . Hence, L (x0,x1 |S ) contains
too many points (relative to its area) and L (x0,x2 |S ) contains too
few points. Consider a family of left shells L (x0,x |S ), where

Figure 4: A family of left shells cutting off area k
n ,

k+1
n , . . . , n−k

n ,
with k = 2 and n = 9.

x traverses ∂S clockwise from x1 to x2; see figure 4. The func-
tion φ (x) := Area(L (x0,x |S ))− k

n |L (x0,x |S )∩P| is piecewise
continuous, increasing on each of its components, and decreasing
at each discontinuity. Since φ (x1) < 0 and φ (x2) > 0, the inter-
mediate value theorem guarantees the existence of a point x̄ where

φ (x̄) = 0 and our equitable 2-partition is obtained. We can find
this by performing a binary search for i ∈ {k, . . . ,n− k}, where
for each i we compute the point LShelli/n (x0) and the number of
points contained therein. The preceding argument guarantees that
we must find an equitable 2-partition somewhere in this procedure.

Case 2

Suppose that |L (x2,x0 |S )∩P|< k. Then, as |L (x0,x1 |S ∩P)|>
k, we have a left shell containing too many points (relative to its
area) and another left shell containing too few points. Hence, there

!! !"#$%&

"! !"#$%&

! !"#$%&

"'

"(

")#"

$"

Figure 5: An equitable geodesic shell exists between x̄ and x̃ with
k = 4 and n = 9.

must exist some pair of points x̄, x̃ in ∂S such that x̄∈ ∂L (x0,x2 |S )
and x̃ ∈ ∂L (x1,x0 |S ) (see figure 5), where Area(L (x̄,x̃ |S )) = k

n
and |L (x̄,x̃ |S )∩P|= k. This is because the function LShellk/n (x)
is continuous in x (for x ∈ ∂S), and the assumption that our points
lie in general position ensures that as x traverses ∂S from x0 to x2,
the elements of P will enter and exit L

(
x,LShellk/n (x)

)
one by

one.

4. COMPUTATIONAL RESULTS

Theorem 2, our criterion for optimal partitioning, is an asymptotic
result. We are guaranteed that vehicle workloads will differ by
terms of order o

(√
k
)

, but we have not yet established that work-
loads are in fact balanced when this algorithm is employed (e.g.,
that the convergence in k may be slow in practice). In this section
we give some examples that suggest that vehicle workloads will
in fact be balanced in a practical setting when point-to-point dis-
tances are Euclidean. We also present the results of a case study
in which we apply our partitioning algorithm as a pre-processing
stage in a non-Euclidean vehicle routing problem using data sup-
plied from an industrial affiliate. In this problem, we are given the
map of a road network of a city, and we must use our fleet of ve-
hicles to traverse every road. This is a multi-vehicle variant of the
Chinese Postman Problem (CPP), a well-studied routing optimiza-
tion problem first described in [20].

4.1. Simulation results

We first present the results of a simulation in which we construct
a synthetic data set with n = 9 depots where f (·) is a mixture of
three Gaussian distributions, truncated to lie within a simple poly-
gon S ⊂ [0,1]2. One of the polygons that forms the input to our
simulation is shown in figure 6. For each polygon, we generate 20
scenarios, with each scenario consisting of 30 samples of k points
in S, for k between 50 and 1500 (and hence we performed a total
of 600 simulations per polygon). TSP tours were computed using
the Lin-Kernighan heuristic from Concorde [21]. Tour lengths for
a particular scenario, and the average vehicle tour lengths over all
scenarios, are shown in figure 7. As the plots show, the vehicle
workloads are well balanced by partitioning; these suggest that the
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(a) (b)

Figure 6: The input and output to our simulation.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Total # points

T
ou

r 
le

ng
th

s

(a)

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Total # points

T
ou

r 
le

ng
th

s

(b)

Figure 7: Tour lengths of the 9 vehicles in a particular random
scenario, and average tour lengths over 20 scenarios (7(b)).

o(
√

k) term of theorem 2 may be negligible, although the variabil-
ity between vehicle tours for small k is still high. This is not sur-
prising since our partition is “asymptotically optimal” and makes
no guarantees for the tour lengths when the number of points is
small. A second observation is that our algorithm performs well
when many scenarios are averaged, as suggested in figure 7(b).
For a related application, figure 8 shows the result of this algo-

Figure 8: An equitable partition of Hennepin County, Minnesota.
All sub-regions have the same total population and each sub-
region contains one post office.

rithm applied to a map of Hennepin County, Minnesota, where
µ (·) is the population density and P represents the 29 largest post
offices. Rather than producing equal TSP tour lengths, this parti-
tions so that each mail carrier services the same number of houses
each day.

4.2. Case study

As a final example, we show in figure 9 a partition of the road
network of a city that was provided by an industrial affiliate. The
objective in this problem is to traverse every street segment in the
city with a fleet of vehicles originating at various depots. Although
heuristics for these kinds of problems are already known [22], they
do not take advantage of the fact that our road map is a planar

graph, and consequently vehicle tours may not be geographically
separate. In a practical setting it is desirable to separate one ve-
hicle’s route from another in an obvious geographic way so as to
localize drivers to specific areas of the city.

In our partition, each sub-region contains a depot and all sub-
regions contain (approximately) the same total amount of roads.

Figure 9: An equitable partition of a road network that is relatively
convex with respect to the metric induced by the road network. All
sub-regions have the same total road mass and each sub-region
contains a depot.

Each sub-region is “relatively convex” to the metric induced by
the road network (i.e. for any two points u,v ∈ Ri, the shortest
path from u to v lies in Ri). The lengths of the total amount of
roads in each sub-region differ by a factor of at most 1.11.
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ABSTRACT

The selection of sugarcane varieties is an important problem faced
by sugarcane mill companies confronted by the issue of efficiency
and the reduction of damage to the environment. Here the authors
present the problem of sugarcane variety selection in the light of
technical constraints and the aim to minimize collection and trans-
port costs of the residue from sugarcane harvest and maximize en-
ergy obtained from the residue. This problem will be presented and
formalized within bi-objective binary linear programming. The
study is mainly devoted to the application of a bi-objective genetic
algorithm to solve real problems addressed in the São Paulo State
of Brazil. Results from the computational experiment undertaken
will be reported.

Keywords: Selection of sugarcane varieties, Bi-objective genetic
algorithm

1. INTRODUCTION

Brazil is the world’s largest sugarcane producer. This crop is mainly
used to obtain ethanol, sugar and energy. Currently, the big worry
for environmental and governmental organizations arises from the
residue generated when harvesting. On one hand, the common
practice of burning the straw prior to harvest brings about serious
environmental damages and will soon be prohibited. On the other
hand, the absence of burnings, leading to the additional straw ac-
cumulating on the soil creates favourable conditions for parasites
and delays sugarcane shooting, thus compromising the next crop.
Therefore, the destiny of this residual material in the field has been
the subject of many studies. Of particular interest is the one de-
voted to the selection of sugarcane varieties designed to cope with
environmental and economic requirement issues, in short referred
to as SSVP.

A model for the SSVP will be given, followed by a brief presen-
tation of a bi-objective genetic algorithm and, finally, by computa-
tional results.

2. MATHEMATICAL MODEL

The SSVP consists of determining which of the n varieties adapted
to local soil and climate conditions should be planted in each of
the k plots. They should, at the same time offer the lowest possible

field-to-mill transfer cost and maximum energy balance for resid-
ual biomass from the sugarcane harvest. Moreover, the solution
must satisfy sucrose and fibre limits for sugarcane, recommended
by the company, use the whole area set aside for sugarcane planta-
tion and respect the specific varieties’ area limits.

To construct a bi-objective binary linear programming model for
the SSVP we consider the decision variables xi j = 1 if sugarcane
variety i is planted in plot j, xi j = 0, in the opposite case (for all
i = 1,2, . . . ,n; j = 1,2, . . . ,k) and the parameters:

ci j: transfer cost of the residual biomass produced from 1 ha of
sugarcane variety j on plot i;

ei j: energy balance of the biomass from 1 ha of variety j on plot
i;

si j: estimated sucrose production from plot j should it be
planted with variety i;

Slo: minimum quantity established for the total sugar to be ex-
tracted from the planting area;

fi j: estimated fibre content of sugarcane planted in plot j with
variety i;

Flo, Fup: lower and upper bounds established for the total quantity of
fibre;

L j: area of plot j;

Lupi: maximum area for variety i.

The model follows:

minimize f1 (x) =
n

∑
i=1

k

∑
j=1

ci jxi j (1)

maximize f2 (x) =
n

∑
i=1

k

∑
j=1

ei jxi j (2)

subject to n

∑
i=1

k

∑
j=1

si jxi j ≥ Slo (3)

Flo≤
n

∑
i=1

k

∑
j=1

fi jxi j ≤ Fup (4)

n

∑
i=1

xi j = 1 j = 1,2, . . . ,k (5)

k

∑
j=1

L jxi j ≤ Lupi i = 1,2, . . . ,n (6)

xi j = 0 or 1 i = 1,2, . . . ,n; j = 1,2, . . . ,k (7)
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This multi-objective optimization problem (MOP) is similar to the
one presented in [1], however more complete from the practical
perspective insofar as it preserves the quality of sugarcane in terms
of fiber and optimizes both cost and energy balance.

The SSVP is NP-hard, hence non-exact methods are required to
cope with the medium/high dimension instances of the SSVP char-
acterizing the most frequent real cases arising from companies in
the Mid South region of Brazil.

3. BI-OBJECTIVE GENETIC ALGORITHM

From among the many types of non-exact multi-objective meth-
ods, the genetic or evolutionary heuristics have proved to be suc-
cessful in obtaining solutions for difficult MOPs. The reason for
this is that they deal with a population of solutions with different
characteristics as to the optimization goals. [2] covers the actual
research and application in the field. Genetic heuristics have been
successfully applied for multi-objective problems with knapsack
and semi- assignment type constraints, e.g. [3],[4].

Within the new bi-objective genetic algorithm we developed for
SSVP each individual of the population is characterized by a single
chromosome that represents a solution for the SSVP. The chromo-
some is encoded through an integer valued vector whose k com-
ponents provide the sugarcane varieties selected. Hence, in this
representation each gene is a variety, the very one proposed for the
plot. The solution may or not be feasible and, in this case, both
cost and energy are penalized. To evaluate the individual’s fitness,
the simple rank concept is used, thus giving relevance to the dom-
inance relations, as within NSGA type algorithms [2].

The dimension of the population in every generation is N=100 and
the maximum number of generations is Nmax=2000. Two different
processes are used to generate the individuals of the initial popula-
tion: one is a constructive algorithm to produce Ng=4 individuals
by enforcing the bounding constraints of the SSVP - (3) (4) and
(6) and the other algorithm randomly generates the remaining N-
Ng individuals.

As to the operators, five basic operators are applied to the cur-
rent population, to create the population of the next generation:
selection, crossover, mutation, repair and elitism. The selection
operator is a standard binary tournament to build the Pool, giving
priority to an individual with a low cost and a high energy balance.
The crossover is the one point procedure. When a child is not fea-
sible, it is repaired through the action of the repair operator, the
above constructive algorithm. Afterwards, each child replaces any
one of the parents in the Pool, but only if it is fairly better than that
parent is as regards the dominance relation. Then mutation applies
with probability pm=0.05 on each gene of all the chromosomes of
the Pool. If a gene is going to mutate, the sugarcane variety for
the respective plot is randomly chosen by giving equal probabil-
ity to all the n varieties. Again, if the mutant is not feasible, then
the repair operator is applied. Finally, within the elitist operator,
all the potentially efficient individuals of the previous generation,
here represented by S∗, are included in the Pool and the population
for the next generation is determined by eliminating the |S∗| less
fitted individuals from the Pool.

4. COMPUTATIONAL RESULTS

The bi-objective genetic algorithm was tested along with an exact
method with an SSVP instance corresponding to a small company

of the São Paulo State in Brazil [5], thus producing results that will
be given at the talk. This company deals with 10 sugarcane vari-
eties and possesses a total area of 315.81 ha. Other 80 simulated
instances, corresponding to fields from 405 to 6075 ha, have also
been solved with the above algorithm.

The effect of the genetic evolution on the initial population for all
the 81 test instances and the computing times will be shown. The
quality of the solutions obtained from the genetic algorithm is ac-
cessed through performance measures [6]]. These figures show
that, at low computing times, the spread within the non-exact fron-
tier is high and the cardinality of this frontier is also significant.

All the programs were coded in MATLAB [7] and ran on CORE 2
QUAD computers with 2.83 GHz and 2G RAM at the Department
of Biostatistics, UNESP, Botucatu, Brazil.

5. FINAL COMMENTS

Results obtained from the computational experiment reveal the fa-
vorable behavior of the bi-objective genetic heuristic specially de-
vised for SSVP, both from the mathematical and the practical per-
spectives.

Hence, this methodology will be appropriate in helping managers
of sugarcane mills in the Brazilian Mid South region to plan their
production activities.
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ABSTRACT

This work describes an imputation algorithm to solve the nonre-
sponse problem in surveys. The nonresponse is associated the oc-
currence of missing values in at least one variable of at least reg-
istry or unit of the survey. In order to prevent the negative effects
of nonresponse, an intense research has been produced in this area
and many procedures have been implemented. Among these, we
detach the imputation methods, that consist basically of substitut-
ing a missing value by some suitable one, according some crite-
rion or rule. In this work we propose a new imputation algorithm
that combines the clustering method and GRASP metaheuristic.To
evaluete its performance we present a set of computational results
considering data from Brazilian Demographic Census 2000.

Keywords: Nonresponse, Imputation, GRASP, Cluster Analysis,
Survey

1. INTRODUCTION

Nonresponse is a normal but undesirable feature of a survey [1]. It
is characterized by incomplete records of a survey database, which
may occur in the phase of data collection or data estimation. Non-
response occurs when, at least for one sampling unit (household,
person, etc) of the population or sample [2] of the survey, there
is nonresponse to one question of a questionnaire (record) or the
information given is not usable. Or else, when at least one item
of a questionnaire was not completed (survey variable). Incom-
plete questionnaires due to nonresponse are common in surveys,
but deserve attention. Therefore, a considerable amount of money
has been spent in the development and improvement of procedures
associated to data assessment, in order to prevent the occurrence
of nonresponse or to minimize its negative effects. There has been
extensive research in this field, which is reported in many studies,
such as [1, 3, 4, 5]. Among the procedures being developed are
those classified as imputation methods, which basically consist in

replacing a missing data with an estimated value, according to a
criterion or rule [1]. With the purpose of treating the nonresponse
issue, the present study introduces a method that combines an im-
putation rule, a technique of cluster analysis [6, 7] and GRASP
metaheuristics [8, 9] (Greedy Randomized Adaptive Search).

2. NONRESPONSE AND IMPUTATION

There are two types of nonresponse: (1) total nonresponse, which
corresponds to the units from which no usable information was
collected, and partial nonresponse, corresponding to the units from
which there is at least one variable with a missing value and which
are not part of the total nonresponse set. The present study has
focused on the treatment of partial nonresponse. Then, the con-
cept of nonresponse is described in greater detail, with emphasis
on some procedures for the treatment of nonresponse through im-
putation methods. At first we may consider a set of p variables
associated e.g. to the sociodemographic characteristics of a survey
defined by X1,X2, ...,Xp. Such characteristics are obtained for n
persons (records), which determines a matrix Xnp that has for each
input Xi j the value of the jth variable (characteristic) observed in
the ith i = 1, ...,n record. If a Mi j indicating variable of the ob-
servation of the corresponding data is associated to each Xi j, we’ll
have Mi j = 1, If there is a value for Xi j and Mi j = 0, If it is oth-
erwise. And based on this, a M matrix that defines the pattern of
the missing data is defined. In the present article, we shall treat
the missing data associated to one single variable X j (Univariate
Missing Data), known as the study variable. That is, the matrix M
shall have zero elements in only one of its columns. The remain-
ing variables (p− 1) shall be treated as explicative variables, that
is, variables correlated with the variable of interest and that can be
used to predict the values of this variable.

When incomplete records are found in a given database, that is,
when there is missing information on one of the variables of the
database, data can be imputed. Imputation is a procedure through
which the missing values for one or more study variables "are
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filled" with estimated values [1]. These "replacements" must be
performed according to a rule. The imputed values can be clas-
sified into three main categories: (i) values constructed using a
device for automatic imputation of missing values, considering an
imputation statistical rule (ii) values observed for elements with
similar response; (iii) values constructed by expert opinion or "by
the best possible estimate" [1]. The categories (i) and (ii) can be
called statistical rules because they use a statistical method aimed
to produce a replacement value reasonably close to the original
value. The (i) category is frequently based on regression prediction
[1]. Imputation is especially used in the treatment of partial non-
response, which concerns the simulations presented in this article,
although it can also be used in the treatment of total nonresponse.

There are several methods of imputation [1, 5], such as: (1) Near-
est Neighbor Imputation: a function of the distance between the
complete and incomplete records is calculated considering the ex-
plicative variables (p−1). The value of the observed unit with the
smallest distance to the non-respondent unit will be substituted for
the missing item. (2) Hot Deck Imputation: the variable X j asso-
ciated to an incomplete record is substituted for a value obtained
from a distribution estimated from the available data (complete
records). A complete record (donor) is selected in order to provide
values for the missing information in the incomplete record (re-
cipient). This method is typically implemented in two stages: in
the first stage, a set of data is distributed into k groups (imputation
classes) considering the explicative variables (p−1) associated to
the study variable. Once the k groups are defined, in the second
stage, the group of each incomplete record is identified. The com-
plete records of a group are used to estimate the unknown values
in the incomplete records. (3) Mean imputation: it is a simple
method applicable to continuous variables. It substitutes the miss-
ing values with the general mean for the variable.

3. METHODOLOGY

The present study shall treat the problem of nonresponse with the
type of imputation classes used in the Hot Deck method, expand-
ing the use of these classes to the cases of mean imputation (which
is then based on records associated to each one of these classes).
Since the definition of the imputation classes has direct impact on
the incomplete records, a new methodology for the definition of
the classes shall be proposed in this study, with the application of
the cluster analysis, a technique widely used to solve the problem
of obtaining homogeneous groups (clusters) from a database with
special characteristics or attributes [7]. The clusters formed are
characterized as follows: the objects of one cluster are very similar
and the objects or different clusters are very dissimilar, consider-
ing the objective function (that aggregates the distances) shown in
the equation below.

f =
k

∑
l=1

∑
∀os,or∈Cl

dsr (1)

The function presented in the equation 1 considers for each cluster
Cl , l = 1, ...,k the sum of all the objects that are part of the group.
Therefore, minimizing f consists in allocating all the objects to
the clusters in such a way that the total sum of the distances (dis-
similarities) between two objects from each one of the clusters is
minimum.

Regardless the objective function considered or other distance func-
tions, this is not a simple task because of the combinatorial nature
of this type of problem (see also [10, 11]). If a process of ex-
haustive search is used to obtain an optimal solution, all solutions
shall be enumerated, that is, all the possibilities of combination of
the objects n in groups k. In general, the m number of possibili-
ties grows exponentially as a function of n [6]. Such characteristic

makes it impracticable to obtain the exact resolution of average
and large instances of these problems. A previous study on meta-
heuristics applied to cluster problems [12, 13, 14, 15] suggests that
it is a good alternative for the resolution of several clustering prob-
lems. In general, with the application of metaheuristics, feasible
solutions of higher quality than those from heuristics (local mini-
mums) are obtained.

Considering the last observation, and with the purpose of con-
structing the classes used in the imputation of data, a cluster al-
gorithm that uses GRASP meta-heuristics was developed [9] and
whose objective function is the equation (1). The GRASP is an it-
erative greedy heuristic to solve combinatorial optimization prob-
lems. Each iteration of the GRASP algorithm contains two steps:
construction and local search. In the construction, a feasible solu-
tion is built using a randomized greedy algorithm, while in the next
step a local search heuristic is applied based on the constructed so-
lution.

3.1. Grasp Algorihtm

Construction Procedure: Considering a D set formed by objects
n (records of a database) and a fixed number of clusters k, k ob-
jects of D are selected, with each object allocated to a cluster
Cl , l = 1, ..,k. Then, in each construction iteration, each one of
the (n− k) objects is allocated considering their proximity to the
objects o j that are already part of each group Cl . That is, in each
iteration, there is a list of candidates LC composed of objects oi not
yet allocated to a cluster and two vectors q and g . Each position
q contains the number of the cluster where the closest object o j is
located (using the 1 equation of each object oi). The vector g cor-
responds to the distance of the object o j in the database located at
the shortest distance from each object oi. Based on the referred in-
formation, a LCR restricted candidate list is constructed, which is
formed by the oi objects, so that gi ≤ gmin+α(gmax−gmin). Being
gmax and gmin, respectively the maximum and minimum distances
found in g. Then, an object LCR (element) is randomly selected
and allocated to one of the clusters considering the information
stored in q. Every time a new object is inserted in one of the clus-
ters, the candidate list is updated. And when LC = /0 all the objects
shall be allocated to one of the clusters k.

Local Search Procedure: At this step, the reallocation of objects
between the clusters k is sought, in order to reduce the value of
the equation (1), and consequently, produce more homogeneous
clusters (classes) for performing the imputation. Considering the
solution obtained in the construction step, in each iteration of this
procedure, two clusters Cr and Cl are selected from the clusters k
defined in the construction step. Afterwards, various (random) se-
lections of an object oi ∈Cr and an object o j ∈Cl are performed,
and in each selection the distances di,dil ,d j,d jr are calculated.
The values for di and d j correspond respectively to the sum of the
distances from object oi to the other objects Cr and the sum of the
distances from object o j to the other objects Cl . And dil represents
the sum of the distances from object oi to the other objects Cl . An
equal definition is applied to d jr, though considering the sum of
the distances between the object o j and the objects Cr. After the
calculation of the distances di,dil ,d j,d jr, three types of realloca-
tions are assessed:

(1) The object oi is allocated to cluster Cl and the object o j is
allocated to cluster Cr and d =−di +dil −d j +d jr is calculated.

(2) The object oi is allocated to cluster Cl and d = −di + dil is
calculated

(3) The object o j is allocated to cluster Cr and d = −d j + d jr is
calculated.

The reallocation that produces the greatest reduction (lowest value
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of d) in the objective function given by (1) shall be applied in the
current solution. Such reallocations are performed until the im-
provements w (reductions) in the value of the objective function
are obtained, or until the number of replacement attempts is equal
to a value of nCr ∗nCl . Being nCr and nCl , respectively the number
of objects in clusters Cr and Cl . When at least one of the condi-
tions is satisfied, we get back to the main loop and select two new
clusters. At the end of the local search, the new candidate solution
generated is checked and compared to the best results obtained so
far, considering previous GRASP iterations.

3.2. Imputation Algorithm

The imputation algorithm considers, as input, a database with n
records, with complete information for the (p−1) explicative vari-
ables, X1,X2, ...Xp−1. Besides, the missing information for the
study variable Xp in a given number n∗ < n of records, or else,
a percentage of nonresponse. Then, the two basic steps of the al-
gorithm are described:

• The algorithm GRASP is applied in the determination of the
imputation classes considering the number of clusters equal to k.
The objective function presented in the equation 1 and used in the
GRASP considers, for cluster purposes, the distances between the
explicative variables (p−1).

• Once the classes are constructed, the procedure of mean imputa-
tion is applied in each one of the incomplete records n∗ in relation
to Xp. This implies determining to each class Cl (l = 1, ...,k) each
incomplete record i is allocated and assign a value X̄l that cor-
responds to the mean (in class l) complete records in relation to
variable Xp.

• Thus, X̄l = ∑i∈Cl

xip
nl∗ , being nl∗ the number of complete records

in cluster Cl and xip the value of the variable Xp in the nth com-
plete record that is part of the cluster Cl .

Figure 1: Phases of the Imputation Algorithm

4. RESULTS

The present section contains a few computational results obtained
with the application of the imputation algorithm, implemented in
Delphi language (version 6.0) and run on Windows 7. All the com-
putational experiments are performed in a 16 GB RAM I7 PC with
a 2.93 GHz I7 processor. Prior to the presentation of the results, a
small description of the data used in the study is made, as well as of
the nonresponse mechanism [1, 5, 16] considered for the database
used in the experiments.

4.1. Data

In order to perform the experiments, a real database, more specifi-
cally, a file of the Sample of the 2000 Brazilian Demographic Cen-
sus (state of Rio Grande do Sul) was used. Based on this file, nine
weighted areas (WAs) were drawn for the simulations with the im-
putation algorithm. A weighted area is a small geographical area
formed by a mutually exclusive enumeration areas (cluster of cen-
sus segments), which comprise, each one of them, a set of records
of households and people [17]. We decided to work with the file
of people, where each record is related to the individual character-
istics of each inhabitant. And of the variables available in these
records, six variables X1, ...,X6 were selected to be considered in
the imputation, as follows: sex, relationship with the responsible
person, age in years, highest completed level of education, school-
ing years and the gross earnings from the main occupation. The
five first variables (all categorical) are explicative and correlated to
the earnings in reais (quantitative), which was the study variable
considered.

4.2. Mechanisms that Lead to Missing Data and the Genera-
tion of Incomplete Records

As in any other study aimed to assess whether the method of im-
putation produces good estimates for the imputed variable [2], the
nonresponse mechanism must be considered. That is, since infor-
mation on a given study variable is missing, these values shall be
imputed on a subset of records. In particular, concerning the earn-
ings, it is known that the loss of information is greater for classes
with higher income, which characterizes a mechanism of nonre-
sponse called Not Missing at Random (NMAR). This means that
the probability of non-information of each input in the nth column
of X shall depend on the values observed for the variable Xp in ma-
trix X (see section two). Such mechanism was used to perform the
simulations considering a database where all the records contain
the information for the study variable (original records). With the
application of the nonresponse mechanism, subsets of incomplete
records in relation to the gross earnings from the set can be gen-
erated, and consequently apply imputation to these records. The
number of incomplete records generated in the simulation depends
on the rate of nonresponse considered.

One possible procedure for the generation of incomplete records
consists in assigning a previous value pr (0 ≤ pr ≤ 1) that corre-
sponds to the probability of nonresponse (missing information) to
the study variable in each original record. In the present study, in
particular, such probability was obtained considering the variables
relationship with the responsible person (11 categories), highest
completed level of education, (10 categories) and schooling years
(four categories). According to the category informed for each one
of these variables, a probability pr of 0.1, 0.2 or 0.3 of the earning
value (X6) not being informed was attributed to each record. The
more the category is related to high earnings, the greater the prob-
ability is [16]. Once this probability is defined, a value between 0
and 1 is drawn for each record, and this value is compared to the
probability of nonresponse (pr) of the record. If the probability
of the record is lower than the value drawn, such record shall have
the gross earning value informed at the incomplete database, and,
otherwise, it shall be considered a missing data on this database.
With the use of this procedure, r replicas can be generated from
the complete database, which correspond to the database with dif-
ferent incomplete records.

4.3. Computational Experiments

Initially, for the applying and validating of the imputation algo-
rithm to the records associated to the nine files of people (WAs)
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(see section 4.1), a rate of nonresponse of 10% was defined and
r = 100 replicas of the original databases were generated with
different subsets of incomplete records for each r replica. Ap-
plying mean imputation to the incomplete records, we obtain for
each replica the complete records and the imputed records. Con-
sidering such information, the values X̄m

r e X̄c
r were calculated,

which correspond to the means associated to Xp considering: all
the records of each replica (complete and imputed) and only the
complete records. It is also said that the same classes of imputa-
tion (clusters) were used in all the replicas. In this particular exper-
iment, the algorithm GRASP was applied considering the values k
equal to 4, 6 and 8. Still concerning the GRASP, the number of
iterations was fixed in 50, improvements equal to 20 and the pa-
rameter α equal to 0.5.

Table (1) shows the results obtained with the application of the
imputation algorithm to the records of the nine instances used in
the simulations. The first column contains the number of the in-
stance and column two contains the records of each WA. Column
three contains the number of constructed clusters (classes of im-
putation). Columns four and five contain the value of the objec-
tive function (1) and the processing time (seconds) to construct
the clusters, generate the 100 replicas and apply the imputation.
Columns six, seven and eight contain the values of X̄p, X̄m e X̄c that
correspond, respectively, to the mean of the incomes of all records
(original database) and the mean of the means of X̄m

r and X̄c
r

considering the 100 replicas, that is: X̄m = ∑100
r=1 X̄m

r

100 X̄c =
∑100

r=1 X̄c
r

100 .
Finally, column nine contains the value of ρ that corresponds to the

relative mean deviation between X̄p and X̄m
r : ρ = ∑100

r=1
|X̄p−X̄m

r |
X̄m

r .

WA n k Time FOBJ X̄p X̄c X̄m ρ
4 18 2369.3 559.1 561.5 3.5

1 178 6 6 1262.9 561.5 556.1 561.3 3.0
8 3 783.5 555.2 559.5 3.6
4 34 3875.4 509.3 512.2 1.6

2 222 6 11 2095.9 513.3 509.8 513.7 1.6
8 5 1359.7 508.2 512.5 1.6
4 77 7260.7 367.6 372.5 2.7

3 289 6 24 4012.4 373.6 366.7 371.9 3.1
8 11 2695.6 367.0 372.0 2.8
4 113 9268.9 349.5 354.1 1.7

4 334 6 36 4932.8 355.3 350.2 354.2 1.4
8 17 3349.6 350.2 354.8 1.3
4 215 12248.0 1162.9 1171.1 1.5

5 410 6 64 6808.8 1174.6 1161.5 1172.9 1.7
8 30 4359.1 1165.2 1176.1 1.6
4 332 17383.3 544.0 547.9 1.3

6 476 6 105 9326.4 547.3 541.3 546.4 1.5
8 49 6201.4 541.9 546.3 1.4
4 485 21402.2 438.3 439.2 1.1

7 539 6 153 11655.5 440.2 435.3 438.2 1.4
8 71 7591.6 437.4 440.5 1.3
4 764 28575.4 583.4 588.0 0.9

8 628 6 240 14730.3 590.9 584.4 589.4 0.9
8 113 9858.2 582.8 588.5 0.9
4 1121 38222.6 443.4 445.8 0.8

9 710 6 349 20743.3 446.7 442.8 445.8 0.9
8 160 13498.0 442.8 445.8 0.9

Table 1: Results for the Imputation Algorithm

The analysis of the results of columns 6, 7 and 8 of table (1) shows
that the application of the imputation algorithm has made it pos-
sible to obtain good estimates for the mean, considering the 100
replicas. In particular, the values between 0.8% and 3.6% in col-
umn nine indicate that the means in relation to the imputed records
were reasonably close to the real mean value X̄p.

Based on the results obtained, and despite the need for a greater
number of experiments, the combination of GRASP and cluster
analysis with an imputation method can be a good alternative to
the treatment of the problem of nonresponse and produce good
quality estimates for databases with incomplete records. In order

to improve this procedure in the future, we intend to adapt it to
the treatment of categorical variables. Also, we intend to use other
objective functions for the construction of the clusters, as well as
other metaheuristics such as ILS or Genetic Algorithms [9].
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ABSTRACT

There exist several optimization problems for which an efficient
solution algorithm have not been found, they are used in decision
making for a lot of production and service processes. In prac-
tice, hard problems must be solved in an operational, tactical and
strategically way inside several organizations. Using this assump-
tion, developing algorithms for finding an approximate solution or
"a good solution" is encouraging.

The automatic generation of optimization programs is an emerg-
ing field of research. The construction of programs is developed
through several evolving-nature hyper-heuristics or local search
method. We used Genetic Programming to find algorithms rewrit-
ten as pseudo-code and analyze them to get new knowledge.

The experiment evolved individuals to solve the Non-Guillotine
Cutting Stock Problem, a NP-Hard Problem. We tested the popula-
tion obtained over a data set of instances from literature, the fittest
individual averaged 5.4% of material waste and was the object of
our analysis. We found interesting blocks of genetic code that re-
semble intuitive human solutions, and we believe that crafting the
terminal and functional elements to facilitate the comparison may
help to find interesting even human-competitive algorithms.

Keywords: Genetic programming, Cutting Stock Problem, Algo-
rithms

1. INTRODUCTION

There exist several optimization problems for which an efficient
solution algorithm have not been found [1, 2]. They are used in
decision making for a lot of production and service processes. In
practice, hard problems must be solved in an operational, tactical
and strategically way inside several organizations [3]. Generally
the main goal of finding the best solution is sacrificed, as either it is
not in the computational scope or the search cost is higher than the
benefits. Using this assumption, developing algorithms for find-
ing an approximate solution or ä good solutionïs encouraging. An
algorithm to solve an optimization problem needs to maximize or
minimize some given objective function, so the whole partial so-
lution set must belong to the feasible solution space.
The automatic development of optimization programs is a field of
intense research, having Burke as its mayor exponents [4]. The
feasible solution is an individual, in this case a computer program
that solves a given problem, and the objective function is an evalu-
ator for some characteristics to be searched, for example efficacy,
simplicity, size, etc. The Genetic Programming (GP) [5, 6] can be
used as a tool to generate algorithms, if some primitives are de-
signed to be easy to comprehend and close to some programming
language to establish some parallelism. GP could evolve those

structures and find algorithms, rewritten as pseudocode and ana-
lyzed to get new knowledge. Some related works have been pub-
lished by [7] who solved the coloring graph, by [8] who evolved
"greedy programs" to solve the Traveling Sales Problem and by
[4] who have generated programs to solve the packing problem
[4, 9, 10]. This research presents one algorithm generated through
GP to solve a NP-Hard Problem, the Non-Guillotine Cutting Stock
Problem (NGCSP) [11].

2. GENERATING ALGORITHMS

The generating process of algorithms through GP is presented in
a preliminary sequence of general steps depict by [12]: The first
step is a clear definition of the problem domain, but without any
statement about how to solve it; NGCSP was modeled as a set
of data structures and procedures to simulate the process of non-
guillotine cutting, i.e., the sheet, the pieces, the geometric con-
straints, the dynamic process (to obtain a layout pattern through
some degrees of freedom to use the entities and behaviors), and an
evaluator to assess the result. In this research, we define a set of
terminals and functions which fulfill the Closure and Sufficiency
properties, using the entities and their behaviors yet mentioned;
Then the objective function quantify the fitness of the individual
using the model’s evaluator. We selected the execution parameters
of GP after being identified through local search for different prob-
abilities of mutation and crossover to find the ones best suited for
the evolutionary process. Finally, the evolutionary process is run
and eventually the fittest individual would be found. This iterative
process may require the redefinition of some step, until achieving
the generation of algorithms with the performance needed.

The NGCSP considers a rectangular sheet of area A with (W,L) as
dimensions, being W the width and L the length. Let R a set of
rectangular pieces of lesser dimensions (wi, li), i = 1,2,. . .,n, and
area ai [13]. A layout is a set of pieces cut from the sheet, mini-
mizing the waste of material and fulfilling some rules of geometric
feasibility. The mathematical formulation is:

Min Z(x) =W ·L−∑
i

wi · li · xi where xi > 0,∀i ∈ N (1)

There were defined 20 operations, among terminals and functions,
and a fitness function that evaluate the performance of each indi-
vidual. In this case, the fitness is the used area ratio for a fitness
case or problem instance (1), being Tp the total pieces cut from
container sheet, see equation (2):
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f =

Tp

∑
i=1

ai

A
(2)

Furthermore, let h be the height of the tree in which it is mapped
an algorithm automatically generated using GP. Here h is set to 14
and let δ be the total of nodes of a full (strictly) binary tree. Let N
be the total of nodes of each individual generated and Parsimony
P be the ratio between N and δ . So as to simplify the analysis, it is
defined the Correctness C as the total of semantic errors shown in
an individual divided by N. Let raw fitness RF , a fitness measure
taken directly from the domain problem, here being understood as
a measure of error e equals to the sum of ratios of wasted area con-
sidering the Ne fitness cases or examples from the domain problem,
as shown in (3).

RF =
Ne

∑
j=1

1− f (3)

The standard fitness is calculated using the additional selective
pressures C and P, being P a penalty over Pi, being i = RF , P,
C all summing 1, then SF = RF ∗ pRF +P∗ pP +C ∗ pC. To setup
the parameters used, a local search tool, ParamILS [14], resulting
in the crossover probability of 90%, a mutation probability Swap
and Shrink of 1%, respectively. The kernel used is GPC++ de-
veloped by [15], a personal computer with an Intel Core I7-940
2.93Ghz processor and 8 GB RAM.

Evolution provided a population of 1500 individuals trained to
solve the problem, evolved over a group of 44 instances [16, 17].
Later the same population was tested over a data set of 8 instances
published by Hopper, and selected the individual that depicted the
best pattern layouts, the smaller waste of material (see Figure 1).
Its bloating zones of useless code were cleaned, and this stripped
genetic code was synthesized as pseudo-code, analyzed and de-
scribed. The convergence of the experiment was similar to that
of a Genetic Algorithm [18], being very fast in the first genera-
tions. Annex 1 shows the best algorithms, whose average loss rate
is 5.4%, also includes control parameters, pseudo-code, associated
algorithmic complexity and layouts obtained.

3. CONCLUSIONS

It was common to obtain individuals with high polynomial algo-
rithmic complexity O(n4), with nested looping code apparently
unnecessary or redundant and useless code inflation, resulting in
a slower execution. In analyzing the algorithms, there are genetic
constructs with intuitive procedures, where a cycle of placement of
pieces, it is reviewed if it is possible that minor available piece at
the time be used a wasted area as a result of impossibility placing
there the current minor piece available. The discovered algorithm
has a genetic fragment called "greedy" that have been appeared
frequently in the fittest individuals, with some variations in shape
but easily recognizable in the structural. Within the conditional
loop checking the existence of parts, it is included the placement
of the piece achieving best fit. Thus, in each step, a decision is
taken to put the item that best fit the current situation and the rest
remains to be considered a sub-problem. The algorithm optimizes
the problem evolved since for all the test instances used a deter-
ministic procedure to find a solution of a certain quality (greater
than 90%). An interesting modification to improve the current re-
sults would be to add to the set of primitive selectors some termi-
nals for basic allocation strategies. Moreover, given the frequent
presence of similar code fragments, the use of ADF would bene-
fit overall performance [5]. Based on the foregoing, we conclude

that PG is capable of evolving two-phase algorithm, a constructive
and a Local Search. The evolution found a way to solve the prob-
lem, and it is perfectly possible to enhance the results in the way
to generate new, better and human-competitive solutions [6, 19].

4. ANNEX A: ALGORITHM SPECIFICATIONS

Number of Generation: 1362 Size of Population: 1500
Pc, Pm, Pu: 0.95, 0.04, 0.0 Random Seed: 12470

Used ADF: No Aptitude: 1.65411

Table 1: Algorithm specifications

Algorithm 1: ADD PIECE

Require: A piece p.

1: l = l + p
2: lA = lA+ p
3: lL = lL+ p
4: lW = lW + p

Algorithm 2: REMOVE PIECE

Require: A piece p.

1: l = l− p
2: lA = lA− p
3: lL = lL− p
4: lW = lW − p

Algorithm 3: PUT PIECE

Require: A piece p A space e.
Ensure: Boolean n.

1: if PUT PIECE(p,e) then
2: REMOVE PIECE(p)
3: e <−− availbleSpaceBottomLeft()
4: return True
5: else
6: return False
7: end if

Algorithm 4: PUT PIECE

Require: A piece p.
Ensure: Boolean n.

1: e <−− availbleSpaceBottomLeft()
2: if PUT PIECE(p,e) then
3: REMOVE PIECE(p)
4: e <−− availbleSpaceBottomLeft()
5: return True
6: else
7: return False
8: end if
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Algorithm 5: GREEDY

Ensure: Boolean b.

1: loop = f alse
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3: while l.notEmpty() && noChange <

maxTryoutsWithEnhance do
4: loop = true
5: PUT PIECE(piece(bestFit))
6: if ad == availableArea() then
7: noChange++
8: return loop
9: end if

10: end while

Algorithm 6: SUB RUTINE 2
Ensure: Boolean b.

1: loop = f alse
2: ad <−− availableArea()
3: while l.notEmpty() && noChange <

maxTryoutsWithEnhance do
4: loop = true
5: p <−− piece(maxWidth)
6: PUT PIECE(piece(maxWidth))
7: if ad == availableArea() then
8: noChange++
9: return loop

10: end if
11: end while

Algorithm 7: CICLE

Ensure: Boolean b.

1: loop = f alse
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3: while l.notEmpty() && noChange <

maxTryoutsWithEnhance do
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4: loop1 = true
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6: PUT PIECE(p)
7: if waste() then
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11: loop2 = true
12: removeMinAreaPiece()
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Algorithm 9: MAIN

1: l <−− listo f re f erencestoavailablepieces.
2: lA <−− listo f re f erencestoavailablepiecessortedbyarea.
3: lL <−− listo f re f erencestoavailablepiecessortedbylength.
4: lW <−− listo f re f erencestoavailablepiecessortedbywidth.
5: e <−− container
6: if SUB RUTINE 1() then
7: loop = f alse
8: ad1 <−−availableArea()
9: while SUB RUTINE 2() && l.notEmpty() &&

noChange1 < maxTryoutsWithEnhance() do
10: loop = true
11: ad2 <−− availableArea()
12: while PUT PIECE(rotate(piece(maxWidth))) &&

l.notEmpty() && noChange2 <
maxTryoutsWithEnhance do

13: PUT PIECE(piece(bestFit))
14: if ad2 == availableArea() then
15: noChange2++
16: end if
17: if ad1 == availableArea() then
18: noChange1++
19: end if
20: end while
21: end while
22: if no loop then
23: return void
24: end if
25: if no CICLE() && waste() then
26: ad3 <−− availableArea()
27: while l.notEmpty() && noChange3 <

maxTryoutsWithEnhance do
28: ad4 <−− availableArea()
29: while putBlock(horizontal, piece(minLength),

piece(maxWidth)) && l.notEmpty() &&
noChange4 < maxTryoutsWithEnhance do

30: PUT PIECE(piece(bestFit)
31: if ad4 == availableArea() then
32: noChange4++
33: end if
34: end while
35: if ad3 == availableArea() then
36: noChange3++
37: end if
38: end while
39: end if
40: end if
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Table 2: Performance for the fittest individual.
# Pieces Placed Area % used area Instance
0 93 92 40000 94.4 hoppern6a
1 94 88 40000 94.0575 hoppern6b
2 94 89 40000 93.85 hoppern6c
3 96 91 40000 95.795 hoppern6d
4 94 90 40000 94.3175 hoppern6e
5 173 170 40000 96.125 hoppern7a
6 170 170 40000 95.97 hoppern7b
7 161 158 40000 94.505 hoppern7c
8 170 170 40000 91.38 hoppern7d
9 182 181 40000 95.815 hoppern7e

Figure 1: Pattern layout generated by the fittest individual.
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ABSTRACT

We present several enhancements to the best fit heuristic for the or-
thogonal stock-cutting problem. The solution quality of the heuris-
tic is improved by applying additional placement policies and new
orderings of the items. These additions are combined with an opti-
mal time implementation of the heuristic to improve the heuristic’s
scalability. Experiments on a large test set from the literature show
significantly better results in shorter calculation times compared to
the original best fit heuristic.

Keywords: Orthogonal stock-cutting, Best fit heuristic

1. INTRODUCTION

Over the years, extensive research has been performed in the do-
main of cutting and packing problems. The results have been ap-
plied in different fields of operations research, for example, the
paper and metal industries. Several bibliographic papers exist on
typologies for cutting and packing problems [1, 2]. We focus on
the two dimensional orthogonal stock cutting problem, which was
proven to be NP hard [3]. The goal is to place a number of rectan-
gular items on a rectangular sheet as densely as possible without
item overlap, resulting in a minimal height of the sheet needed for
placing all the items. A 90 degree rotation of the items is allowed
and each stock sheet has a fixed width and infinite length, allowing
all items to be placed on a single sheet. Several approaches exist
for tackling this problem. A linear and dynamic programming ap-
proach is presented in [4], while [5] uses artificial neural networks
to solve the problem. One of the best known heuristics for this
problem is the bottom left (fill) heuristic and its variants [6, 7, 8]. A
best fit heuristic, which outperforms the bottom left based heuris-
tics on all benchmarks with more than 50 items and most smaller
instances, is presented by Burke et al. [9]. The scalability of
this heuristic has been strongly improved by Imahory and Yag-
iura [10]. They reduce the time complexity of the best fit heuristic
to O(nlogn) and show that the heuristic performs very well for
very large data instances. Several metaheuristic approaches to the
orthogonal stock cutting problem exist. These are mostly hybridis-
ations that generate different input sequences for existing heuristic
approaches in order to improve their results [8, 11, 12]. Other ap-
proaches use genetic algorithms [8, 11, 13, 14]. An interesting
comparison of different (meta) heuristic approaches and genetic
algorithms can be found in [12]. In [15] a metaheuristic combin-
ing the best fit heuristic and a simulated annealing bottom left fill
hybridisation further improves on the results of [9].

In this abstract, we present several enhancements to the original
best fit heuristic. In Section 2, we introduce this adapted best fit
heuristic. Next, we improve the time complexity of the heuristic

by using the data structures from [10] in Section 3. In Section
4 the results of the heuristic, both with respect to solution quality
and computation time, are discussed. Finally, in Section 5 we draw
conclusions from our research.

2. THE THREE-WAY BEST FIT HEURISTIC

The original best fit heuristic consists of a preprocessing step, a
solution construction and a postprocessing step [9]. In the pre-
processing step, all rectangles are rotated in such a way that their
width turns out to be their largest dimension. Next, the rectangles
are ordered by decreasing width. When this step is finished, the
solution construction begins. In this step the lowest gap, i.e. the
lowest sequence of x coordinates with an identical height, is lo-
cated using the sheet skyline. Next the rectangle that fits the width
of this gap best, possibly after rotation, is placed in the gap us-
ing a predefined placement policy, after which the sheet skyline is
updated. If no rectangle can be found to fit the current gap, the
skyline at the gap is raised so that it levels with the lowest of the
rectangles neighbouring the gap. This process continues until all
rectangles are placed on the sheet. After the construction phase,
the postprocessing part of the heuristic tries to further improve the
solution quality. This is done by checking if the topmost rectangle
is placed in portrait, i.e. it has been rotated. If this is the case, the
postprocessing step tries to improve the solution by rotating the
rectangle by 90 degrees and placing it on the sheet at the lowest
possible level. If this leads to an improvement, the process is re-
peated for the new topmost rectangle. When this procedure does
not lead to an improvement, or when the topmost rectangle is al-
ready oriented in landscape, the postprocessing step terminates.

The proposed three-way best fit heuristic adds some additional
steps to both the preprocessing and the solution construction step.
In the preprocessing step, the original best fit heuristic uses a de-
creasing width ordering of all rectangles. Therefore, the rectangles
are always selected for placement in a width decreasing order. We
suggest to add two more orderings to the solution process: decreas-
ing height order and decreasing surface order. Applying each one
of these orderings ensures a significant disruption of the rectangle
sequence compared to the width ordering. The rectangles are al-
ways rotated in such a way that their width turns out to be their
largest dimension before applying any of the three orderings. The
solution construction will be executed for each ordering individu-
ally.

With respect to the solution construction step, the original best fit
heuristic uses three placement policies: leftmost, tallest and short-
est neighbour. Depending on the length of the rectangle that is
placed and the length of the gap defining neighbours, a placement
policy will decide wether to place the rectangle at the left or the
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right side of the gap. We suggest the addition of three more place-
ment policies: rightmost, minimal difference and maximal differ-
ence neighbour. These policies will place the new rectangle re-
spectively at the right side of the gap, next to the neighbour with
ending height closest to the new rectangle and next to the neigh-
bour with ending height furthest from the new rectangle. An ex-
ample of the minimal and maximal difference placement policies
is shown in Figure 1.

(a) (b) (c)

MaxDiff policy

MinDiff policy

(a) (b) (c)

(d)

(d)

Figure 1: Example of the maximal difference policy (top) and min-
imal difference policy (bottom).

By using both the old and new placement policies and combining
them with the decreasing width, height and surface orders, we cre-
ate a very performant extension to the best fit heuristic. We can
call this new heuristic a three-way best fit heuristic as the rect-
angles are ordered in three different ways during the search for
a good solution. In fact, this heuristic solves the problem once
for each ordering and placement policy combination. Due to its
simple nature and efficient implementation with respect to, for ex-
ample, overlap checks, the computation times are kept short. An
advantage of the heuristic is that orderings and placement strate-
gies can easily be added or removed if wanted. For example, when
all shapes under consideration are square, it does not make sense
to use more than one of the proposed orders, as they will all result
in the same initial sequence.

In some cases, rectangles may have one dimension, we can say the
rectangle’s width without loss of generality, larger than the sheet
width. The best fit heuristic will not prioirtise the placement of
these rectangles, as they can only be placed after rotation. The
larger the width/length ratio of these rectangles, the higher their
probability of being among the last rectangles that are placed. This
behaviour strongly decreases the worst case performance of the
best fit heuristic. Therefore, we propose the addition of one more
rule to the three-way best fit heuristic. It rotates all rectangles with
a dimension larger than the sheet width, such that their height is
the largest dimension. We apply this rotation after the ordering,
such that the rectangle sequence is not changed when compared to
the heuristic without this rotation.

3. AN OPTIMAL TIME THREE-WAY HEURISTIC

Imahori and Yagiura [10] analyse the time and space complex-
ity of the original best fit heuristic. They propose alternative data
structures to reduce the time and space complexity, and prove that
their implementation is optimal. By reducing the time complexity
from O(n2 +W ) to O(nlogn), they manage to solve instances with
220 rectangles in under 10 seconds. In this section, we discuss the
applicability of Imahori and Yagiura’s data structures to the new
three-way best fit heuristic.

In the original best fit heuristic, the sheet skyline is stored in a inte-
ger array, where each element i represents the height of the skyline
at width i. The optimal time best fit heuristic stores the sheet sky-
line using both a heap and a doubly linked list. This allows for

a significant improvement with respect to time complexity when
compared to using the original data structures [10]. We can now
determine the location and size of the lowest available gap in con-
stant time, while updating the skyline requires only O(logn) time,
which is a great improvement compared to the original approach
[9].

The original best fit heuristic stores the rectangles in an ordered
list, iterating the list for each placement until the best fitting rect-
angle is found. In the optimal time best fit heuristic, the items are
stored in a balanced binary tree based on their width. Both the
original item and its rotated copy are placed in this tree, in order
to allow a O(logn) complexity for finding the best fitting rectangle
for the current gap. This balanced tree is however not directly com-
patible with the previously introduced three-way best fit heuristic.
This is due to the mismatch between the alternative orderings of
the items, based on the height or the size of the rectangles, and
the rectangle selection procedure which is based on the width of
the gap. When using this data structure combined with a decreas-
ing height ordering, the items will be placed with their height as
the largest dimension. As this portrait placement is not desirable
with respect to solution quality, a more advanced decreasing height
ordering must be implemented. This ordering will sort the items
based on their height, while making a distinction between normal
items, oriented in landscape, and rotated items that are oriented in
portrait. When ordering all the items and their rotated copy using
this advanced height ordering, the same priority list is created as
when ‘expanding’ the original height ordered list (i.e. adding the
rotated copies at the correct place in the list). A disadvantage of
this ordering is its inconsistency with respect to the width of the
items. Therefore it is not possible to use this advanced ordering to
obtain the best fitting rectangle in O(logn) time. Instead, the data
structure will return a ‘good’ fitting rectangle, without the guaran-
tee that no better fitting rectangle is available.

The main reason for using the alternative orderings however, is
the strong disruption of the priority sequence generated compared
to using the decreasing width ordering. While the optimal time
data structures cause a slightly different disruption compared to
using the original data structure, their overall solution quality is
comparable. Furthermore, the difference in computation time for
large problem instances will be huge, as we change from O(n2)
to O(nlogn) time complexity. Therefore we propose the usage of
these datastructures in a new optimal time three-way heuristic (no-
tice the absence of the ‘best fit’ part). With respect to the three-way
best fit heuristic, we will use the O(logn) sheet skyline data struc-
ture to improve its performance, while maintaining the original
rectangle selection procedure.

4. COMPUTATIONAL RESULTS

We discuss the performance of the best fit heuristic and its optimal
time variant on a set of benchmark problems from the literature
(Table 1). Due to the very large computation times needed to solve
the i19 and i20 instances from Imahori and Yaguira (2010) for the
original and three way best fit heuristic, these instances were only
used for comparing scalability. All the other experiments ignored
these instances.

Data source #Problems #Rectangles
Hopper (2000) 70 17 to 199
Hopper and Turton (2001) 21 16 to 197
Burke et al. (2004) 13 10 to 3152
Beasley (1985) 12 10 to 50
Imahori and Yagiura (2010) 170 24 to 220

Table 1: Benchmarks from the literature.

By combining the different ordering strategies and placement poli-
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cies into a three-way best fit, we can improve the solution quality.
Using the three-way best fit heuristic produces significantly better
results compared to the original best fit heuristic. Statistical anal-
ysis using a T-test showed a certainty of more than 99.9999% that
the three-way best fit outperforms the original best fit heuristic.
When looking at the optimal time variant, we find the results are
not significantly different from those of the standard three way best
fit heuristic (p−value = 0.158). Especially for the larger problem
instances, we can see that both heuristics produce very similar re-
sults. This is confirmed by a statistical analysis which shows only
a 70.79% confidence interval that the heuristics perform signifi-
cantly different on the instances from Imahori and Yagiura [10].
When considering the largest problem sizes only, i14 to i18, this
confidence interval becomes even smaller (p− value = 0.933).

The test set from Imahori and Yagiura [10] contains instances with
up to 220 rectangles, and allows for an easy comparison of the scal-
ability of the different heuristics. Figure 2 shows the computation
times for the original best fit heuristic, three-way best fit heuristic
and optimal time three-way heuristic on this test set. The three-
way best fit heuristic clearly benefits from using the optimized gap
location process, as the computation times are lower than those of
the original implementation for all but the largest instances. Note
that the three-way best fit heuristic solves each problem 18 times,
which is 6 times more than the original best fit heuristic. We can
also see that using the optimal time implementation [10] makes the
heuristic significantly faster for all but the smallest test instances.
For instances with 218 items, the optimal time three-way heuris-
tic requires only 1.60% of the time needed by the original best fit
heuristic to solve the same problem, while obtaining a better result.
For these instances, the computation time needed by the optimal
time three way heuristic is only 0.46% of the time needed by the
three-way best fit heuristic. Furthermore, the optimal time heuris-
tic performs slightly better than the three-way best fit heuristic on
these instances.
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Figure 2: Average computation times of the original best fit, three-
way best fit and optimal time three-way heuristic, for the Imahori
and Yagiura instances.

5. CONCLUSIONS

In this abstract we presented several enhancements to the best fit
heuristic from Burke et al. [9]. We introduced new placement poli-
cies and additional orderings of the items in order to obtain better
solutions for rectangular stock-cutting problem. These enhance-
ments allow for a significantly better performance compared to the
original best fit heuristic, on a large test set from the literature. As
the addition of the new placement policies and orderings increased
the computation time of the heuristic, a more efficient implementa-
tion of the heuristic was used. The three-way best fit heuristic uses
a more efficient way of storing and locating the gaps [10] to re-
duce its computational complexity. Due to this improvement, this
heuristic has smaller computation times than the original best fit
heuristic for all but the largest problem instances. Next, we further
improved the scalability of the heuristic, by also applying the rect-

angle selection procedure from [10]. This resulted in an optimal
time three-way heuristic, with a slightly altered rectangle selection
that no longer guarantees the selection of the best fitting rectangle
for a given gap. Due to this changed rectangle selection proce-
dure, the heuristic obtains slightly, but not significantly, different
results than the three way best fit heuristic. The optimal time three-
way heuristic is, however, much faster than the three-way best fit
heuristic on all but the smallest instances. For instances with 218

items, the optimal time three-way heuristic requires only 0.46% of
the time required by the three-way best fit heuristic. Therefore, we
propose the usage of the optimal time three-way heuristic when
small computation times are important. When the quality of the
solutions is more important than the computation times, combined
usage of both three-way heuristics is advised when no more than
216 items need to be placed. When more than 216 items need to
be placed, the optimal time three-way heuristic is recommended as
it performs best both with respect to average solution quality and
computation time.
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ABSTRACT

The bin-packing problem (BPP) and its multi-dimensional vari-
ants, have a large number of practical applications, including pro-
duction planning, project selection, multiprocessor scheduling, pa-
cking objects in boxes, etc. The two-dimensional bin packing
(2D-BPP) consists of packing a collection of objects (pieces) in
the minimum number of bins (containers). This paper works with
an extending of the classical single-objective formulation to cope
with other designing objectives. It presents a new multi-objective
memetic algorithm that uses a population of individuals (agents)
that are optimized using evolutionary operators (mutation and cross-
over) and a local-search optimizer specially designed to solve the
MO-2DBPP. The Pareto-optimization concept is used in the selec-
tion process. Results obtained in several test problems show the
good performance of the memetic algorithm in comparison with
other previously proposed approaches.

Keywords: Two-dimensional bin packing problem, Memetic al-
gorithm, Multi-objective optimization

1. INTRODUCTION

The bin-packing problem (BPP) and its multi-dimensional vari-
ants, have a large number of practical applications in industry (e.g.
cutting stock), in computer systems (e.g. assignment of segments
of track on disks), in machine scheduling (e.g. minimizing the
number of machines necessary for completing all tasks by a given
deadline), etc. [1]. The traditional two-dimensional BPP (2DBPP)
[2] consists of packing a collection of objects, characterized by
having different heights and widths, in the minimum number of
bins (containers). The family of bin packing problems is included
in the category of NP-hard problems [3], which implies that there
is no known method to obtain the optimal solution in a polyno-
mial time. Recently, some authors have proposed multi-objective
formulations of the 2DBPP (MO-2DBPP) that consider other ob-
jectives to minimize in addition to the number of bins. One of
these multi-objective formulations with applications in container
loading, tractor trailer trucks, pallet loading, cargo airplanes, etc.
consists of minimizing not only the number of bins used to store
the pieces, but also the imbalance of the objects according to the
centre of gravity of the bin. This paper presents a new multi-
objective [4] memetic algorithm that uses a population of indi-
viduals (agents) that are optimized using evolutionary operators
(mutation and crossover) and a local-search optimizer specially de-
signed to solve the MO-2DBPP. The Pareto-optimization concept
[5] is used in the selection process.

2. MULTI-OBJECTIVE TWO-DIMENSIONAL
BIN-PACKING PROBLEM

Most papers dealing with the 2DBPP try to solve single-objective
formulations, where the aim is to minimize the number of bins
needed to pack all the objects. Recently, other authors have pro-
posed simultaneously optimizing other objectives. In particular,
Liu et al. [6] applied particle swarm optimization to solve the
multi-objective two-dimensional bin packing problem (MO-2D-
BPP), by considering minimizing, not only the number of bins,
but also the imbalance of the bins according to a centre of gravity.
This formulation is described as follows: Given a set of n rectan-
gular objects where hi, wi, and γi are the height, width and weight
of object i, respectively (i=1,2,. . . ,n), and given an unlimited num-
ber of bins, all of which have a height H, width W and centre of
gravity (λx,λy) the goal is to insert all the objects without overlap
in the minimum number of bins (nBIN), with the centre of gravity
(CG) of the bins as close as possible to the desired CG. The desired
CG in this case is the bottom of the bin, and therefore, the aim is
to minimize the average euclidean distance di between the CG of
the objects stored in the bin with respect to the CG of the bin. The
definition of the centre of gravity is provided below:

CG =
1

nBin

nBin

∑
j=1

√
(λx, j−λd,x)2 +(λy, j)2 (1)

λx, j =
∑n

i=1 Xi jxiγi

∑n
i=1 γi

λy, j =
∑n

i=1 Xi jyiγi

∑n
i=1 γi

(2)

where:

hi, wi, and γi: height, width and weight of item i;

xi and yi: center of gravity of item i in positions x and y;

Xi j ∈ {0,1}, where i = {1, ..., I}, j = {1, ...J}. If item j is assigned
to bin i , Xi j = 1, otherwise Xi j = 0;

H and W: height and width of bins;

(λx, j,λy, j ): coordinates of the centre of gravity of bin j;

λd,x: desired center of gravity of bin i in direction x.

CG: balance of the bins according to a centre of gravity (objective
2);

In order to minimize the load balancing of an individual, the fitness
function used determines the average balancing of each bin, taking
into account the sum of the Euclidean distances from the centre of
each object to the desired CG of the bin, and taking into account
their weight. Figure 1 offers a graphical description of this second
objective in a bin which contains a single object.
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Figure 1: Graphical representation of load balancing.

2.1. Description of the operators used in MA2dbpp

Four different mutation operators are used in order to insert ob-
jects in the bins using the list of available rectangular spaces. One
of these operators (mutation 4) takes some ideas of the strategy
recently proposed by Grunert da Fonseca and Fonseca [7] that is
based on performing a permutation between two objects of differ-
ent bins such that the variation is smaller than when a single object
is moved from one bin to another one.

• Mutation1: an object is randomly taken from one bin and it
is stored in another randomly chosen one only if the avail-
able space is large enough. If all the bins have been visited
and the storage has not been possible, the object is not in-
serted.

• Mutation2: an object is randomly chosen from the bin with
most available space, and it is stored in another randomly
chosen bin only if there is free space. If all the bins have
been visited and the storage has not been possible, the ob-
ject is not inserted.

• Mutation3: an object is randomly chosen from the bin with
most available space, and it is stored in the empties remain-
ing bin only if the available space is large enough. If all the
bins have been tried, and the storage has not been possible,
the object is inserted in a new bin in the lower left corner.

• Mutation4: two objects are randomly taken from different
bins and are swaped only if there are free space in the bins.

The selection of agents is carried out by applying tournaments us-
ing Pareto-dominance relations [5]. The crossover operator works
by taking two random agents (A1, A2) as parents, and creating a
child agent (CH) by considering bins of both parents. In particular,
CH takes the fullest bin of A1, plus the bins of A2, but discarding
the objects already taken from A1 in order not to duplicate objects.

Finally, a new local optimizer is also considered with the aim of
reducing the number of bins. This task takes the most occupied
bin and tests each available space to determine whether or not an
object from the remaining bins can fit.

3. EXPERIMENTAL RESULTS

A set of instances proposed by Berkey and Wang [8] have been
used to compare the algorithms. A total of six classes with 20 in-
stances each are randomly generated to determine the performance
of the multi-objectives memetic algorithms. The weight γi of each
piece randomly generated in different ranges, has been added to
the benchmark set, as table 1 shows. For each instance, there are
500 items to be packed.

The performance of the multi-objective memetic algorithm (MO-
MA-2DBPP) has been compared with other algorithms, using the

Class 1 2 3 4 5 6
hi, wi [0,100] [0,25] [0,50] [0,75] [25,75] [25,50]

γi [0,20] for instances 1-10 of each class;
and [0,100] for instances 11-20

Table 1: Test benchmarks generated for solving the MO-2DBPP.

test instances with 500 pieces described above. The memetic algo-
rithm was executed with a stop criterion of 1000 generations and a
population size of 500 agents.

To compare the different fronts, we use a coverage metric [9]. The
coverage C(A,B) computes the relative number of points in set B
dominated by the points in set A.

C(A,B) =
|{b ∈ B | ∃a ∈ A : a≺ b}|

|B| (3)

To show the good performance of the algorithm MOMA-2D-BPP,
it was compared with a recent evolutionary multi-objective par-
ticle swarm optimization algorithm called MOEPSO [6]. Figure
2 shows the Pareto fronts generated by these algorithms for a se-
lected set of instances. It can be observed that most of the solu-
tions of the non-dominated sets obtained by MOMA-2DBPP are
below those obtained by MOEPSO, i.e. MOMA-2DBPP obtains
better approximations to the true (unknown) Pareto-optimal front,
although MOEPSO obtains more extreme solutions in some test
instances.

Figure 2: Pareto front of MOMA-2DBPP and MOEPSO.

Table 2 shows a comparison of both algorithms for previous in-
stances. The coverage metric has been used to compare the Pareto
fronts generated by each algorithm. MOMA-2DBPP algorithm
achieves better results than MOEPSO for the two instances, since
the coverage metric of the memetic algorithm is higher than
MOEPSO in both instances which reinforces the previous conclu-
sions obtained from the graphics displayed above.
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class_3_9_19 class_3_10_20
MOEPSO MOMA MOEPSO MOMA

MOEPSO - 0.20 - 0.05
MOMA 0.52 - 0.77 -

Table 2: Comparison between MOEPSO and MOMA-2BPP in
terms of coverage metric.

4. CONCLUSION

This paper presents a memetic algorithm that aims to improve the
performance of other published algorithms when solving single-
objective and multi-objective formulations of the two-dimensional
bin-packing problem with rotations. The memetic algorithm here
implemented uses several search operators specifically designed to
solve this problem. The multi-objective implementation, MOMA-
2DBPP is compared with a multi-objective particle swarm op-
timization algorithm, MOEPSO. Results obtained in the multi-
objective formulation show the good behavior of MOMA-2DBPP,
which obtains better results than MOEPSO in terms of coverage
metric. The results obtained by the memetic algorithm of this com-
plex problem reinforce the previous conclusions of other authors
about the good performance of this meta-heuristic to solve NP-
hard optimization problems. Future research should be focused on
extending the memetic algorithm for the three-dimensional vari-
ants of bin-packing [10], which also have many practical appli-
cations in real problems. Despite that, the load balancing in two
dimensions can be applied to real world problems, where height
does not influence, for instance the storage of pallets.
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ABSTRACT

In this study, a dynamic programming approach to deal with the
unconstrained two-dimensional non-guillotine cutting problem is
presented. The method extends the recently introduced recursive
partitioning approach for the manufacturer’s pallet loading prob-
lem. The approach involves two phases and uses bounds based on
unconstrained two-staged and non-staged guillotine cutting. The
method is able to find the optimal cutting pattern of a large num-
ber of problem instances of moderate sizes known in the literature
and a counterexample for which the approach fails to find known
optimal solutions was not found. For the instances that the re-
quired computer runtime is excessive, the approach is combined
with simple heuristics to reduce its running time. Detailed numer-
ical experiments show the reliability of the method.

Keywords: Cutting and packing, Two-dimensional non-guillotine
cutting pattern, Dynamic programming, Recursive approach, Dis-
tributor’s pallet loading problem

1. INTRODUCTION

In the present paper, we study the generation of two-dimensional
non-guillotine cutting (or packing) patterns, also referred by some
authors as two-dimensional knapsack problem or two-dimensional
distributor’s pallet loading. This problem is classified as 2/B/O/
according to Dyckhoff’s typology of cutting and packing prob-
lems [1], and as two-dimensional rectangular Single Large Object
Packing Problem (SLOPP) based on Waescher et al.’s typology [2].
Besides the inherent complexity of this problem (it is NP-hard [3]),
we are also motivated by its practical relevance in different indus-
trial and logistics settings, such as in the cutting of steel and glass
stock plates into required sizes, the cutting of wood sheets and tex-
tile materials to make ordered pieces, the loading of different items
on the pallet surface or the loading of different pallets on the truck
or container floor, the cutting of cardboards into boxes, the plac-
ing of advertisements on the pages of newspapers and magazines,
the positioning of components on chips when designing integrated
circuit, among others.

Given a large rectangle of length L and width W (i.e. a stock
plate), and a set of rectangular pieces grouped into m different
types of length li, width wi and value vi, i = 1, . . . ,m (i.e. the
ordered items), the problem is to find a cutting (packing) pattern
which maximizes the sum of the values of the pieces cut (packed).
The cutting pattern is referred as two-dimensional since it involves
two relevant dimensions, the lengths and widths of the plate and
pieces. A feasible two-dimensional pattern for the problem is one

in which the pieces placed into the plate do not overlap each other,
they have to be entirely inside the plate, and each piece must have
one edge parallel to one edge of the plate (i.e., an orthogonal pat-
tern). In this paper we assume that there are no imposed lower or
upper bounds on the number of times that each type of piece can be
cut from the plate; therefore, the two-dimensional pattern is called
unconstrained.

Without loss of generality, we also assume that the cuts are in-
finitely thin (otherwise we consider that the saw thickness was
added to L, W , li, wi), the orientation of the pieces is fixed (i.e.,
a piece of size (li,wi) is different from a piece of size (wi, li) if
li 6= wi) and that L, W , li, wi are positive integers. We note that if
the 90◦-rotation is allowed for cutting or packing the piece type i of
size (li,wi), this situation can be handled by simply considering a
fictitious piece type m+ i of size (wi, li) in the list of ordered items,
since the pattern is unconstrained. Depending on the values vi, the
pattern is called unweighted, if vi = γliwi for i= 1, . . . ,m and γ > 0
(i.e., proportional to the area of the piece), or weighted, otherwise.
Moreover, we assume that the unconstrained two-dimensional cut-
ting pattern is non-guillotine as it is not limited by the guillotine
type cuts imposed by some cutting machines.

In the present paper we extend a Recursive Partitioning Approach
presented in [4] for the manufacturer’s pallet loading to deal with
the unconstrained two-dimensional orthogonal non-guillotine cut-
ting (unweighted and weighted, without and with piece rotation).
This Recursive Partitioning Approach combines refined versions
of both the Recursive Five-block Heuristic presented in [5, 6] and
the L-approach for cutting rectangles from larger rectangles and
L-shaped pieces presented in [7, 8]). This combined approach also
uses bounds based on unconstrained two-staged and non-staged
guillotine cutting patterns. The approach was able to find an opti-
mal solution of a large number of problem instances of moderate
sizes known in the literature and we were unable to find an instance
for which the approach fails to find a known or proved optimal so-
lution. For the instances that the required computer runtimes were
excessive, we combined the approach with simple heuristics to re-
duce its running time.

2. DESCRIPTION OF THE ALGORITHM

The Recursive Partitioning Algorithm presented here is an exten-
sion of the algorithm described in [4] for the manufacturer’s pallet
loading problem. It has basically two phases: in phase 1 it applies
a recursive five-block heuristic based on the procedure presented
in [5] and in phase 2 it uses an L-approach based on a dynamic pro-
gramming recursive formula presented in [7, 8]. Firstly, phase 1 is
executed and, if a certificate of optimality is not provided by the
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Recursive Five-block Heuristic, then phase 2 is executed. Addi-
tionally, information obtained in phase 1 is used in phase 2 in at
least two ways, according to [4]. If an optimal solution was al-
ready found for a subproblem in phase 1, it is not solved again in
phase 2, improving the performance of phase 2. Moreover, having
the information obtained in phase 1 at hand, phase 2 is often able
to obtain better lower bounds for its subproblems than the ones
provided by homogeneous cuttings, therefore improving the per-
formance of phase 2. These two phases are detailed in the sequel.

2.1. Phase 1

In phase 1, the Recursive Five-block Heuristic divides a rectangle
into five (or less) smaller rectangles in a way that is called first-
order non-guillotine cut [9]. Figure 1 illustrates this kind of cut
represented by a quadruple (x1,x2,y1,y2), such that 0≤ x1 ≤ x2 ≤
L and 0 ≤ y1 ≤ y2 ≤W . This cut determines five subrectangles
(L1,W1), . . . ,(L5,W5) such that L1 = x1, W1 =W−y1, L2 = L−x1,
W2 =W − y2, L3 = x2− x1, W3 = y2− y1, L4 = x2, W4 = y1, L5 =
L− x2 and W5 = y2. Each rectangle is recursively cut unless the
(sub)problem related to this rectangle has already been solved.
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Figure 1: Representation of a first-order non-guillotine cut.

2.2. Phase 2

Phase 2 of the Recursive Partitioning Approach applies the L-
approach [7, 8, 4] which is based on the computation of a dy-
namic programming recursive formula [7]. This procedure divides
a rectangle or an L-shaped piece into two L-shaped pieces. An L-
shaped piece is determined by a quadruple (X ,Y,x,y), with X ≥ x
and Y ≥ y, and is defined as the topological closure of the rectan-
gle whose diagonal goes from (0,0) to (X ,Y ) minus the rectangle
whose diagonal goes from (x,y) to (X ,Y ). Figure 2 depicts the
nine possible divisions [4] of a rectangle or an L-shaped piece into
two L-shaped pieces.

2.3. Heuristics for large problems

The generation of all patterns by the Recursive Partitioning Ap-
proach may be prohibitive for large instances. Moreover, the amount
of memory required by these algorithms may not be available. For
this reason, we propose heuristics that reduce both the time and
memory requirements of the algorithms. These procedures, how-
ever, may lead to a loss of quality of the solution found. Since the
time and memory complexities of generating all possible cuttings
highly depends on the sizes of the integer conic combinations and
raster points sets, we can significantly reduce time and memory
requirements in two ways: (i) by limiting the search depth of the
recursions; and (ii) by replacing the integer conic combinations
and raster points sets by smaller sets.
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Figure 2: Subdivisions of an L-shaped piece into two L-shaped
pieces.

3. NUMERICAL EXPERIMENTS

We implemented the Recursive Partitioning Approach and its heu-
ristic counterpart for the unconstrained two-dimensional non-guil-
lotine cutting problem. The algorithms were coded in C/C++ lan-
guage. The computer implementation of the algorithms as well as
the data sets used in our experiments and the solutions found are
publicly available for benchmarking purposes at [10]. In the nu-
merical experiments, we considered 95 problem instances found
in the literature. Extensive numerical experiments evaluating the
proposed method can be found in [11], where the whole material
of the present extended abstract is present in detail.

4. CONCLUDING REMARKS

While a large number of studies in the literature have considered
staged and non-staged two-dimensional guillotine cutting prob-
lems, much less studies have considered two-dimensional non-
guillotine cutting problems (constrained and unconstrained), and
only a few of them have proposed exact methods to generate non-
guillotine patterns. Moreover, most of the approaches (exact and
heuristic) for non-guillotine cutting (or packing) were developed
for the constrained problem, which can be more interesting for
certain practical applications with relatively low demands of the
ordered items. However, part of these methods may not perform
well when solving the unconstrained problem. On the other hand,
the unconstrained problem is particularly interesting for cutting
stock applications with large-scale production and weakly hetero-
geneous items, in which the problem plays the role of a column
generation procedure.

This study presented a Recursive Partitioning Approach to gener-
ate unconstrained two-dimensional non-guillotine cutting (or pack-
ing) patterns. The approach was able to find the optimal solution
of a large number of moderate-sized instances known in the liter-
ature and we were unable to find a counterexample for which the
approach fails to find a known optimal solution. To cope with large
instances, we combined the approach with simple heuristics to re-
duce its computational efforts. For moderate-sized instances, both
the five-block and the L-Algorithm phases of the approach seem
to be promising alternatives for obtaining reasonably good or opti-
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mal non-guillotine solutions under affordable computer runtimes,
whereas for larger instances, the guillotine or the five-block phase
may be preferable, depending on the definition of an acceptable
time limit. An interesting perspective for future research is to ex-
tend the Recursive Partitioning Approach to deal with constrained
two-dimensional non-guillotine cutting.
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ABSTRACT

The Traveling Tournament Problem (TTP) is a sports schedul-
ing problem that includes two major issues in creating timetables:
home/away pattern feasibility and travel distance. In this problem
the schedule must be compact: every team plays in every time slot.
However, there are some sports leagues that have both home/away
pattern restrictions and distance limits, but do not require a com-
pact schedule. In such schedules, one or more teams can have a
bye in any time slot. This leads us to a variant of the problem:
the Relaxed Traveling Tournament Problem (RTTP). We present
a complete search method to solve this problem based on branch-
and-bound, metaheuristics and dynamic programming.

Keywords: Complete search, Dynamic programming, Metaheuris-
tics, Branch-and-bound

1. INTRODUCTION

The advances in modeling the combinatorial structure of sports
schedules and their solution, together with the increasing practical
requirements for schedules by real sports leagues has increased the
interest in computational methods for creating them.

The key issues for constructing a schedule are travel distance and
home/away pattern restrictions. While teams wish to reduce the
total amount they travel, they are also concerned with more tradi-
tional issues with respect with home and away patterns.

The Traveling Tournament Problem (TTP) abstracts the key is-
sues in creating a schedule that combines home/away pattern con-
straints and travel distance minimization. Either home/away pat-
tern constraints and travel distance minimization are reasonably
easy to solve, but the combination of them makes this problem
very difficult. This problem was proposed in [1].

In TTP the schedule must be compact: every team plays in every
time slot; however, there are some sports leagues that have both
home/away pattern restrictions and distance limits, but do not re-
quire a compact schedule. This leads us to a new problem: the
Relaxed Traveling Tournament Problem. This variant of the TTP
was proposed by Renjun Bao and Michael Trick [2]. As in this
variant the schedule is not compact, teams have byes (i.e., slots
where they do not play) in their schedule. The objective is to min-
imize the travel distance, and the teams are allowed to have a fixed
number K of byes.

2. THE TRAVELING TOURNAMENT PROBLEM

In the Traveling Tournament Problem, there is a even number n of
teams, each with a home venue. The teams wish to play a round
robin tournament, whereby each team will play against every other
team twice, once at each team’s home venue. This means that
2(n−1) slots, or time periods, are required to play a double round
robin tournament. There are exactly 2(n− 1) time slots available
to play these games, so every team plays in every time slot. As-
sociated with a TTP instance is a n by n distance matrix D, where
Di j is the distance between the venues of team i and team j.

Each team begins at its home site and travels to play its games
at the chosen venues. At the end of the schedule each team then
returns (if necessary) to its home site.

Consecutive games for a team constitute a road trip; consecutive
home games are a home stand. The length of a road trip or home
stand is the number of opponents played (not the travel distance).

The TTP is defined as follows:

Input: n, the number of teams; D, an n by n symmetrical distance
matrix; l, u integer parameters.

Output: A double round robin tournament on the n teams such
that:

• the length of every home stand and road trip is between l
and u inclusive;

• games between the same opponents cannot happen in con-
secutive time slots, which is called no repeater constraint;

• the total distance traveled by the teams is minimized.

The parameters l and u define the trade-off between distance and
pattern considerations. For l = 1 and u = n−1, a team may take a
trip equivalent to a traveling salesman tour. For small u, teams
must return home often, so the distance traveled will increase.
Usually l = 1 and u = 3, which means that each team cannot play
more than three consecutive home games or three consecutive road
games.

The solution of the TTP has proven to be a computational difficult
challenge. For many years, the six-team instance NL6, available
in [3], was the largest instance solved to a provable optimum. In
2008, NL8 was solved; NL10 was solved in 2009. This leaves
twelve teams as the next unsolved instance, which is a significantly
small league size for such a simple problem description.
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3. THE RELAXED TRAVELING TOURNAMENT
PROBLEM

The goal in the TTP is to find a compact schedule: the number of
time slots is equal to the number of games each team plays. This
forces every team to play in every time slot. However, there are
some sports leagues that have both home/away pattern restrictions
and distance limits but do not require a compact schedule. In such
schedules, one or more teams can have a bye in any time slot. This
leads us to the Relaxed Traveling Tournament Problem (RTTP).

In this variant of the TTP, instead of fixing the schedule length to
be 2(n− 1), we let the schedule length be 2(n− 1)+K for some
integer K ≥ 0. For a given K, the problem is called K-RTTP. For
K = 0, the RTTP is just the TTP. For K > 0, each team has K slots
in which it does not play.

Byes are ignored in determining the length of a homestand or road-
trip, and in determining whether a repeater has occured. This al-
lows that TTP’s solutions are feasible for the K-RTTP for every
K ≥ 0 (in fact, K1-RTTP’s solutions are feasible for K2-RTTP if
K1 ≤ K2).

4. SOLUTION METHODOLOGY

For solving the RTTP one has to deal both with feasibility concerns
(the home and away pattern) and optimization concerns (the travel
distance); this combination makes this problem very difficult to
solve to a provable optimal.

One of the most successful methods of solving the TTP is an al-
gorithm which combines an iterative deepening algorithm [4] with
depth-first branch-and-bound [5]. Other approaches include a sim-
ulated annealing metaheuristic [6], representing the problem with
hard and soft constraints, and exploring both feasible and infeasi-
ble schedules based on a large neighborhood.

Our solution methodology for RTTP is a complete search-method,
putting in place several tools: branch-and-bound (the main method),
metaheuristics (for trying to improve bounds), and dynamic pro-
gramming (to compute lower bounds quickly). The way we com-
bined these tools is described below in Algorithm 1.

So far, the largest instance solved to a provable optimal was NL4;
our method allowed us to solve NL6 very quickly and NL8. For
larger instances, the method was unable to reach solutions better
than the best known solutions for the TTP.

Algorithm 1: Hybrid RTTP-Solver
1: UB← ∞
2: S←[empty schedule]
3: while not empty(S) do
4: u← pop(S)
5: if final(u) then
6: v← hill-climbing(u)
7: if cost(v) < UB then
8: UB← cost(v)
9: end if

10: else if cost(u)+ILB(u) < UB then
11: for all v ∈ branch(u) do
12: push(S, v)
13: end for
14: end if
15: end while

4.1. Branch-and-bound

If solutions for the RTTP are generated team by team (i.e., fix all
the games of a team before moving to other team), it becomes very
difficult to check all the constraints of the problem. E.g., when we
fix a game for a team, we are also fixing a game for another team
(the first’s opponent) in the same round; however we can not apply,
for example, the restriction of home/away pattern to the opponent
team, due to not having information about previous games.

Therefore, solutions are generated round by round: all the games
of one round are fixed before moving to the subsequent round.
The advantage of this order is that we can verify restrictions ear-
lier, avoiding the exploration of significant parts of the branch-and-
bound tree.

To enumerate solutions we use the following method

1. start at the first round;

2. for each team, if a game is not scheduled yet, pick each
possible opponent, and try to schedule a game;

3. after trying all opponents, try to use a bye;

4. when the schedule for the current round is complete, repeat
this process in the following round, until completing the
schedule.

For trimming off non-optimal candidates from the branch-and-
bound tree, we use the current cost plus the Independent Lower
Bound (ILB) for the remaining games of each team, as described
below.

4.2. Independent Lower Bound and Dynamic Programming

If we calculate the optimal schedule (that minimizes travel dis-
tance) for one team without taking into account the other teams’
schedule, we have a lower bound to the distance traveled by that
team. The sum over the n teams of the distances associated with
their independent optimal schedule provides a simple but strong
lower bound. This is called Independent Lower Bound (ILB) as
was first proposed in [7].

To calculate this lower bound, we need to know: the team, the cur-
rent location, the number of remaining home games, the list of re-
maining away games, the current number of consecutive home/away
games. This information can be used as the state in dynamic pro-
gramming. Exploiting some symmetries, a small table suffices for
holding this information; e.g., a 108MB table is enough for the
twelve teams problem NL12, and it can be computed very quickly.

4.3. Metaheuristics

Everytime we find a new solution inside the branch-and-bound
tree, we apply a hill climbing metaheuristic to try to improve bounds.
When a local optimum is reached, random perturbations are ap-
plied to the solution; this perturbation and hill climbing process is
repeated a number of times (100, in our experiment).

To generate the neighbours for the current solution, we use three
from the five transformations proposed in [6]. These movements
are:

• SwapHomes(Ti,Tj): Given two teams, their home/away roles
in the two scheduled games between them are swapped;

• SwapRounds(rk,rl): This move swaps rounds rk and rl ;

• SwapTeams(Ti,Tj): This move simply swaps the schedule
of teams Ti and Tj.
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Whenever applying a move leads to an invalid solution, the sched-
ule is discarded. These three moves are not sufficient for exploring
the entire search space and, as a consequence, they lead to subop-
timal solutions; however, they can lead to better solutions, thereby
improving the upper bound.

The use of this metaheuristic to improve bounds is particularly
important in big instances, such as NL8, where it allows us to
quickly find good solutions sooner, and thus pruning more effec-
tively the branch-and-bound tree. Small instances, such as NL6,
can be solved without this component, as in this case the search
tree (using only the ILB) is relatively small.

5. COMPUTATIONAL RESULTS

The method proposed in this paper was tested on a subset of the
benchmark instances available in [3]. The results obtained are re-
ported in Table 1. The previous best known solutions are reported
in Table 2. For the NL8 with two byes, the solution for K = 1 was
used as initial upper bound (?); for NL8 with with three byes, the
previous (K = 2) solution provided the initial upper bound (??).
CPU times were obtained with a (sequential) implementation in
the C programming language, in a Quad-Core Intel Xeon at 2.66
GHz, running Mac OS X 10.6.6.

Name # teams K ILB Optimal Solution Time
NL4 4 1 8044 8160 0s
NL4 4 2 8044 8160 0s
NL4 4 3 8044 8044 0s
NL6 6 1 22557 23124 10s
NL6 6 2 22557 22557 1s
NL8 8 1 38670 39128 44h
NL8 8 2 38670 38761 208h(?)
NL8 8 3 38670 38670 92h(??)

Table 1: Results for NL Instances. ILB is the independent lower
bound at the root node.

Name # teams K Solution Optimal Solution
NL4 4 1 8160 8160
NL4 4 2 8160 8160
NL4 4 3 8044 8044
NL6 6 1 23791 23124

Table 2: Previous results for NL Instances from Bao and Trick [2].

6. CONCLUSIONS

The solution of Traveling Tournament Problem has proved to be a
computational difficult challenge. The combination of home/away
pattern constraints and travel distance minimization makes this
problem very difficult. Its relaxed version (RTTP) seems to be
even harder to solve to a provable optimum. To tackle this prob-
lem, we combined different methods: branch-and-bound, dynamic
programming and metaheuristics. These were combined in a care-
ful computer implementation, allowing us to solve to optimality
some of the previously open instances.
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ABSTRACT

We consider the problem of scheduling a set of jobs on a set of
identical parallel machines where the objective is to minimize the
total weighted earliness and tardiness with respect to a common
due date. We propose a hybrid heuristic algorithm, combining pri-
ority rules for assigning jobs to machines, local search and Path
Relinking, with exact procedures for solving the one-machine sub-
problems. These exact procedures have been developed by our
group in a previous study. The algorithm is compared with the
best reported results on the same instances in order to assess the
efficiency of the proposed strategy.

Keywords: Scheduling, Earliness-tardiness, Metaheuristics

1. INTRODUCTION

In Just-In-Time scheduling, not only tardiness but also earliness
are penalized. Tardy jobs, completed after their due date, result
in customer discontent, contract penalties, loss of sales and loss
of reputation, but early jobs also have non-desirable effects such
as inventory carrying costs, the opportunity cost of the money in-
vested in inventory, storage and insurance costs, and product dete-
rioration. Therefore, criteria involving both earliness and tardiness
costs are receiving increased attention in machine scheduling re-
search. In this paper we consider the problem of scheduling a set
of jobs on a set of identical parallel machines where the objective
is to minimize the total weighted earliness and tardiness with re-
spect to a common due date. In practice, problems with a common
due date appear when a set of components are produced to be as-
sembled in a later phase or when a set of products have to be sent
together to a client.

The problem can be defined as follows. There are n jobs to be
processed on a set of m identical parallel machines, all of them
with the same due date d. For each job i, the processing time pi,
the penalty per period of earliness αi, and the penalty per period of
tardiness βi, are known. No preemption is allowed, all the jobs are
available at time zero and the machine is continuously available
for work. If we denote the completion time of job i by Ci, the
objective is

min∑n
i αiEi +βiTi,

where Ei = max{d−Ci,0} and Ti = max{Ci−d,0}.
When dealing with this objective function, two cases can be dis-
tinguished. We consider a problem as non-restrictive if the op-
timal cost cannot decrease with extensions to the common due

date. In this case we say that the due date is non-restrictive (dl),
that is, long enough to allow as many jobs as required to be pro-
cessed in the interval (0,d). In the restrictive case the due date,
dr, affects the optimal schedule because not all the required jobs
fit into the interval (0,d). According to the classification sys-
tem by Graham et al. [1], the problem can be denoted as P|di =
dr|∑i(αiEi +βiTi). The problem is strongly NP-hard because the
basic problem P||∑i wiCi, which is already NP-hard, is a particular
case.

The non-restrictive case has been studied by Hall [2] and Sun-
daraghavan and Ahmed [3]. Chen and Powell [4] proposed a col-
umn generation algorithm for P|di = dl |∑i((αiEi + βiTi), opti-
mally solving instances of up to 60 jobs. More recently, Rios-Solis
y Sourd [5] have studied the restrictive case, developing heuristics
based on the efficient exploration of an exponential-size neighbor-
hood. An extensive computational study, using new and existing
instances, shows the good performance of the proposed proce-
dures. Kedad-Sidhoum et al. [6] have developed a lower bound
and a local search heuristic for the case with distinct due dutes, but
their procedures can obviously be appplied to the case of a com-
mon due date.

2. SOLVING THE ONE-MACHINE PROBLEM

The one-machine problem has been extensively studied. From pre-
vious studies we know that there is always an optimal solution sat-
isfying three conditions:

1 An optimal schedule does not contain any idle time between
consecutive jobs.

2 The optimal schedule is V-shaped around the common due
date. Jobs completed before or on the due date are sched-
uled in non-increasing order of pi/αi, and jobs starting on
or after the due date are scheduled in non-decreasing order
of pi/βi.

3 In the optimal schedule, either the first job starts at time
zero or there is a job finishing on the due date.

According to property 3, we can classify the instances into two
categories: those for which the optimal solution has a job finishing
on the due date and those where the optimal solution starts at time
zero. If both conditions hold for a given instance, it is classified
into the first category. We have developed a different quadratic
model for each class of problems [7].
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2.1. Model 1: Problems in which a job ends on the due date

min ∑
i

αibi ∑
j>i,inB

b j p j +∑
i

βiai ∑
j≤i,inA

a j p j (1)

s.t.
n

∑
i=1

bi pi ≤ d (2)

ai +bi = 1 ∀i = 1,2, . . . ,n (3)
ai,bi ∈ {0,1} ∀i = 1,2, . . . ,n (4)

bi =

{
1, if i finishes on or before d
0, otherwise ∀i = 1,2, ..,n

ai =

{
1, if i begins on or after d
0, otherwise ∀i = 1,2, ..,n

In this model, as there is always a job finishing on d, all jobs are
classified as jobs finishing on or before d (the jobs in set B), and
jobs starting on or after d (the jobs in set A). Variables ai and bi
define whether each job i belongs to A or B. Obviously, ai = 1−bi,
and constraints (3) are redundant. We only keep both for the clarity
of the model. Once the jobs are classified, their relative position
in A and B is determined by property 2. Therefore, the order re-
quired in the objective function is known. We take advantage of
this property by building two ordered lists: the B-order, by non-
increasing order of pi/αi, and the A-order, non-decreasing order
of pi/βi. In expression (1), the notation " j > i, inB" makes refer-
ence to the B-order and " j≤ i, inA" makes reference to the A-order.
The contribution to the objective function of the jobs in B and A is
given by the first and second terms of expression (1). Constraint
(2) ensures that all the jobs being processed before d fit into the
interval (0,d).

2.2. Model 2: Problems with a job starting at time zero

min ∑
i

αibi(d− ∑
j≤i, inB

b j p j)+∑
i

βiai(T −d− ∑
j>i, inA

a j p j)

+∑
i
(1−bi−ai)βi(T −d−∑

j
a j p j) (5)

s.t.
n

∑
i=1

bi pi ≤ d (6)

n

∑
i=1

ai pi ≤ T −d (7)

ai +bi ≤ 1 ∀i = 1, . . . ,n (8)

∑
i
(ai +bi)≥ n−1 (9)

ai,bi ∈ {0,1} ∀i = 1, . . . ,n (10)

We use the same variables ai and bi from the previous model, but in
this case a straddling job can appear, starting before d and finishing
after d. Therefore, we can have ai = bi = 0 for at most one job and
constraints (8) are no longer equalities as they were in Model 1.
Constraints (9) ensure that, apart from the possible straddling job,
all the other jobs must belong to B or A. Constraint (6) guarantees
that the processing time of jobs in B cannot exceed d. Similarly,
constraint (7) ensures that jobs in A do not exceed T −d. As in this
model the sequence starts at time 0 and no idle time is allowed (by
Property 1), it ends at time T = ∑i pi. Constraints (8) and (9) hold
with equality if there is no straddling job.

The objective function is calculated in a different way. The con-
tribution of the jobs in B (the first term in the expression (5)) is

computed from time 0; the contribution of the jobs in A (the sec-
ond term in the expression (5)) is computed from the end of the
sequence at time T = ∑i pi, and the contribution of the straddling
job appears in the third term.

The computational results obtained with these two models on a
large set of test instances from the literature show that Model 1
is extremely fast, even for very large problems. On the contrary,
Model 2 is much slower and for instances with more than 20 jobs
obtaining the optimal solution in a reasonable time cannot be guar-
anteed.

3. A HYBRID HEURISTIC ALGORITHM

We propose a 4-phase algorithmic scheme. In Phase 1, several
heuristic rules produce assignments of jobs to machines. In Phase
2, the one-machine problems are solved by using Models 1 and 2.
Phase 3 is a local search and Phase 4 is a Path Relinking procedure.

• Phase 1: Assignment of jobs to machines
We use two strategies:

1. Strategy 1

– Order the whole set of jobs according to a prior-
ity rule: Non-increasing p j/β j; p jβ j/α j; p jβ j;
p j.

– For the next job in the ordered list, choose the
machine to which the job is assigned, accord-
ing to a criterion: Next machine; Machine with
the lowest sum of processing times; Machine
in which adding a job produces a minimum in-
crease in cost.

2. Strategy 2

– Select a subset of early jobs (jobs we consider
candidates for set B on a machine). That can
be done in several ways: solving a one-machine
problem with all the jobs and a due date equal
to m ∗ d, or ordering the sets by some criterion
favouring jobs which should be early (such as
non-increasing β j/α j or β 2

j /α j) and selecting
the jobs in order until the sum of processing
times exceeds m ∗ d. The remaining jobs are
considered tardy.

– The list of early (tardy) jobs is ordered by non-
decreasing p j/αl (p j/β j) and each job is as-
signed in order to the machine with the mini-
mum total processing time of the jobs already
assigned.

Many different assignment strategies can be developed by
combining the priority criteria listed above. We implemented
and compared them in a preliminary computational study
over a reduced set of 288 instances. As expected, none of
them always produced the best results and we decided to
keep the 10 best rules, taking into account not only their
individual performance but also their complementarity, that
is, their ability to produce good results for instances diffi-
cult to solve for other rules. Therefore, the result of Phase
1 is a set of 10 assignments which are carried over to the
subsequent phases of the process.

• Phase 2: Solving the one-machine subproblems
According to the computational experience with Models 1
and 2, we use the following strategy:

– For instances with up to 20 jobs per machine solve
the subproblem with both Models 1 and 2, and keep
the best solution obtained.
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– For instances with more than 20 jobs per machines
use only Model 1.

Models 1 and 2 are solved using CPLEX 11.0. As the objec-
tive function is non-convex, we could have previously used
a convexification procedure. However, our results show that
the internal convexification strategy of CPLEX is very effi-
cient and therefore we use CPLEX directly.

• Phase 3: Local Search
We use two simple moves in order to improve the solutions
obtained in Phases 1 and 2. As the procedures of Phase
2 produce the optimal (or near-optimal) sequence of the
jobs assigned to each machine, these moves are designed
to change the assignment of jobs to machines.

– Insertion of jobs: Extract a job from its assigned ma-
chine and assign it to the machine on which it pro-
duces the minimum cost increase.

– Interchange of sublists: We consider two sublists of
consecutive tardy jobs on different machines. If the
starting time of the first sublist is earlier than the start-
ing time of the second sublist and the sum of its tardi-
ness penalties is also lower than the sum of the tardi-
ness penalties on the second sublist, exchanging sub-
lists will decrease the total cost of the solution.

• Phase 4: Path Relinking

– Elite Set: The 10 solutions obtained in Phase 3

– Combination of solutions
We take each pair of solutions of the Elite Set and
consider one of them in turn as the Initial Solution
and the other as the Guiding Solution.

∗ Order the machines of the Initial Solution in such
a way that the first machine will be the machine
with more jobs in common with the first ma-
chine of the Guiding Solution and repeat the pro-
cess for the remaining machines.

∗ Take the next machine k on the ordered list of
the initial solution Si and compare it with ma-
chine k of the guiding solution Sg. Let Tik be the
set of jobs assigned to machine k in Si and let
Tgk be the set of jobs in machine k in Sg. Build
the sets JIn = Tgk 6 Tik, JOut = Tik 6 Tgk

∗ Take the jobs in JIn to insert them into Tik and
the jobs in JOut to eliminate them from Tik and
insert them into the machine where they are in
Sg. For each insertion, consider the three possi-
bilities: insert into B (early), into A (tardy), or
make it the straddling job, and choose the alter-
native of minimum cost.

4. COMPUTATIONAL RESULTS

We have used the test instances generated by Rios-Solis and Sourd
[5], kindly provided by the authors, as well as the best known so-
lutions fo each instance, obtained by the heuristic proposed in [6].
There are four sets of instances, differing in the way the process-
ing times and the penalties have been generated. The number of
jobs varies between 10 and 200, the machines between 2 and 8,
and three types of due dates (more or less restrictive) are used.
Each combination of these factors is replicated 10 times, produc-
ing 3360 instances. In our study, we are currently using only one
instance for each combination of factors, excluding those of 200
jobs, and therefore we deal with a set of 288 instances which can
be seen as representative of the whole set.

The overall average percentage deviation of the solutions obtained
in Phases 1 and 2 from the best known solution is 0.33 %, in-
dicating that the constructive procedure which combines priority
assignment rules with the exact solution of subproblems produces
good quality results. However, if we look at the detailed results
by number of machines, we can see that as the number of ma-
chines increases, the solutions worsen. Therefore, the assignment
of jobs to machines has to be improved if better solutions are to
be obtained, which is the purpose of Phases 3 and 4. The average
deviation of the solutions is now -0.063 %. Detailed results by the
number of jobs and machines and by the strength of the due date
appear in Table 1.

Jobs 10 20 50 100 125 150
-0.14 -0.42 0.15 0.04 -0.01 -0.01

Machines 2 4 6 8
-0.24 -0.20 0.001 0.19

Due date 0.2 0.4 0.6
tightness -0.05 -0.12 -0.01

Table 1: Average percentage deviations from the best known solu-
tion

5. CONCLUSIONS AND FUTURE WORK

The results obtained so far are encouraging. The combination of
these four phases allows us to obtain improved solutions for quite
a difficult problem. However, several questions still need to be ad-
dressed. First, the use of exact models for solving the one-machine
subproblems. These models are currently applied to the job as-
signments provided by simple priority rules and would perhaps
be more usefully applied to improved job assignments obtained
by first applying a local search to the results of the priority rules.
Second, more aggressive moves can be added to the Local Search
in order to change the job assignments more substantially. Third,
the current version of the Path Relinking is quite simple. More
complex procedures, such as Dynamic or Evolutive Path Relink-
ing could be implemented.
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ABSTRACT

In this paper a hybrid simulation-based algorithm is proposed for
the Stochastic Flow Shop Problem. The main idea of the method-
ology is to transform the stochastic problem into a deterministic
problem and then apply simulation. To achieve this goal we use
Monte Carlo simulation and a modified version of the well-known
NEH heuristic. This approach aims to provide flexibility and sim-
plicity due to the fact that it is not constrained by any previous
assumption and relies in well-tested heuristics.

Keywords: Scheduling, Monte-Carlo simulation, Heuristics, Ran-
domized algorithm

1. INTRODUCTION

The Flow Shop Problem (FSP) is a well-known scheduling prob-
lem in which a set of independent jobs have to be sequentially
executed (processed) by a set of machines. In this scenario, the
processing time of each job in each machine is a known constant
value. The classical FSP goal is to determine a sequence of jobs
minimizing the total makespan, which is the time difference be-
tween the start and finish of processing all the jobs in all the ma-
chines (Figure 1).

Figure 1: A graphical representation of the FSP

The Stochastic Flow Shop Problem (SFSP) can be seen as a gener-
alization of the FSP. In this non-deterministic version of the Flow
Shop Problem, the processing time of each job in each machine is
not a constant value, but instead it is a random variable which fol-
lows a given probability distribution. Therefore, in this scenario
the goal uses to be minimizing the expected makespan, which is
not the same as the expected total processing time. The study of
the SFSP is within the current popularity of introducing random-
ness into combinatorial optimization problems. It allows to de-
scribe new problems in more realistic scenarios where uncertainty
is present.

It is important to remark the FSP as a relevant topic for current
research. As it happened with other combinatorial optimization
problems, a large number of different approaches and methodolo-
gies have been developed to deal with the FSP. These approaches

range from pure optimization methods (such as linear and integer
programming), which allow to solve small-sized problems, to ap-
proximate methods such as heuristics and metaheuristics, which
can find near-optimal solutions for medium- and large-sized prob-
lems. Although the usual goal is to minimize the makespan, other
goals could also be considered, e.g. to minimize the total process-
ing time. Moreover, some of these methodologies are able to pro-
vide a set of near-optimal solutions from which the decision-maker
can choose according to his/her specific utility function. The situ-
ation is quite different in the case of the SFSP: to the best of our
knowledge, there is a lack of efficient and flexible methodologies
able to provide near-optimal solutions to the stochastic version of
the FSP. Moreover, most of the existing approaches are quite the-
oretical and make use of restrictive assumptions on the probability
distributions that model job processing times.

2. BASIC NOTATION AND ASSUMPTIONS

The Stochastic Flow Shop Problem (SFSP) is a scheduling prob-
lem that can be formally described as follows: a set J of n indepen-
dent jobs have to be processed by a set M of m independent ma-
chines. Each job i∈ J requires a stochastic processing time, pi j, in
every machine j ∈M. This stochastic processing time is a random
variable following a certain distribution, e.g. log-normal, expo-
nential, weibull, etc. The goal is to find a sequence for processing
the jobs so that a given criterion is optimized. The most commonly
used criterion is the minimization of the expected completion time
or expected makespan, denoted by E [Cmax]. In addition, it is also
assumed that:

• All jobs are processed by all machines in the same order.

• There is unlimited storage between the machines, and non-
preemption.

• Machines are always available for processing jobs, but each
machine can process only one job at a time.

• A job cannot be processed more than once for each ma-
chine.

• Job processing times are independent random variables.

At this point, it is interesting to notice that our approach does not
require to assume any particular distribution for the random vari-
ables that model processing times. In a practical situation, the
specific distributions to be employed will have to be fitted from
historical data (observations) using a statistical software. In most
existing approaches, however, it is frequently assumed that these
processing times will follow a normal or exponential distribution.
This assumption is, in our opinion, quite unrealistic and restric-
tive. For instance, it is unlikely that positive processing times can
be conveniently modeled throughout a normal distribution, since
any normal distribution includes negative values .
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3. STATE OF THE ART AND RELATED WORK

The FSP is a NP-complete problem [1]. Many heuristics and meta-
heuristics have been proposed in order to solve the FSP due to the
impossibility of finding, in reasonable times, exact solutions for
most medium- and large-sized instances. Some of the first publi-
cations on FSP are those of Johnson [2] and Makino[3]. These au-
thors presented approaches for solving small problems, e.g. prob-
lems with only two machines and two jobs. Campbell et al. [4]
built a heuristic for the FSP with more than two machines. The
NEH algorithm is considered by most researchers as one of the
best performing heuristics for solving the FSP. It was introduced
by Nawaz et al. [5]. Later, Tailard [6] reduced the NEH com-
plexity by introducing a data structure to avoid the calculation of
the makespan. Ruiz and Stützle [7] proposed the Iterated Greedy
(IG) algorithm for the FSP built on a two-step methodology. In
our opinion, this is one of the best algorithms developed so far
to solve the FSP, since it combines simplicity with an outstanding
performance.

Many works have focused on the importance of considering un-
certainty in real-world problems, particularly in those related to
scheduling issues. Thus, Al-Fawzan[8]analyzes the Resource Con-
strained Project Scheduling Problem (RCPSP) by focusing on
makespan reduction and robustness. Jensen[9] also introduces the
concepts of neighborhood-based robustness and tardiness mini-
mization. Ke [10] proposes a mathematical model for achieving
a formal specification of the Project Scheduling Problem. Allaoui
[11] studied makespan minimization and robustness related to the
SFSP, suggesting how to measure the robustness. Proactive and
reactive scheduling are also characterized in his work. On the one
hand, an example of reactive scheduling can be found on Honkomp
et al. [12], where performance is evaluated using several method-
ologies. On the other hand, robustness in proactive scheduling is
analyzed in Ghezail et al. [13], who propose a graphical repre-
sentation of the solution in order to evaluate obtained schedules.
As the concept of minimum makespan from FSP is not representa-
tive for the stochastic problem, Dodin [14] proposes an optimality
index to study the efficiency of the SFSP solutions. The bound-
aries of the expected makespan are also analyzed mathematically.
A theoretical analysis of performance evaluation based on marko-
vian models is performed in Gourgand et al. [15], where a method
to compute expected time for a sequence using performance eval-
uation is proposed. A study of the impact of introducing different
types of buffering among jobs is also provided in this work. On the
other hand, Integer and linear programming have been employed
together with probability distributions to represent the problem in
Janak et al. [16].

Simulation has been applied in Juan et al. [17] to solve the FSP.
In this work, the NEH algorithm is randomized using a biased
probability distribution. Thus, their approach is somewhat simi-
lar to a GRASP-like methodology. Simulation-based approaches
for the SFSP have mainly focused on performance evaluation, as in
Gougard et al. [18]. Similarly, Dodin [14] performs simulations as
a way to validate his empirical analysis on the makespan bound-
aries. Finally, Honkomp et al. [12] also make use of simulation
techniques in their approach for reactive scheduling.

In a recent work, Juan et al. [19] describe the application of simu-
lation techniques to solve the Vehicle Routing Problem with
Stochastic Demands (VRPSD). The VRPSD is a variation of the
classical Vehicle Routing Problem where customer demands are
not known in advance. These demands are random variables fol-
lowing some probability distributions. The authors propose to
transform the original stochastic problem into a set of related de-
terministic problems, which are then solved using an efficient algo-
rithm introduced in a previous work [20]. As it will be discussed in
more detail next, this paper proposes a similar approach for solv-

ing the SFSP.

4. PROPOSED METHODOLOGY

The main idea behind our simulation-based approach is to trans-
form the initial SFSP instance into a FSP instance and then to ob-
tain a set of near-optimal solutions for the deterministic problem
by using an efficient FSP algorithm. Notice that, by construction,
these FSP solutions are also feasible solutions of the original SFSP
instance. Then, simulation is used to determine which solution,
among the best-found deterministic ones, shows a lower expected
makespan when considering stochastic times. This strategy as-
sumes that a strong correlationship exists between near-optimal
solutions for the FSP and near-optimal solutions for the SFSP. Put
in other words, good solutions for the FSP are likely to represent
good solutions for the SFSP. Notice, however, that not necessarily
the best-found FSP solution will become the best-found SFSP so-
lution, since its resulting makespan might be quite sensitive to vari-
ations in the processing times. The transformation step is achieved
by simply considering the expected value of each processing time
as a constant value. Since any FSP solution will be also a feasi-
ble SFSP solution, it is possible to use Monte Carlo simulation to
obtain estimates for the expected makespan. That is, we obtain
these estimates by iteratively reproducing the stochastic behaviour
of the processing times in the sequence of jobs given by the FSP
solution. Of course, this simulation process will take as many it-
erations as necessary to obtain accurate estimates. If necessary,
variance reduction techniques could be employed in order to re-
duce the number of iterations to run. Figure 2 shows the flow chart
diagram of our approach, which is described next in detail:

1. Consider a SFSP instance defined by a set J of jobs and a
set M of machines with random processing times, pi j, for
each job i ∈ J in each machine j ∈M.

2. For each random processing time pi j, consider its expected
or mean value p∗i j = E

[
pi j
]
.

3. Let FSP* be the non-stochastic problem associated with the
processing times p∗i j, ∀i ∈ J, j ∈M.

4. Using any efficient algorithm (e.g. [7, 17]), obtain a set S
of n near-optimal solutions for the FSP*.

5. For each sk ∈ S, k = 1,2, . . .n, consider the sequence of jobs
in sk and then start a Monte Carlo simulation in order to es-
timate the expected makespan associated with this sequence
of jobs. Notice that for each sk, random observations from
each pi j (i ∈ J, j ∈M) are iteratively generated while main-
taining the sequence of jobs provided by sk.

6. Return the sequence of jobs (solution) which provides the
lowest expected makespan.

5. CONTRIBUTION OF OUR APPROACH

The idea of solving a stochastic combinatorial optimization prob-
lem through solving one related deterministic problem and then
applying simulation is not new (see [19]). However, to the best of
our knowledge, this is the first time this approach has been used to
solve the SFSP. In fact, most of the SFSP research to date has fo-
cused on theoretical aspects of stochastic scheduling. By contrast,
the proposed method provides a relatively simple and flexible ap-
proach to the SFSP, which in our opinion offers some valuable
benefits. In particular, our approach suggests a more practical per-
spective which is able to deal with more realistic scenarios: by
integrating Monte Carlo simulation in our methodology, it is pos-
sible to naturally consider any probabilistic distribution for mod-
eling the random job processing times.
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Figure 2: Flow chart of the proposed algorithm

Thus, as far as we know, the presented methodology offers some
unique advantages over other existing SFSP approaches. To be
specific: (a) the methodology is valid for any statistical distribution
with a known mean, both theoretical -e.g. Normal, Log-normal,
Weibull, Gamma, etc.- or experimental; and (b) the methodology
reduces the complexity of solving the SFSP -where no efficient
methods are known yet- to solving the FSP, where mature and ex-
tensively tested algorithm have been developed already. All in all,
the credibility and utility of the provided solution is increased. No-
tice also that, being based on simulation, the methodology can
be easily extended to consider a different distribution for each
job-machine processing time, possible dependencies among these
times, etc. Moreover, the methodology can be applied to SFSP in-
stances of any size as far as there exists efficient FSP metaheuris-
tics able to solve those instances. In summary, the benefits pro-
vided by our methodology can be summarized in two propierties:
simplicity and flexibility.

6. CONCLUSIONS

In this paper we have presented a hybrid approach for solving
the Stochastic Flow Shop Problem. The methodology combines
Monte Carlo simulation with well tested algorithms for the Flow
Shop Problem. The basic idea of our approach is to transform the
initial stochastic problem into a related deterministic problem, then
obtain a set of alternative solutions for this latter problem using
any efficient algorithm, and finally use simulation to verify which

of these solutions offers the lowest expected makespan. This ap-
proach does not require any previous assumption and is valid for
any probability distribution.
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ABSTRACT

This paper proposes a flexible solution methodology for solving
the Vehicle Routing Problem with Stochastic Demands (VRPSD).
The logic behind this methodology is to transform the issue of
solving a given VRPSD instance into an issue of solving a small set
of Capacitated Vehicle Routing Problem (CVRP) instances. Thus,
our approach takes advantage of the fact that extremely efficient
metaheuristics for the CVRP already exists. The CVRP instances
are obtained from the original VRPSD instance by assigning dif-
ferent values to the level of safety stocks that routed vehicles must
employ to deal with unexpected demands. The methodology also
makes use of Monte Carlo Simulation (MCS) to obtain estimates
of the expected costs associated with corrective routing actions (re-
course actions) after a vehicle runs out of load before completing
its route.

Keywords: Metaheuristics, Routing, Scheduling

1. INTRODUCTION

The Vehicle Routing Problem with Stochastic Demands (VRPSD)
is a well-known NP-hard problem in which a set of customers with
random demands must be served by a fleet of homogeneous ve-
hicles departing from a depot, which initially holds all available
resources. There are some tangible costs associated with the dis-
tribution of these resources from the depot to the customers. In
particular, it is usual for the model to explicitly consider costs
due to moving a vehicle from one node -customer or depot- to
another. These costs are often related to the total distance traveled,
but they can also include other factors such as number of vehicles
employed, service times for each customer, etc. The classical goal
here consists of determining the optimal solution (set of routes)
that minimizes those tangible costs subject to the following con-
straints: (i) all routes begin and end at the depot; (ii) each vehicle
has a maximum load capacity, which is considered to be the same
for all vehicles; (iii) all (stochastic) customer demands must be sat-
isfied; (iv) each customer is supplied by a single vehicle; and (v) a
vehicle cannot stop twice at the same customer without incurring
in a penalty cost.

Notice that the main difference between the Capacitated Vehicle
Routing Problem (CVRP) and the VRPSD is that in the former
all customer demands are known in advance, while in the latter
the actual demand of each customer has a stochastic nature, i.e.,

its statistical distribution is known beforehand, but its exact value
is revealed only when the vehicle reaches the customer. For the
CVRP, a large set of efficient optimization methods, heuristics and
metaheuristics have been already developed ([1]). However, this
is not yet the case for the VRPSD, which is a more complex prob-
lem due to the uncertainty introduced by the random behavior of
customer demands. Therefore, as suggested by Novoa and Storer
[2], there is a real necessity for developing more efficient and flex-
ible approaches for the VRPSD. On one hand, these approaches
should be efficient in the sense that they should provide optimal
or near-optimal solutions to small and medium VRPSD instances
in reasonable times. On the other hand, they should be flexible in
the sense that no further assumptions need to be made concerning
the random variables used to model customer demands, e.g., these
variables should not be assumed to be discrete neither to follow
any particular distribution. To the best of our knowledge, most of
the existing approaches to the VRPSD do not satisfy this flexibility
requirement.

The random behavior of customer demands could cause an ex-
pected feasible solution to become infeasible if the final demand
of any route exceeds the actual vehicle capacity. This situation
is referred to as “route failure”, and when it occurs, some correc-
tive actions must be introduced to obtain a new feasible solution.
For example, after a route failure, the associated vehicle might be
forced to return to the depot in order to reload and resume the dis-
tribution at the last visited customer. Our methodology proposes
the construction of solutions with a low probability of suffering
route failures. This is basically attained by constructing routes in
which the associated expected demand will be somewhat lower
than the vehicle capacity. Particularly, the idea is to keep a certain
amount of surplus vehicle capacity (safety stock or buffer) while
designing the routes so that if the final routes’ demands exceed
their expected values up to a certain limit, they can be satisfied
without incurring a route failure.

2. BASIC NOTATION

The Stochastic Vehicle Routing Problem (SVRP) is a family of
well-known vehicle routing problems characterized by the ran-
domness of at least one of their parameters or structural variables
[3]. This uncertainty is usually modeled by means of suitable
random variables which, in most cases, are assumed to be inde-
pendent. The Vehicle Routing Problem with Stochastic Demands
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(VRPSD) is among the most popular routing problems within the
SVRP family. There are two other classical problems belonging
to that family: the Vehicle Routing Problem with Stochastic Cus-
tomers (VRPSC) which was solved by Gendreau et al. [4] using
an adapted Tabu Search, and the Vehicle Routing Problem with
Stochastic Times (VRPST), but their applications are rather lim-
ited in comparison with the VRPSD, which is described in detail
next.

Consider a complete network constituted by n + 1 nodes, V =
{0,1,2, . . . ,n}, where node 0 symbolizes the central depot and
V ∗ =V\{0} is the set of nodes or vertices representing the n cus-
tomers. The costs associated with traveling from node i to node j
are denoted by c(i, j) ∀i, j ∈ V , where the following assumptions
hold true: (i) c(i, j) = c( j, i) (i.e., costs are usually assumed to
be symmetric, although this assumption could be relaxed if neces-
sary); (ii) c(i, i) = 0, and (iii) c(i, j)≤ c(i,k)+ c(k, j) ∀k ∈V (i.e.,
the triangle inequality is satisfied). These costs are usually ex-
pressed in terms of traveled distances, traveling plus service time
or a combination of both. Let the maximum capacity of each ve-
hicle be V MC >> maxi∈V ∗{Di}, where Di ≥ 0 ∀i ∈ V ∗ are the
independent random variables that describe customer demands -it
is assumed that the depot has zero demand. This capacity con-
straint implies that the demand random value never will be greater
than the V MC value, which allows us an adequate performance of
our procedure. For each customer, the exact value of its demand
is not known beforehand but it is only revealed once the vehicle
visits. No further assumptions are made on these random variables
other than that they follow a well-known theoretical or empirical
probability distribution -either discrete or continuous- with exist-
ing mean denoted by E[Di]. In this context, the classical goal is
to find a feasible solution (set of routes) that minimizes the ex-
pected delivery costs while satisfying all customer demands and
vehicle capacity constraints. Even when these are the most typi-
cal restrictions, other constraints and factors are sometimes con-
sidered, e.g., maximum number of vehicles, maximum allowable
costs for a route, costs associated with each delivery, time windows
for visiting each customer, solution attractiveness or balance, en-
vironmental costs, and other externalities.

3. OUR SIMULATION-BASED APPROACH

Our approach is inspired by the following facts: (a) the VRPSD
can be seen as a generalization of the CVRP or, to be more spe-
cific, the CVRP is just a VRPSD with constant demands –random
demands with zero variance–; and (b) while the VRPSD is yet
an emerging research area, extremely efficient metaheuristics do
already exists for solving the CVRP. Thus, one key idea behind
our approach is to transform the issue of solving a given VRPSD
instance into a new issue which consists of solving several “con-
servative” CVRP instances, each characterized by a specific risk
(probability) of suffering route failures. The term conservative
refers here to the fact that only a certain percentage of the vehi-
cle total capacity will be considered as available during the rout-
ing design phase. In other words, part of the total vehicle capac-
ity will be reserved for attending possible “emergencies” caused
by under-estimated random demands during the actual distribution
(routing execution) phase. This part can be considered as a safety
stock since it reflects the level of extra stock that is maintained to
buffer against possible route failures. Next, the specific steps of
our methodology are described in detail:

1. Consider a VRPSD instance defined by a set of customers with
stochastic demands, where each demand is a random variable fol-
lowing a given statistical distribution –either theoretical or empir-
ical as long as its mean exists.

2. Set a value k for the percentage of the maximum vehicle ca-
pacity that will be used as safety stock during the routing design

stage.

3. Consider the CVRP(k) defined by: (a) the reduced total vehicle
capacity, and (b) the deterministic demands given by the expected
value of the real stochastic demands.

4. Solve the CVRP(k) by using any efficient CVRP methodol-
ogy. Notice that the solution of this CVRP(k) is also an aprioristic
solution for the original VRPSD. Moreover, it will be a feasible
VRPSD solution as long as there will be no route failure, i.e., as
long as the extra demand that might be originated during execution
time in each route does not exceed the vehicle reserve capacity or
safety stock. Notice also that the cost given by this solution can be
considered as a base or fixed cost of the VRPSD solution, i.e., the
cost of the VRPSD in case that no route failures occur. Chances
are that some route failures occur during the execution phase. If so,
corrective actions -such as returning to the depot for a reload be-
fore resuming distribution- and their corresponding variable costs
will need to be considered. Therefore, the total costs of the corre-
sponding VRPSD solution will be the sum of the CVRP(k) fixed
costs and the variable costs due to the corrective actions.

5. Using the solution obtained in the previous step, estimate the ex-
pected (average) costs due to possible failures in each route. This
can be done by using Monte Carlo simulation, i.e., random de-
mands are generated and whenever a route failure occurs (or just
before it happens), a corrective policy is applied and its associated
costs are registered. In the experimental section of this paper, ev-
ery time a route fails we consider the costs of a round-trip from
the current customer to the depot; but, since we are using simu-
lation, other alternative policies and costs could also be consid-
ered in a natural way. After iterating this process for some hun-
dred/thousand times, a random sample of observations regarding
these variable costs are obtained and an estimate for its expected
value can be calculated.

6. Depending on the total costs associated with the solutions al-
ready obtained, repeat the process from Step 1 with a new value of
k -i.e., explore different scenarios to check how different levels of
safety stock affect the expected total cost of the VRPSD solution.

7. Finally, provide a sorted list with the best VRPSD solutions
found so far as well as their corresponding properties: fixed costs,
expected variable costs, and expected total costs.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In the CVRP literature, there exists a classical set of very well-
known benchmarks commonly used to test their algorithm. How-
ever, as noticed by Bianchi et al. [5], there are no commonly used
benchmarks in the VRPSD literature and, therefore, each paper
presents a different set of randomly generated benchmarks. Thus,
we decided to employ a natural generalization of several classical
CVRP instances by using stochastic demands instead of constant
ones. So, for each instance, while we decided to keep all node
coordinates and vehicle capacities, we changed di, the determinis-
tic demands of client i (∀i ∈ {1,2, . . . ,#nodes− 1}) to stochastic
demands Di following an exponential distribution with E[Di] = di.

For each instance, a total of 16 scenarios were simultaneously ex-
ecuted using a cluster of 16 personal computers IntelrCoreTM2
Quad Q8200 at 2.33GHz and 2GB RAM. The 16 scenarios were
obtained by varying the available vehicle capacity (i.e., the com-
plementary of the safety-stocks level) from 100% to 85% during
the routing-design stage. Table 1 shows the complete results ob-
tained for all 55 classical instances we generalized and tested.

The first column in Table 1 contains the name of each instance,
which includes the number of nodes and also the number of routes
of the ‘standard’ solution, e.g. B-n78-k10 is an instance of class
B with 78 nodes and able to be solved with a 10-route solution.
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Columns 2 to 4 are related to solutions obtained by our algorithm
when a 100 % of the vehicle maximum capacity is considered dur-
ing the design stage. Notice that this strategy always provides
pseudo-optimal solutions in terms of fixed costs (Column 2), since
they can be directly compared with the CVRP best-known solu-
tion. However, since no safety stock is used, there is a chance that
these solutions can suffer from route failures. In turn, route fail-
ures might imply high expected variable costs (estimated in Col-
umn 3 by Monte Carlo simulation), thus increasing the total ex-
pected costs, which is estimated in Column 4. Here is where using
safety stocks can be of value: by not necessarily using all vehicle
maximum capacity during the design stage, some route failures
can be avoided. Hopefully, this might lead to new solutions with
slightly higher fixed costs but also with lower expected variable
costs. At the end, these alternative solutions might present lower
total expected costs, which are the ones to be minimized. On the
one hand, columns 5 to 9 show the results obtained with our al-
gorithm. Notice that fixed costs in Column 7 are always higher or
equal to those in Column 2. However, total expected costs in Col-
umn 9 are always lower or equal to those in Column 4. Notice also
that sometimes the best-found strategy (for this set of benchmarks)
is to use a 100 % of the vehicle maximum capacity (i.e. no safety
stocks at all) when designing the routes (Column 5).

5. CONCLUDING REMARKS

We have presented a hybrid approach to solving the Vehicle Rout-
ing Problem with Stochastic Demands (VRPSD). The approach
combines Monte Carlo simulation with well-tested metaheuristics
for the Capacitated Vehicle Routing Problem (CVRP). One of the
basic ideas of our methodology is to consider a vehicle capacity
lower than the actual maximum vehicle capacity when designing
VRPSD solutions. This way, this capacity surplus or safety stocks
can be used when necessary to cover route failures without hav-
ing to assume the usually high costs involved in vehicle restock
trips. Another important idea is to transform the VRPSD instance
to a limited set of CVRP instances -each of them defined by a
given safety-stocks level-, to which efficient solving methods can
be applied. Our approach provides the decision-maker with a set
of alternative solutions, each of them characterized by their total
estimated costs, leaving to him/her the responsibility of selecting
the specific solution to be implemented according to his/her utility
function. Although other previous works have proposed to bene-

fit from the relationship between the VRPSD and the CVRP, they
usually require hard assumptions that are not always satisfied in
realistic scenarios. On the contrary, our approach relaxes most of
these assumptions and, therefore, it allows for considering more
realistic customer demand scenarios. Thus, for example, our ap-
proach can be used to solve CVRPSD instances with hundreds of
nodes in a reasonable time and, even more important, it is valid for
virtually any statistical distribution –the one that best fits historical
data on customer demands.

6. ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish Ministry of
Science and Innovation (TRA2010-21644-C03) and by the Navar-
rese and Catalan Governments (IIQ13172.RI1-CTP09-R2, 2009
CTP 00007 and Jerónimo de Ayanz network). This work has been
developed in the context of the CYTED-IN3-HAROSA Network
(http://dpcs.uoc.edu).

7. REFERENCES

[1] G. Laporte, “What you should know about the vehicle rout-
ing problem,” Naval Research Logistics, vol. 54, pp. 811–819,
2007.

[2] C. Novoa and R. Storer, “An approximate dynamic program-
ming approach for the vehicle routing problem with stochas-
tic demands,” European Journal of Operational Research, no.
196, pp. 509–515, 2009.

[3] C. Bastian and A. R. Kan, “The stochastic vehicle rout-
ing problem revisited,” European Journal of Operations Re-
search, vol. 56, pp. 407–412, 2000.

[4] M. Gendreau, G. Laporte, and R. SÈguin, “A tabu search
heuristic for the vehicle routing problem with stochastic de-
mands,” Operations Research, vol. 44(3), pp. 469–477, 1996.

[5] L. Bianchi, M. Birattari, M. Chiarandini, M. Mastrolilli, L. Pa-
quete, O. Rossi-Doria, and T. Schiavinotto, “Hybrid meta-
heuristics for the vehicle routing problem with stochastic de-
mands,” Journal of Mathematical Modelling and Algorithms,
vol. 5, pp. 91–110, 2006.

ALIO-EURO 2011 – 135



Proc. of the VII ALIO–EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4–6, 2011

Using 100% of the Capacity Using a Percentage P of the Capacity
Instance Fixed Variable Total (1) P Routes Fixed Variable Total (2) Time (s) Gap (1) - (2)

A-n32-k5 787.08 179.49 966.57 100% 5 787.08 179.49 966.57 1 0.00%
A-n33-k5 662.11 159.77 821.88 97% 5 676.10 135.80 811.90 1 1.21%
A-n33-k6 742.69 162.45 905.14 100% 6 742.69 162.45 905.14 1 0.00%
A-n37-k5 672.47 134.43 806.89 97% 5 692.53 109.47 802.00 1 0.61%
A-n38-k5 733.95 157.48 891.43 93% 6 761.25 117.97 879.22 1 1.37%
A-n39-k6 835.25 178.10 1,013.35 94% 6 842.92 150.35 993.27 1 1.98%
A-n45-k6 944.88 254.68 1,199.55 94% 7 979.31 197.70 1,177.01 1 1.88%
A-n45-k7 1,154.39 325.68 1,480.07 100% 7 1,154.39 325.68 1,480.07 2 0.00%
A-n55-k9 1,074.96 304.33 1,379.28 100% 9 1,074.96 304.33 1,379.28 1 0.00%
A-n60-k9 1,362.19 395.42 1,757.61 100% 9 1,362.19 395.42 1,757.61 2 0.00%
A-n61-k9 1,040.31 288.01 1,328.32 95% 10 1,073.86 241.57 1,315.43 1 0.97%
A-n63-k9 1,632.19 518.31 2,150.50 100% 9 1,632.19 518.31 2,150.50 4 0.00%
A-n65-k9 1,184.95 341.43 1,526.37 99% 10 1,213.73 304.73 1,518.46 1 0.52%
A-n80-k10 1,773.79 548.84 2,322.63 100% 10 1,773.79 548.84 2,322.63 7 0.00%
B-n31-k5 676.09 169.46 845.54 95% 5 680.98 158.07 839.05 1 0.77%
B-n35-k5 958.89 267.77 1,226.66 99% 5 978.51 239.61 1,218.12 3 0.70%
B-n39-k5 553.20 142.48 695.68 100% 5 553.20 142.48 695.68 1 0.00%
B-n41-k6 834.92 248.30 1,083.22 96% 7 856.76 224.13 1,080.89 1 0.22%
B-n45-k5 754.23 146.48 900.71 100% 5 754.23 146.48 900.71 1 0.00%
B-n50-k7 744.23 202.85 947.07 93% 7 754.26 186.11 940.37 1 0.71%
B-n52-k7 754.38 204.83 959.21 92% 7 771.02 164.87 935.88 1 2.43%
B-n56-k7 716.42 211.94 928.36 88% 8 757.68 140.32 898.00 1 3.27%
B-n57-k9 1,602.28 559.89 2,162.17 96% 9 1,623.27 515.53 2,138.80 1 1.08%
B-n64-k9 868.40 277.39 1,145.79 100% 9 868.40 277.39 1,145.79 10 0.00%

B-n67-k10 1,039.46 316.59 1,356.05 100% 10 1,039.46 316.59 1,356.05 1 0.00%
B-n68-k9 1,283.16 442.17 1,725.33 97% 9 1,303.09 388.54 1,691.63 8 1.95%

B-n78-k10 1,245.82 367.24 1,613.06 98% 10 1,252.38 357.03 1,609.41 9 0.23%

Table 1: Results for instances A and B using exponentially distributed demands with E[Di] = di
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ABSTRACT

The aim of this paper is to present and compare alternative hier-
archical formulations for the periodic vehicle routing problem for
solid waste collection. The solution of this problem is a one–week
plan of daily routes for the transportation of mixed solid waste
from containers to disposal facilities, taking into consideration the
frequency of collection of each container within the planning hori-
zon, the road network and the resources available. The objective is
to minimize operation costs.

The real-world case that supported this study was the collection of
mixed solid waste in Ponte de Lima, a municipality in the north
of Portugal, and the problem was modelled as a Periodic Vehicle
Routing Problem (PVRP) with the additional constraint that routes
must pass through one of the alternative disposal facilities before
returning to the depot.

Based on this real case scenario, we propose a framework of MIP
models with three hierarchical approaches besides the monolithic
model. The hierarchical approaches are identified by the aggrega-
tion of the decisions in each level: (1) assign and route together;
(2) assign days first - assign vehicles and route second; (3) assign
first - route second and (4) assign days first - assign vehicles sec-
ond - route third. Some new estimates for downstream constraints
were developed and integrated in upstream levels in order to guar-
antee feasibility.

Keywords: Waste collection, Hierarchical formulations, Periodic
vehicle routing

1. INTRODUCTION

The costs of the collection of solid waste range between 40 and
60% of a community’s solid waste management system expendi-
tures [1]. An efficient management of the solid waste collection
can therefore generate significant savings while ensuring hygiene
patterns and satisfaction of the inhabitants, besides all the other
advantages common to the efficient management of transportation
systems.

This work is based on a real case concerning Ponte de Lima, a
municipality in the north of Portugal. The municipality manages
the collection of the mixed waste generated in Ponte de Lima and
guarantees its transport to disposal facilities. The main objective
of the work done with the municipality was the reduction of the
collection costs, that are highly dependent of the distance traveled
by the vehicles. The resources such as the number and location
of the depots and containers, the number of vehicles and staff, as
well as the collection frequency of the containers in each parish
were already fixed.

The output of the study should therefore be the visiting calendar
of each container within the weekly planning horizon, consider-
ing the constrains of the collection frequency, and the plan of the

routes for each vehicle and day, with the additional constraint that
the routes must go through a disposal facility to unload the waste
before returning to the depot. Problems with these characteristics
are modeled in the literature as Periodic Vehicle Routing Problems
(PVRP), a variant of the Vehicle Routing Problem (VRP).

The PVRP is known to be an NP-hard problem and the additional
constraints that had to be included to adapt the model to the real sit-
uation of Ponte de Lima made the resolution even more challeng-
ing. In order to be able to solve the real problem we built a frame-
work with three hierarchical approaches, which we have tested
along with the monolithic model. The hierarchical approaches are
identified by the aggregation of the decisions in each level: (1)
assign and route together; (2) assign days first - assign vehicles
and route second; (3) assign first - route second and (4) assign
days first - assign vehicles second - route third. Some estimates
of downstream constraints were developed and added in upstream
levels in order to guarantee feasibility. We compared the results
obtained with the MIP formulations developed for the approaches
and with the current practice of the municipality.

The remainder of this paper is organized as follows: in section 2, a
brief review of the relevant literature is presented. The problem is
described in section 3 and in section 4 the hierarchical framework
as well as the developed formulations are presented. In section 5
the results obtained are described and the approaches compared.
Conclusions are drawn in section 6.

2. LITERATURE REVIEW

Routing problems have been widely treated in the literature be-
cause of their high complexity and practical relevance. The Trav-
eling Salesman Problem (TSP) is the most discussed routing prob-
lem and consists in determining a minimum distance route that
begins in a given location, passes through all the other locations
(customers) and returns to the initial location [2]. In the Vehicle
Routing Problem (VRP), a fleet of vehicles with known capacity
is available to visit customers which have a known demand. The
objective is to design routes for the vehicles at minimal total cost,
guaranteeing that all the customers are served and that the capacity
of the vehicles is not exceeded [3]. This problem adds to the TSP
the decision of which customers assign to which vehicles.

The Periodic Vehicle Routing Problem (PVRP) is an extension of
the VRP where customers must be visited with pre-defined fre-
quencies over an extended period. The additional component of
the problem consists in the assignment of one visiting calendar
from a given set to each customer. The overall objective is to as-
sign routes to the vehicles for each day of the planning horizon
that minimize the total travel cost. The visiting calendar of each
client must be met and routes are subject to vehicle capacity and
route duration constraints. This problem was formally introduced
in 1974 by Beltrami and Bodin as a generalization of the VRP,
precisely in an application of municipal waste collection [4].
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Russel and Igo called the PVRP an “Assignment Routing Prob-
lem” and mentioned the difficulties of choosing a calendar for each
customer together with solving the routing problem [4]. To deal
with the complexity and large scale nature of the problem, several
authors consider the PVRP as a multilevel problem:

1. In the first level, a calendar is selected for each customer. In
this way, it is decided which customers are visited on each
day of the planning horizon;

2. In the second level, and for each day of the planning hori-
zon, customers are assigned to the vehicles available in that
day;

3. Finally, in the third level, a route is designed for each com-
bination of day and vehicle.

Note that in the VRP, only the last two decisions need to be made
and over a single day only. Being the VRP an NP-hard problem,
the PVRP is therefore at least as difficult [5].

A significant body of work has been evolving, with multiple vari-
ants, formulations and solution methods applied to the PVRP. Three
important variants of the PVRP are mostly addressed in the litera-
ture: the PVRP with time window constraints – PVRPTW [6], with
service choice – PVRP-SC [7], with multiple depots – MDPVRP
[8] and with intermediate facilities – PVRP-IF [9]. In this last vari-
ant, capacity replenishment is possible at different points along the
route. As far as formulations are concerned, the most used one is
the 4-index formulation from Christofides and Beasley, based on
the VRP 3-index formulation from Golden et al [4]. Other formu-
lations have been emerging, considering only the assignment prob-
lems [10, 11, 12]. More recently, alternative modeling approaches
have been emerging, such as the Set Partitioning (SP) [13]. For in-
stances of realistic size, the problem has been solved mostly with
heuristics and metaheuristics and in sequential phases. Two-phase
solution methods are more commonly found (a survey on solution
methods can be found in [4]).

In [14], Ball states that solving an hierarchical problem is more
than solving a set of distinct problems. It is necessary to guaran-
tee feasibility in the downstream levels by including approximate
measurements of lower level constraints in upstream levels. In the
PVRP, this means that in the assignment problems it is necessary
to guarantee that the number of customers assigned to a vehicle in
a day neither exceeds its capacity nor leads to subproblems where
it is not possible to create any route without exceeding its maxi-
mum duration. Whereas vehicle capacity constraints have already
appeared in assignment problems, approximate measurements of
route duration have not been covered so far.

To conclude, and concerning waste collection, this practical appli-
cation has already been studied in the literature, not only concern-
ing mixed but also separate waste [15, 16, 5, 17, 18].

3. PROBLEM DEFINITION

The municipality of Ponte de Lima owns and operates a fleet of
5 vehicles with different capacities for the mixed-waste collec-
tion. These vehicles are parked in a garage in a central parish
– Arca. The 994 mixed-waste containers are non-uniformly dis-
tributed over Ponte de Lima and the waste is periodically col-
lected and transported to disposal facilities, where afterwards it
is whether dumped in a controlled environment or transformed.
The filling rates of the containers are highly dependent on the den-
sity of both the containers and the inhabitants of the region. They
also depend on the collection frequency imposed. The collection
is performed 6 days a week. Figure 1 shows the location of the two
existing disposal facilities and the depot as well as the collection
frequency of the containers within each parish.

Currently the plans are monthly hand-made, without assuring that
the collection frequency matches the frequencies defined for each
parish.

3.1. Objective

Different filling rates led the municipality to establish different fre-
quencies of collection for the containers. Therefore, for a given
planning horizon, a set of routes is required for each vehicle as
well as a visiting schedule for each container. Each route should
consist of an ordered list of visiting sites that ends on a disposal
facility to deposit the waste after collection. The lowest frequency
for a container is one visit in a week, which suggests a collection
plan of one week.

The objective is to minimize collection costs, which are essentially
dependent on the distance traveled by the vehicles. Routes are con-
strained by vehicle capacity and work shift duration. Each con-
tainer should be visited as many times per week as its frequency
and the visiting days should be distributed as uniformly as possible
through the period.

4. A FRAMEWORK OF ALTERNATIVE
HIERARCHICAL FORMULATIONS

The problem described in section 3 can be formulated as a Periodic
Vehicle Routing Problem. An additional constraint is observed
though: routes must pass through a disposal facility to unload the
waste before returning to the depot.

The decomposition of highly complex optimization problems into
subproblems, hierarchically solved, is a well-known strategy in the
literature (e.g. [11, 14]). Not only the problem becomes more
efficiently solvable, but it is also taken into account that, in the
context of real-world applications, these complex problems arise
under broader decision making contexts, with decisions made by
different actors and with different time horizon scopes. Therefore,
it does make sense to break down the problem into subproblems,
not loosing sight from the hierarchical relationships among them.
On the other hand there is the well-known fact that solving until
optimality a sequence of subproblems does not guarantee optimal-
ity for the overall problem resolution. However, given the size of
real-world applications, the global optimum would be out of reach.
An additional advantage of hierarchical approaches is the possibil-
ity of considering different optimization criteria at each level [11].

Bearing this in mind, in figure 2 we propose a framework of de-
composition processes for the PVRP, based on different aggrega-
tions of the three decisions involved in the problem and identified
in section 2. In fact, the PVRP is too difficult to be solved directly
by exact methods when considering instances of realistic size. All
the subproblems identified are smaller and more amenable to rapid
solutions.

The approaches are:

1. Deciding at the same time which customers will be served
in each day of the week, by which vehicle, and in which
sequence (assign and route together);

2. Deciding first which customers will be served in each day
of the week, and afterwards by which vehicle and in which
sequence (assign days first - assign vehicles and route sec-
ond);

3. Deciding at the same time which customers will be served
in each day of the week and by which vehicle, and after-
wards in which sequence (assign first - route second);

4. Deciding first which customers will be served in each day
of the week, then by which vehicle, and finally in which
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Figure 1: Ponte de Lima Collection System: (i) Disposal Facilities, (ii) Depot, (iii) Collection frequency in each parish

sequence (assign days first - assign vehicles second - route
third).

Figure 2: Alternative Decomposition Approaches to the PVRP

The first levels correspond to assignment problems whereas the
last level of each approach corresponds to a routing problem. The
complexity of the routing problems decrease from the first to the
last approach but the number of times that a routing problem is
solved increases. For instance, to solve the problem of the case
study, in the approach 2 the VRP is solved 6 times, whereas in
approaches 3 and 4 the TSP is solved a maximum of 30 times.

Some authors proposed approaches complementary to cluster first
- route second, namely route first - cluster second. However, as
stated in [14], these approaches do not perform as well from a
computational perspective.

To build the framework, different formulations from the litera-
ture were put together, and divided by type of approach. All the
problems identified in the framework were formulated taking into
consideration the practical application features and the formula-
tions scattered before. As far as routing is concerned, the tradi-
tional two (TSP) and three (VRP) index formulations were consid-
ered because of their greater flexibility in incorporating additional
features [3]. To eliminate subtours, a transit load constraint was
used instead of the traditional Dantzig-Fulkerson-Johnson subtour
elimination constraint [2, 3, 19]. This constraint is a 4–index ver-
sion of the generalized Miller-Tucker-Zemlin subtour elimination
constraints. Concerning the assignment problems, our formula-
tions include some new developments to prevent infeasibility in the
downstream levels. An estimation of route duration is proposed in
order to prevent that the routes exceed maximum duration. To the
best of our knowledge, this is the first time that this constraint is
addressed in upper levels. In what concerns vehicle capacity, we
have introduced a slack parameter in the corresponding constraint

of the upper levels. Finally, the experience with the case study in-
stance allowed some adjustments in the parameters of the models.

5. COMPUTATIONAL RESULTS

The alternative approaches, and corresponding MIP formulations,
were evaluated with the case study instance, whose characteristics
were described in section 3. The results were compared in terms
of objective function value, total execution time and average gap
between the integer solution and the lower bound found by CPLEX
in each sub-problem (Gap). Additionally, the number of routes and
the duration of the longest route were recorded. The total number
of variables and constraints of the models generated to solve each
level were also analyzed.

All hierarchical approaches presented a reduction of more than
70% on both the number of variables and on the number of con-
straints, when compared with the monolithic model. It is important
to bear in mind that these numbers depend not only on the instance
but also on the running conditions because the number of variables
and constraints of the lower levels are influenced by the results
(concrete decision variable values) of upper levels’ problems.

When tested with the case study instance, the monolithic model
of approach 1 did not achieve any solution within the time limit.
This confirms, also for this case study, the difficulty of the prob-
lem which was precisely the reason that has led several authors to
consider the PVRP as a multilevel problem and the motivation for
this work.

The best results were obtained with approach 2 (assign days first
- assign vehicles and route second), not only concerning total dis-
tance but also the number of routes. Interestingly, this was the
approach with higher gaps in its two levels. In fact, the overall
solution quality is mostly influenced by routing decisions as these
decisions directly influence total distance and the duration of the
routes. By assigning vehicles together with the routing activity we
are giving the model freedom to explore a wider solution space
based on correct estimates of distances and times.

In spite of achieving optimal solutions on the routing problems and
having the lowest gap in the first level, approach 3 (assign days and
vehicles first - route second) had the worst global performance. In
fact, the problem of assigning days and vehicles still has a consid-
erable dimension, with three times more constraints than the other
two equivalent hierarchical approaches.

At last, approach 4 (assign days first - assign vehicles second -
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route third) performed in second. This is the only approach with
three levels and it was the one generating the smallest number of
variables and constraints, which suggests that its problems are sim-
pler and more efficiently solvable.

The fundamental reason for decomposing a problem is that the
overall problem is too difficult to be solved monolithically. Thus,
it is essential that individual problems are efficiently solvable. On
the other hand, when increasing the number of levels we are re-
stricting more and more the solution space. These facts, supported
by the results obtained, raise once more the question of the trade–
off between the number of decompositions and the difficulty of
the resulting problems. Also important is the ability to estimate
accurately the distance measure in the upper levels. In fact, this
measure evaluates the solutions and should remain as close as pos-
sible to the original objective function.

Improved route plans were obtained, not only concerning total
distance run by the vehicles but also the number of routes. Be-
sides the reduction in operational costs, an improved service level
is expected, since the frequency of collection is guaranteed and
the space between consecutive visits to each container is balanced.
Moreover, the work shift duration is not exceeded. These were
problems faced by the municipality with its current plans.

6. CONCLUSIONS

In this paper, motivated by a real case scenario of a waste col-
lection problem, we proposed a framework of MIP models with a
monolithic model and three hierarchical approaches to the Periodic
Vehicle Routing Problem. The hierarchical approaches were iden-
tified by the aggregation of the decision variables in each level:
(1) assign and route together; (2) assign days first - assign vehi-
cles and route second; (3) assign first - route second and (4) assign
days first - assign vehicles second - route third. Estimates of down-
stream constraints were also developed and added at the upper lev-
els in order to guarantee feasibility at the lower levels: maximum
duration of routes and maximum load capacity of vehicles.

The hierarchical approach (2), assign days first - assign vehicles
and route second, led to better results considering either the total
distance traveled or the total number of routes. The hierarchical
resolution raised two important points: the trade–off between the
number of decompositions and the difficulty of the resulting sub-
problem and the importance of an accurate estimation of the dis-
tance of the routes in the upper levels.

In what concerns our case study, our models were able to obtain
better results when compared to the current practice in the mu-
nicipality. An improved service level is also expected, since the
frequency of collection is guaranteed and the space between con-
secutive visits to each container is balanced, moreover, the work
shift duration is not exceeded. These were problems faced by the
municipality with its current plans.

As future work, the framework can be extended to take into ac-
count multiple depots (MDPVRP). For urban areas with minor
distances between collection points, the possibility of returning to
collection activity after disposal can also be incorporated (PVRP-
IF). Other MIP formulations might be developed for the subprob-
lems, with alternative distance estimates or considering different
approaches to the subproblems. Another area of future research is
the incorporation of other optimization criteria.
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ABSTRACT

In this paper, we consider the Time-Dependent Vehicle Routing
Problem with Time Windows (TDVRPTW). Travel times are time-
dependent (e.g. due to road congestion), meaning that depending
on the departure time from a customer a different travel time is
incurred. Because of time-dependency, vehicles’ dispatch times
from the depot are crucial as road congestion might be avoided.
Due to its complexity, all existing solutions to the TDVRPTW are
based on (meta-) heuristics and no exact methods are known for
this problem. In this paper, we propose the first exact method to
solve the TDVRPTW. The MIP formulation is decomposed into a
master problem that is solved by means of column generation, and
a pricing problem. To insure integrality, the resulting algorithm is
embedded in a Branch and Cut framework. We aim to determine
the set of routes with the least total travel time. Furthermore, for
each vehicle, the best dispatch time from the depot is calculated.

Keywords: Vehicle routing problem, Column generation, Time-
dependent travel times, Branch and cut

1. INTRODUCTION

The vehicle routing problem with time windows (VRPTW) con-
cerns the determination of a set of routes starting and ending at a
depot, in which the demand of a set of geographically scattered
customers is fulfilled. Each route is traversed by a vehicle with a
fixed and finite capacity, and each customer must be visited exactly
once. The total demand delivered in each route should not exceed
the vehicle’s capacity. At customers time windows are imposed,
meaning that service at a customer is only allowed to start within
its time window. The solution to the VRPTW consists of the set of
routes with the least traveled distance.

Due to its practical relevance, the VRPTW has been extensively
studied in the literature. Consequently, many (meta-) heuristics
and exact methods have been successfully developed to solve it.
However, most of the existing models are time-independent, mean-
ing that a vehicle is assumed to travel with constant speed through-
out its operating period. Because of road congestion, vehicles
hardly travel with constant speed. Obviously, solutions derived
from time-independent models to the VRPTW could be infeasible
when implemented in real-life. In fact, in real-life road congestion
results in tremendous delays. Consequently, it is unlikely that a
vehicle respects customers’ time windows. Therefore, it is highly
important to consider time-dependent travel times when dealing
with the VRPTW.

In this paper, we consider the time-dependent vehicle routing prob-

lem with time windows (TDVRPTW). We take road congestion
into account by assuming time-dependent travel times: depending
on the departure time at a customer a different travel time is in-
curred. We divide the planning horizon into time zones (e.g. morn-
ing, afternoon, etc.) where a different speed is associated with each
of these zones. The resulting stepwise speed function is translated
into travel time functions that satisfy the First-In First-Out (FIFO)
principle. Because of the time-dependency, the vehicles’ dispatch
times from the depot are crucial. In fact, a later dispatch time from
the depot might result in a reduced travel time as congestion might
be avoided. In this paper, we aim to determine the set of routes
with the least total travel time. Furthermore, for each vehicle, the
best dispatch time from the depot is calculated.

Despite numerous publications dealing with the vehicle routing
problem, very few addressed the inherent time-dependent nature
of this problem. Additionally, to our knowledge, all existing algo-
rithms are based on (meta-) heuristics, and no exact approach has
been provided for the TDVRPTW. In this paper, we solve the TD-
VRPTW exactly. We use the flow arc formulation of the VRPTW
which is decomposed into a master problem (set partitioning prob-
lem) and a pricing problem. While the master problem remains
unchanged, compared to that of the VRPTW (as time-dependency
is implicitly included in the set of feasible solutions) the pricing
problem is translated into a time-dependent elementary shortest
path problem with resource constraints (TDESPPRC), where time
windows and capacity are the constrained resources. The relax-
ation of the master problem is solved by means of column genera-
tion. To guarantee integrality, the resulting column generation al-
gorithm is embedded in a branch-and-bound framework. Further-
more, in each node, we use cutting planes in the pricing problem to
obtain better lower bounds and hence reduce the size of branching
trees. This results in a branch-and-cut-and-price (BCP) algorithm.
Time-dependency in travel times increases the complexity of the
pricing problem. In fact, the set of feasible solutions increases as
the cost of a generated column (i.e. route) does not depend only on
the visited customers, but also on the vehicles’ dispatch time from
the depot. The pricing problem in case of the VRPTW is usually
solved by means of a labeling algorithm. However, the labeling
algorithm designed for the VRPTW is incapable to deal with time-
dependency in travel times and needs to be adapted. In this paper,
we develop a time-dependent labeling (TDL) algorithm such that
in each label the arrival time function (i.e. function of the departure
time from the depot) of the corresponding partial path is stored. the
TDL generates columns that have negative reduced cost together
with their best dispatch time from the depot. To accelerate the BCP
algorithm, two heuristics based on the TDL algorithm are designed
to quickly find columns with negative reduced cost. Moreover,
new dominance criteria are introduced to discard labels that do not
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lead to routes in the final optimal solution. Furthermore, we relax
the pricing problem by allowing non-elementary paths. The re-
sulting pricing problem is a time-dependent shortest path problem
with resource constraints (TDSPPRC). Although the TDSPPRC
results in worse lower bounds, it is easier to solve and integral-
ity is still guaranteed by branch-and-bound. Moreover, TDSPPRC
should work well for instances with tight time windows. Over the
last decades, BCP proved to be the most successful exact method
for the VRPTW. Hence, our choice for a BCP framework to solve
the TDVRPTW is well motivated.

The main contributions of this paper are summarized as follows.
First, we present an exact method for the TDVRPTW. We propose
a branch-and-cut-and price algorithm to determine the set of routes
with the least total travel time. Contrary to the VRPTW, the pric-
ing problem is translated into a TDESPPRC and solved by a time-
dependent labeling algorithm. Second, we capture road congestion
by incorporating time-dependent travel times. Because of time de-
pendency, vehicles’ dispatch times from the depot are crucial. In
this paper, dispatch times from the depot are also optimized. In
the literature as well as in practice, dispatch time optimization is
approached as a post-processing step, i.e. given the routes, the op-
timal dispatch times are determined. In this paper, the scheduling
(dispatch time optimization) and routing are simultaneously per-
formed.

2. LITERATURE REVIEW

An abundant number of publications is devoted to the vehicle rout-
ing problem (see [1], [2], and [3] for good reviews). Specifically,
the VRPTW has been extensively studied. For good reviews on
the VRPTW, the reader is referred to [4], and [5]. The majority of
these publications assume a time-independent environment where
vehicles travel with a constant speed throughout their operating
period. Perceiving that vehicles operate in a stochastic and dy-
namic environment, more researchers moved their effort towards
the optimization of the time-dependent vehicle routing problems.
Nevertheless, literature on this subject remains scarce.

In the context of dynamic vehicle routing, we mention the work of
[6], [7] and [8] where a probabilistic analysis of the vehicle rout-
ing problem with stochastic demand and service time is provided.
[9], [10] and [11] tackle the vehicle routing problem where vehi-
cles’ travel time depends on the time of the day, and [12] consid-
ers a time-dependent traveling salesman problem. Time-dependent
travel times has been modeled by dividing the planning horizon
into a number of zones, where a different speed is associated with
each of these time zones (see [11] and [13]). In [14], traffic con-
gestion is captured using a queuing approach. [9] and [12] models
travel time using stepwise function, such that different time zones
are assigned different travel times. [15] emphasized that model-
ing travel times as such leads to the undesired effect of passing.
That is, a later start time might lead to an earlier arrival time. As
in [11], we consider travel time functions that adhere to the FIFO
principle. Such travel time functions does not allow passing.

While several successful (meta-) heuristics and exact algorithms
have been developed to solve the VRPTW, algorithms designed to
deal with the TDVRPTW are somewhat limited to (meta-) heuris-
tics. In fact, most of the existing algorithms are based on tabu
search ([11], [14], [13] and [16]). In [9] mixed integer linear
formulations the time-dependent vehicle routing problem are pre-
sented and several heuristics based on nearest neighbor and cutting
planes are provided. [17] proposes an algorithm based on a multi
ant colony system and [18] presents a genetic algorithm. In [19] a
local search algorithm for the TDVRPTW is developed and a dy-
namic programming is embedded in the local search to determine
the optimal starting for each route. [20] considers a multi-criteria
routing problem, they propose an approach based on the decompo-

sition of the problem into a sequence of elementary itinerary sub-
problems that are solved by means of dynamic programming. [12]
presents a restricted dynamic programming for the time-dependent
traveling salesman problem. In each iteration of the dynamic pro-
gramming, only a subset with a predefined size and consisting of
the best solutions is kept and used to compute solutions in the next
iteration. [21] emphasizes the difficulty of implementing route im-
provement procedures in case of time-dependent travel times and
proposes efficient ways to deal with that issue. In this paper, we
attempt to solve the TDVRPTW to optimality using column gen-
eration. To the best of our knowledge, this is the first time an exact
method for the TDVRPTW is presented.

Column generation has been successfully implemented for the
VRPTW. For an overview of column generation algorithms, the
reader is referred to [22]. in the context of the VRPTW, [23] de-
signed an efficient column generation algorithm where they ap-
plied subtour elimination constraints and 2-path cuts. This has
been improved by [24] by applying k-path cuts. [25] proposes a
column generation algorithm by applying subset-row inequalities
to the master problem (set partitioning). Although, adding subset-
row inequalities to the master problem increases the complexity of
the pricing problem, [25] shows that better lower bounds can be
obtained from the linear relaxation of the master problem. To ac-
celerate the pricing problem solution, [26] proposes a tabu search
heuristic for the ESPPRC. Furthermore, elmentarity is relaxed for
a subset of nodes and generalized k-inequalities are introduced.
Recently, [27] introduce a new route relaxation, called ng-route,
used to solve the pricing problem. Their framework proves to be
very effective in solving difficult instances of the VRPTW with
wide time windows. [15] argued that existing algorithms for the
VRPTW fail to solve the TDVRPTW. One major drawback of the
existing algorithms is the incapability to deal with the dynamic na-
ture of travel times. Therefore, existing algorithms for the VRPTW
can not be applied to the TDVRPTW without a radical modifica-
tion of their structure. In this paper, a branch-and-cut-and-price
framework is modified such that time-dependent travel times can
be incorporated.

3. PROBLEM DESCRIPTION

We consider a graph G(V,A) on which the problem is defined. V =
{0,1, ...,n,n+1} is the set of all nodes such that Vc =V/{0,n+1}
represents the set of customers that need to be served. Moreover,
0 is the start deport and n+ 1 is the end depot. A = {(i, j) : i 6=
j and i, j ∈ V} is the set of all arcs between the nodes. Let K
be the set of homogeneous vehicles such that each vehicle has a
finite capacity Q and qi demand of customer i ∈ Vc. We assume
q0 = qn+1 = 0 and |K| is unbounded. Let ai and bi be respectively
the opening and closing time of node’s i time window. At node i,
a service time si is needed. We denote ti departure time from node
i ∈ V and τi j(ti) travel time from node i to node j which depend
on the departure time at node i.

3.1. Travel Time and Arrival Time Functions

We divide the planning horizon into time zones where a differ-
ent speed is associated with each of these zones. The resulting
stepwise speed function is translated into travel time functions that
satisfy the First-In First-Out (FIFO) principle. Usually traffic net-
works have a morning and an afternoon congestion period. There-
fore, we consider speed profiles that have two periods with rela-
tively low speeds. In the rest of the planning horizon, speeds are
relatively high. This complies with data collected for a Belgian
highway ([28]). Given a partial path Pi starting at the depot 0 and
ending at some node i, the arrival time at i depends on the dispatch
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time t0 at the depot. Due to the FIFO property of the travel time
functions, a later dispatch at the depot will result in a later arrival
at node i. Therefore, if route Pi is unfeasible for some dispatch
time t0 at the depot (i.e. time windows are violated), Pi will be
unfeasible for any dispatch time at the depot that is later than t0.
Moreover, If we define δi(t0) as the arrival time function at node i
given a dispatch time t0 at the depot, δi(t0) will be non-decreasing
in t0. We call the parent node j of node i, the node that is visited
directly before node i on route Pi. δ j(t0) is the arrival time at j
given a dispatch time t0 at the depot, and τ ji(δ j(t0)) is the incurred
travel time from j to i. Consequently, for every i ∈ V , δi(t0) is
recursively calculated as follows:

δ0(t0) = t0 and δi(t0) = δ j(t0)+ τ ji(δ j(t0)) (1)

4. COLUMN GENERATION

To derive the set partitioning formulation for the TDVRPTW, we
define Ω as the set of feasible paths. A feasible path is defined by
the sequence of customers visited along it and the dispatch time at
the depot. To each path p ∈ Ω, we associate the cost cp which is
simply its duration. Hence:

cp = ep− sp (2)

Where ep and sp are respectively the end time and the start time of
path p. Furthermore, if yp is a binary variable that takes the value 1
if and only if the path p is included in the solution, the TDVRPTW
is formulated as the following set partitioning problem:

minzM = ∑
p∈Ω

cpyp (3)

subject to:

∑
p∈Ω

aipyp = 1 ∀i ∈V (4)

yp ∈ {0,1} ∀p ∈Ω.
(5)

The objective function (3) minimize the duration of the chosen
routes. Constraint (4) guarantees that each node is visited only
once. Solving the LP-relaxation, resulting from relaxing the inte-
grality constraints of the variables yp, of the master problem pro-
vides a lower bound on its optimal value. The set of feasible paths
Ω is usually very large making it hard to solve the LP-relaxation
of the master problem. Therefore, we use column generation. In
column generation, a restricted master problem is solved by con-
sidering only a subset Ω′ ⊆ Ω of feasible paths. Additional paths
with negative reduced cost are generated after solving a pricing
subproblem. The pricing problem for the TDVRPTW is (the index
k is dropped):

minzP = ∑
(i, j)∈A

τ i j(ωi)xi j (6)

Furthermore, τ i j(ωi) = τi j(ωi)−πi is the arc reduced cost, where
πi is the dual variable associated with servicing node i. In the
master problem, πi results from the constraint corresponding to
node i in the set of constraints (4). The objective function of the
pricing problem can be expressed as:

zP = ep− sp− ∑
i∈Vc

aipπi (7)

or in the variables xi j as:

zP = ep− sp− ∑
i∈Vc

(
πi ∑

j∈γ+(i)
xi j

)
(8)

4.1. The Pricing Problem

Solving the pricing problem involves finding columns (i.e. routes)
with negative reduced cost that improve the objective function of
master problem. In case of the TDVRPTW, this corresponds to
solving the TDESPPRC and finding paths with negative cost. The
TDESPPRC is a generalization of the ESPPRC in which costs are
time-dependent. In this paper, we solve the pricing problem by
means of a time-dependent labeling (TDL) algorithm which is a
modification of the labeling algorithm applied to the ESPPRC. To
speed up the TDL algorithm , a bi-directional search is performed
in which labels are extended both forward from the depot (i.e. node
0) to its successors, and backward from the depot (i.e. node n+1) to
its predecessors. While forward labels are extended to some fixed
time tm (e.g. the middle of the planning horizon) but not further,
backward labels are extended to tm but are allowed to cross tm. For-
ward and backward labels are finally merged to construct complete
tours. The running time of a labeling algorithm depends on the
length of partial paths associated with its labels. A bi-directional
search avoids generating long paths and therefore limits running
times.

5. COMPUTATIONAL RESULTS

The open source framework COIN is used to solve the linear pro-
gramming relaxation of the master problem. For our numerical
study, we use the well known Solomon’s data sets ([29]) that fol-
low a naming convention of DT m.n. D is the geographic distri-
bution of the customers which can be R (Random), C (Clustered)
or RC (Randomly Clustered). T is the instance type which can be
either 1 (instances with tight time windows) or 2 (instances with
wide time windows). m denotes the number of the instance and
n the number of customers that need to be served. Road conges-
tion is taken into account by assuming that vehicles travel through
the network using different speed profiles. We consider speed pro-
files with two congested periods. Speeds in the rest of the planning
horizon (i.e. the depot’s time window) are relatively high. We con-
sider speed profiles that comply with data from real life. Further-
more, we assume three types of links: fast, normal and slow. Slow
links might represent links within the city center, fast links might
represent highways and normal links might represent the transition
from highways to city centers. Moreover, without loss of general-
ity, we assume that breakpoints are the same for all speed profiles
as congestion tends to happen around the same time regardless of
the link’s type (e.g. rush hours).The choice for a link type is done
randomly and remains the same for all instances. Our BCP frame-
work is able to solve 75% of the instances with 25 customers, 50%
of the instances with 50 customers, and 20% of the instances with
100 customers.
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ABSTRACT

The Vehicle Routing Problem with Time Windows is a well known
optimization problem and it has received a lot of attention in oper-
ational research literature. This work proposes a hybrid algorithm
that combines the Iterated Local Search metaheuristic, the Vari-
able Neighborhood Descent method and an exact Set Partitioning
model for solving it. The computational results demonstrate that
the proposed hybrid approach is quite competitive, since out of
the 56 test problems considered, the algorithm improved the best
known solution in 12 cases and equaled the result of another 27.

Keywords: Vehicle Routing Problem with Time Windows, Hy-
brid Algorithm, Iterated Local Search, Set Partitioning

1. INTRODUCTION

The Vehicle Routing Problem with Time Windows (VRPTW) is a
well known optimization problem and it has received a lot of at-
tention in operational research literature. In this problem, a fleet of
vehicles must leave the depot, serve customer demands, and return
to the depot, at minimum cost, without violating the capacity of the
vehicles as well as the time window specified by each customer.

There are two main reasons (operational and theoretical) for in-
vesting in research to develop new algorithms for the efficient res-
olution of this problem. From the practical/operational point of
view, the costs related to transporting people or merchandise are
generally high, with a tendency to increase, motivated by the actual
expansion of commerce of all types [1]. Researchers calculate that
10% to 15% of the final cost of the merchandise commercialized
in the world is due to its transport [2]. From the theoretical aspect,
since the VRP and most of its variants, including the VRPTW, are
NP-hard problems [3], the efficient resolution of these problems
represents a challenge for researchers, who, in general, opt for
heuristic approaches. The size of this challenge is demonstrated
by the great number of articles dealing with this type of problem.

The VRPTW has been dealt with various objectives and, in the
present work, the aim is to minimize the total traveling distance
which is one of the most commonly found in literature.

Given the complexity of the problem, its resolution using pure
exact methods is often an extremely arduous task due the large
amount of computational time required. This fact has motivated
the development of new heuristic algorithms for solving VRPTW.
It is noteworthy to mention that such algorithms aims at finding
near-optimal solutions using less computational effort.

The algorithm proposed in this article for solving VRPTW com-

bines the concepts of Iterated Local Search metaheuristic, the Vari-
able Neighborhood Descent method and an exact Set Partition-
ing model, which periodically determines the best combination of
routes generated during the execution of the algorithm.

2. PROPOSED METHODOLOGY

This section explains the proposed hybrid algorithm. Section 2.1
presents the data structure used to represent a VRPTW solution,
while Section 2.2 describes the penalty-based function that eval-
uates a solution for the problem. Next, Section 2.3 demonstrates
the procedure used to construct the initial solution; and Section
2.4 describes the used neighborhood structures. Finally, Section
2.5 presents the proposed algorithm.

2.1. Solution representation

A route r is defined by a sequence of integer numbers that corre-
sponds to the identifiers of the customers in r. A solution s contains
a set of routes.

2.2. Evaluation function

A solution s is evaluated by the function f , given by the equation
(1), which must be minimized:

f (s) = ∑
r∈s

g(r) = ∑
r∈s

(c(r)+wl .l(r)+we.e(r)) (1)

where: g is a function that evaluates routes; c(r) is the cost of the
route r; l(r) corresponds to the lateness time for r; e(r) is the load
excess in the route r; wl and we are penalties per unit of delay and
excess load, respectively. They were empirically set in wl = 200
and we = 300.

Notice that when s is feasible, the value given by f will only corre-
spond to the travel cost, since in this case: l(r) = e(r) = 0, ∀r ∈ s.

2.3. Constructive procedure

To obtain an initial solution for the VRPTW, a cheapest insertion
method, called CI-POP(), that explores the Proximate Optimal-
ity Principle [4] was developed. According to this principle, in
an optimal sequence of choices, each sub-sequence should also be
optimal. It is worth mentioning that although this principle deals
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with optimal cases, in the developed algorithm there is no guaran-
tee that the optimal solution will be obtained, or even parts of the
optimal solution. Thus, this principle is only employed to generate
better initial solutions.

Let |K| be the maximum number of available vehicles. Initially,
the constructive algorithm creates |K| empty routes and a list of
candidates to be inserted in the set of routes. The idea of the pro-
cedure is to iteratively insert each candidate customer in the best
location. A local search is periodically performed in the partial
solution. More specifically, the parameters of the method were
calibrated in such a way that five local searches occur during the
construction; for example, if there is a total of 100 customers, the
local search is performed for every twenty customers added to the
partial solution. In this case, the local search is performed using
the RVND (see Section 2.5.2). The procedure terminates when all
customers have been added.

2.4. Neighborhood structures

In order to explore the solution space, 10 neighborhood structures
are used, where six of these modify two routes at each movement
performed (inter-route), while the other four modify only a sin-
gle route (intra-route). The inter-route neighborhood structures
are generated by the following movements: Shift(1,0), Shift(2,0),
Shift(3,0), Swap(1,1), Swap(2,1) and Swap(2,2). A movement of
the neighborhood structure Shift(k,0) involves transferring k adja-
cent customers from route r1 to another route r2; and a movement
of the type, Swap(k, l), interchanges k adjacent customers from
route r1 to l other adjacent customers from another route r2.

As for those neighborhood structures that only modify one route
at a time, the following movements are used: Exchange, Shift’(1),
Shift’(2) and Shift’(3). The Exchange neighborhood involves the
permutation between two customers of the same route and it can
be seen as an intra-route version of the Swap(1,1) neighborhood.
The other three neighborhoods can be considered as intra-route
versions of the Shift(1,0), Shift(2,0) e Shift(3,0) neighborhoods,
respectively.

2.5. Proposed algorithm

The proposed algorithm, called Intensified Iterated Local Search
(IILS-SP), involves the construction of an initial solution accord-
ing to the procedure presented in Section 2.3, followed by a local
search that combines adapted versions of the Iterated Local Search
(ILS) and Variable Neighborhood Descent (VND) methods with
an exact approach based on the mathematical formulation of the
Set Partitioning (SP). The pseudo-code of IILS-SP is presented in
Algorithm 1. Let s0 be an initial solution; s∗ the best solution
obtained during the procedure execution; s′ a perturbed solution;
and, s′′ a local optimal solution obtained by the application of the
RVND to the perturbed solution.

The following sections detail each part of this algorithm.

2.5.1. Intensified Iterated Local Search

Intensified Iterated Local Search is an extension of the Iterated
Local Search – ILS [5] metaheuristic. ILS explores the solution
space by applying perturbations to the current local optimal solu-
tion. This metaheuristic starts with the initial solution s0 and ap-
plies a local search to it, obtaining s∗. Next, the method iteratively
performs the following steps: (i) perturbs the current best solution
s∗; (ii) obtains a solution s′; and (iii) performs a local search in s′,
obtaining a local optimal s′′. If s′′ is better than the current best
solution s∗, then the method transforms s′′ into the new current

Algorithm 1: IILS-SP()

1 s0← CI-POP()
2 s∗← RVND(s0)
3 repeat
4 s′← Perturbation(s∗, history)
5 s′′← RVND(s′)
6 if AppropriatedMoment(history) then
7 s′′← Intensification (s′′)
8 end
9

10 s∗← AcceptanceCriterion(s′′, s∗, history)
11 until stopping criterion not met
12 return s∗

solution. Otherwise, the method performs another iteration. This
procedure is repeated until the stopping criterion is met.

It is important to emphasize that ILS’s success strongly depends
on the perturbations performed. This way, the perturbation ap-
plied to a given solution should be proportioned in such a way that
the resulting modification is sufficient to escape from local optima
and to explore different regions of the search space, but keeping
some characteristics of the current best solution, in order to avoid
a complete random restart in next iterations.

In this work, a perturbation (line 4 of Algorithm 1) consists of
applying p+ 2 movements randomly chosen in the neighborhood
Shift, presented in Section 2.4, where p ∈ {0,1,2, . . .} represents
the perturbation level. This way, the greater this value, the greater
the number of modifications performed in the solution. Herein,
ILSmax iterations without improvement are applied in the same
perturbation level. When this value is achieved, the perturbation
level is increased.

In this case, the local search of the IILS (lines 2 and 5 of Algo-
rithm 1) is performed using the Variable Neighborhood Descent
with random neighborhood ordering, denoted by RVND and de-
scribed in Section 2.5.2.

Finally, the proposed algorithm contains an intensification mod-
ule (line 7 of Algorithm 1). This module is activated at appropri-
ate moments of the search and invokes a mathematical program-
ming procedure, based on Set Partitioning, to find the optimal set
of routes among those generated during the search. More specifi-
cally, the partitioning model is applied to the set formed by all the
routes belonging to the solutions generated after the local search
phase of the IILS algorithm. That is, for each IILS iteration, the
routes of the solution s′′ (line 5 of Algorithm 1) are added to the
set to be partitioned. This is done in such a way that there are no
repeated routes in the set, which has an unlimited size.

A description of this module is given in Section 2.5.3.

2.5.2. Variable Neighborhood Descent with random neighborhood
ordering

The procedure Variable Neighborhood Descent (VND) [6] involves
an exhaustive exploration of the solution space by means of sys-
tematic exchanges of the neighborhood structures. During the lo-
cal search, only the solution that is better than the current best
solution is accepted. When a better solution is found, the method
restarts the search, beginning with the first neighborhood structure.

The method VND is based on three principles: (i) a local opti-
mum for a given neighborhood structure does not necessarily cor-
respond to a local optimum of another neighborhood structure; (ii)
a global optimum corresponds to a local optimum for all neighbor-
hood structures; and (iii) for many problems, the local optimum of
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a given neighborhood structure is close to the local optima of other
neighborhood structures.

The latter principle, of empirical nature, indicates that a local op-
timum frequently gives some type of information about the global
optimal. This is the case in which local and global optimum share
a lot of variables with the same value.

The classical version of VND searches local optimal solutions fol-
lowing a fixed order of neighborhood structures. This strategy is
widely applied and the results in literature confirm its efficiency.
However, for the results presented in this work, a random order
was used to explore the neighborhoods. This strategy is adopted
with success in [7]. Here, this strategy is so-called RVND.

2.5.3. Set partitioning model

The intensification phase of the proposed algorithm involves the
exact resolution of a Set Partitioning Problem (SPP). Let R be
the subset of routes generated by the IILS-algorithm and let y j ,
∀ j ∈R, be the binary variables that indicate if the route j ∈R is
part of the solution (y j = 1); or not (y j = 0). Each route j ∈ R
has an associated cost g j. The parameter mi j is equal to 1 if the
customer i ∈ N is attended by the route j ∈R; and 0, otherwise.
The mathametical formulation is as follows.

Minimize ∑
j∈R

g jy j (2)

∑
j∈R

mi jy j = 1,∀i ∈ N (3)

∑
j∈R

y j ≤ |K| (4)

y j ∈ {0,1},∀ j ∈R (5)

The objective of this formulation is to find a set of routes that at-
tend the constraints of the problem with a minimum cost (2). Con-
straints (3) guarantee that each customer is visited by exactly one
route. Constraints (4) ensure that a solution contains up to |K|
routes. Constraints (5) define the domain of the variables.

In this work, the SPP model was implemented using ILOG API
Concert for C++ and solved by the CPLEX optimizer, version 12.

3. COMPUTATIONAL RESULTS

The proposed algorithm (IILS-SP) was developed in C++ pro-
gramming language and tested in a computer with an Intel Quad
Core 2.4 GHz microprocessor with 8 GB RAM and operational
system Ubuntu Linux 9.10 Kernel 2.6.31.

IILS-SP was applied to solve the set of instances proposed by
Solomon [8], which is well known in the literature.

For each of the 56 instances, five runs were performed using a 10-
minute processing time limit for each run as stopping criterion1.
The algorithm was empirically calibrated and the parameters were
fixed as follows: (i) in the construction of an initial solution, as
customers are being inserted, five local searches were performed
as described in Section 2.3; (ii) the number of no-improvement it-
erations at a given level of perturbation of IILS was fixed as 20;
(iii) the procedure is iteratively performed according to the Multi-
Start [9] method, where at each iteration, an initial solution is
constructed by a non-deterministic method described in the Sec-
tion 2.3 and a local search is performed by IILS-SP; and (iv) the

1The computational results of this research are avail-
able at http://www.decom.ufop.br/sabir/shared/
2011alio-vrptw-results.zip

Table 1: Comparisons between different works that optimize the
total distance traveled
Class Work∗ This work

RT95 CA99 SC00 AL07 OV08
C1 NV 10.00 10.00 10.00 10.00 10.00 10.00

TD 828.38 828.38 828.38 828.38 828.38 828.38
C2 NV 3.00 3.00 3.00 3.00 3.00 3.00

TD 589.86 596.63 589.86 589.86 589.86 589.86
R1 NV 12.16 12.42 12.08 13.25 13.33 13.17

TD 1208.50 1233.34 1211.53 1183.38 1186.94 1181.03
R2 NV 2.91 3.09 2.82 5.55 5.36 5.36

TD 961.71 990.99 949.27 899.90 878.79 883.10
RC1 NV 11.87 12.00 11.88 12.88 13.25 12.75

TD 1377.39 1403.74 1361.76 1341.67 1362.44 1338.54
RC2 NV 3.37 3.38 3.38 6.50 6.13 6.13

TD 1119.59 1220.99 1097.63 1015.90 1004.59 1009.17

All CNV 414 420 412 489 488 482
CTD 57231 58927 56830 55134 55021 54842
∗ RT95 [10], CA99 [11], SC00 [12], AL07 [1] and OV08 [13]

maximum processing time for each execution of the mathematical
solver in the intensification phase was limited to 5 seconds.

In summary, the best solutions found during the executions by the
IILS-SP were: 100% (9/9) tied values for C1; 100% (8/8) tied
values for C2; 33.3% (4/12) improved and 41.6% (5/12) tied values
for R1; 27.3% (3/11) improved and 9.1% (1/11) tied values for R2;
37.5% (3/8) improved and 37.5% (3/8) tied values RC1; and 25%
(2/8) improved and 12.5% (1/8) tied values for RC2. Overall, the
values improved in 21.4% (12/56) of the cases, the values tied in
48.2% (27/56) and the values decreased in 30.4% (17/56).

The algorithm proved to be robust, since it presented relatively
small gaps. In 80.4% (45/56) of the analyzed instances, gap was
less that 1.0%. When this value was improved, the gap was always
smaller than 4.16% (as in the R208). These results show that the
algorithm produces final solutions with quite little variability in
terms of solution quality. In addition, in some cases (R110, R202 e
RC105) the proposed algorithm produced better results in average
than those found in literature.

Table 1 presents the results of different researches that had as a pri-
mary objective the minimization of the total distance traveled. The
columns represent the algorithm whereas the lines show the aver-
age number of vehicles and the total distance traveled of the best
solutions obtained for each class. For each algorithm, the average
results with respect to Solomon’s benchmarks are reported with
respect to number of vehicles (“NV”) and total distance (“TD”).
CNV and CTD indicate, respectively, the cumulative number of
vehicles and cumulative total distance over all the 56 instances.
When observing the results of each group separately, the conclu-
sion is that the algorithm values tied with those of the best results
found in literature in the cluster groups of C1 and C2, and out-
performed them in the groups of R1 and RC1. In the R2 and
RC2 groups, although the results were close, they were not able
to improve the values of the other groups. Therefore, when con-
sidering the overall scenario, IILS-SP outperformed all the others
algorithms in terms of solution quality.

To verify the influence of the intensification phase of IILS-SP over
its version without this strategy, named ILS, computational exper-
iments were carried out according to Aiex et al. [14]. In each
experiment, we measure the CPU time to find or improve the tar-
get value. For each instance/target pair, the n running times are
sorted in increasing order. We associate with the i-th sorted run-
ning time t(i) a probability p(i) = (i−1/2)/n, and plot the points
z(i) = [t(i), p(i)], for i = 1, ...,n. Figure 1 illustrates this cumula-
tive probability distribution plot for IILS-SP and ILS algorithms,
using the R208 instance and having as target a value 5% far from
the best known value.
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Figure 1: Cumulative probability distribution

This Figure clearly shows that IILS-SP is able to find a cost func-
tion value at least as good as the given target value faster than the
ILS algorithm.

4. CONCLUSIONS

This paper presents a hybrid algorithm for the Vehicle Routing
Problem with Time Windows. The proposed algorithm, so-called
IILS-SP, combines the Iterated Local Search metaheuristic, the
Variable Neighborhood Descent method and an exact Set Parti-
tioning model that, periodically, performs the best combination of
the routes generated along the algorithm. Hence, the IILS-SP com-
bines the flexibility of heuristic methods and the power of mathe-
matical programming.

The IILS-SP was tested in 56 well-known VRPTW instances and
the results were compared with the best solutions found in liter-
ature. The computational results show that the proposed hybrid
approach is quite competitive, since out of the 56 test problems
considered, the algorithm improved the best known solution in 12
cases and equaled the result of another 27.
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ABSTRACT

We consider a real inventory routing problem occurring in the
archipelago of Cape Verde, where an oil company is responsible
for the inventory management of multiple fuel oil products and for
the routing of ships between the islands. Inventory management
considerations are taken into account at the demand side, but not
at the supply side. Demands are assumed to be constant over the
time horizon of several months. The objective of the company is to
establish a medium term plan that satisfies demand requirements
and minimizes the transportation costs. We present a formulation
for the problem based on the one given by Christiansen (1999).
Since this formulation provides large integrality gaps we discuss
different extended formulations and compare them for a time hori-
zon of fifteen days. In order to obtain feasible solutions for time
horizons of several months, we construct a rolling horizon heuris-
tic that uses the extended formulation that provided best computa-
tional results.

Keywords: Maritime transportation, Inventory, Routing, Extended
Formulations

1. INTRODUCTION

We present a real maritime inventory routing problem occurring in
the archipelago of Cape Verde. An oil company is responsible for
the inventory management of different oil products in several tanks
located in the main islands. The inventory management must be
coordinated with the routing of ships between the islands in order
to prevent shortfalls. We consider a time horizon of six months.
This problem can be classified within maritime transportation as a
short-sea medium-term inventory-routing problem.

Maritime transportation has received a clear increased interest in
the last decade. Christiansen et al. [1] present a review on mar-
itime transportation, and Christiansen and Fagerholt [2] is devoted
to maritime inventory routing problems. Combined routing and
inventory management within maritime transportation have been
present in the literature the last decade only. See [3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16]. Most of these maritime inventory
routing articles are based on real problems.

In Cape Verde, fuel oil products are imported and delivered to spe-
cific islands and stored in large supply storage tanks. From these
islands, fuel oil products are distributed among all the inhabited
islands using a small heterogeneous fleet of ships. These products

are stored in consumption storage tanks. Some ports have both
supply tanks for some products and consumption tanks of other
products. Not all the islands consume all the products. In the
medium term planning considered here capacities in supply tanks
are ignored. However, for the consumption ports the capacity of
the tanks for a particular product is usually less than the total de-
mand over the planning horizon for that product making the inven-
tory management an important issue.

Unlike the short term planning case, in the medium term plan-
ning the data is typically forecasted. Hence, safety stocks must be
considered. We assume the demands are constant over the time
horizon. Several important issues taken into account in a short
term plan are relaxed or incorporated indirectly in the data. For in-
stance, berth capacities and operating time windows at ports, that
are essential in the short term plan, are ignored here. To transport
the fuel oil products between the islands, the planners control a
small, heterogeneous fleet consisting of two ships. Each ship has a
specified load capacity, fixed speed and cost structure. The travel-
ing times are an estimation based on the practical experience and
include the travel time, set up times for the coupling and decou-
pling of pipes, operation times and an additional time to account
for delays and waiting times.

The cargo hold of each ship is separated into several cargo tanks.
The products cannot be mixed and cleaning operations are required
when changing from dirty oil product to clean oil products. Again
this issue is more relevant on a short term plan then in a medium
term where the quantities transported and the traveling times are
estimations. Hence we ignore this issue.

Given the initial stock levels at the demand tanks, the initial po-
sition (which can be a point at sea) and the quantities onboard
each ship, the inter island distribution plan consists of designing
routes and schedules for the fleet of ships including determining
the (un)loading quantity of each product at each port. This plan
must satisfy the safety stocks of each product at each island, the
capacities of the ships and tanks. The transportation cost of the
distribution plan is to be minimized.

Following Christiansen [4], we present an initial arc-load flow for-
mulation for the problem. Since this formulation leads to large
integrality gaps we discuss how to obtain tighter formulations. Us-
ing the (extended) formulation that provided better computational
results to solve to optimality instances up to fifteen days we con-
struct a rolling horizon heuristic that allows us to obtain feasible
plans for horizons of several months.
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2. FORMULATION

Following [4] we present an Arc-Load Flow (ALF) formulation.
We divide the formulations in the following parts: routing con-
straints, loading and discharging constraints, time constraints and
inventory constraints. Finally the objective function is presented.

Routing constraints:

Let V denote the set of ships. Each ship v ∈V must depart from its
initial port position, that can be a point at sea, in the beginning of
the planning horizon. The set of ports is denoted by N. Each pos-
sible port arrival is denoted by the pair (i,m) representing the mth

visit to port i. Direct ship movements (arcs) from port arrival (i,m)
to port arrival ( j,n) are represented by (i,m, j,n). We define SA as
the set of possible port arrivals (i,m), SAv as the set of possible port
arrivals made by ship v, and set SXv as the set of all possible move-
ments (i,m, j,n) of ship v. We denote by µ

i
the minimum number

of visits to port i.

For the routing we define the following binary variables: arc flow
variables xim jnv that are equal to 1 if ship v sails from port arrival
(i,m) directly to port arrival ( j,n), and 0 otherwise; variables xoimv
that indicate whether ship v sails directly from its initial position
to port arrival (i,m) or not; wimv is 1 if ship v visits port i at arrival
number (i,m) and 0 otherwise; zimv is equal to 1 if ship v ends
its route at port arrival (i,m) and 0 otherwise, and yim indicates
whether a ship is visiting port arrival (i,m) or not.

The routing constraints are as follows:

∑
( j,n)∈SAv

xo jnv = 1, v ∈V, (1)

wimv− ∑
( j,n)∈SAv

x jnimv− xoimv = 0,v ∈V,(i,m) ∈ SAv, (2)

wimv− ∑
( j,n)∈SAv

xim jnv− zimv = 0, v ∈V,(i,m) ∈ SAv, (3)

∑
v∈V

wimv = yim, (i,m) ∈ SA, (4)

yi(m−1)− yim ≥ 0, (i,m) ∈ SA : m > 1, (5)

yiµ
i
= 1, i ∈ N. (6)

Equations (1) ensure that each ship departs from its initial port po-
sition to some port arrival. Equations (2) and (3) are the flow con-
servation constraints, ensuring that a ship arriving at a port also
leaves that port by either visiting another port or ending its route.
Constraints (4) ensure that each port arrival (i,m) is visited at most
once. Constraints (5) state that if port i receives the mth visit, then
it also must receive the m− 1th visit. I Equations (6) guarantee
the minimum number of visits at each port. These constraints are
not necessary but computational experience showed that these con-
straints can be very important when good bounds are given for the
minimum number of visits to each port.

Loading and discharging:

Let K represent the set of all products. Not all ports consume all
products. Parameters Jk

i assume value 1 if port i is a supplier of
product k;-1 if port i is a consumer of product k, and 0 if i is neither
a consumer nor a supplier of product k. The quantity of product k
on board ship v at the beginning of the planning horizon is given
by Qk

v.Cv is the total storage capacity of ship v. The minimum and
the maximum discharge quantity of product k are given by Qk

im and

Qk
im respectively.

In order to model the loading and unloading constraints we de-
fine the following binary variables: ok

imv is equal to 1 if product k
is loaded onto or unloaded from ship v at port arrival (i,m), and
0 otherwise; and the following continuous variables: qk

imv is the
amount of product k (un)loaded at port arrival (i,m), lk

imv is the
amount of product k onboard ship v when leaving from port arrival
(i,m).

The loading and unloading constraints are given by:

xim jnv[lk
imv + Jk

j qk
jnv− lk

jnv] = 0,v ∈V,(i,m, j,n) ∈ SXv,k ∈ K,

(7)

xoi1v[Qk
v + Jk

i qk
i1v− lk

i1v] = 0, v ∈V,(i,1) ∈ SAv,k ∈ K, (8)

∑
k

lk
imv ≤Cvwimv, v ∈V,(i,m) ∈ SAv, (9)

Qk
imok

imv ≤ qk
imv ≤ Qk

imok
imv, v ∈V,(i,m) ∈ SAv,∀k ∈ K : Jk

i =−1,
(10)

∑
k

ok
imv ≥ wimv, v ∈V,(i,m) ∈ SAv, (11)

ok
imv ≤ wimv, v ∈V,(i,m) ∈ SAv,k ∈ K, (12)

ok
imv ≤ ∑

( j,n)∈SWv

x jnimv, v ∈V,(i,m) ∈ SAv,k ∈ K : Jk
i =−1,

(13)

Equations (7) ensure that if ship v sails from port arrival (i,m) to
port arrival ( j,n), then there must be satisfied the equilibrium of
the quantity of product k on board each ship. These constraints can
be linearized as follows:

lk
imv + Jk

j qk
jnv− lk

jnv +Cvxim jnv ≤Cv, v ∈V,(i,m, j,n) ∈ SXv,k ∈ K,

(14)

lk
imv + Jk

j qk
jnv− lk

jnv−Cvxim jnv ≥−Cv,v ∈V,(i,m, j,n) ∈ SXv,k ∈ K.

(15)

Constraints (8) are similar to (7), and ensure the equilibrium of the
load on board the ship for the first visit. These constraints can be
replaced by the following linear constraints:

Qk
v + Jk

i qk
i1v− lk

i1v +Cvxoi1v ≤Cv, v ∈V,(i,1) ∈ SAv,k ∈ K,
(16)

Qk
v + Jk

i qk
i1v− lk

i1v−Cvxoi1v ≥−Cv,v ∈V,(i,1) ∈ SAv,k ∈ K.
(17)

The ship capacity constraints are given by (9). To prevent unde-
sirable situations such as a ship visiting a port to discharge a very
small quantity, constraints (10) impose a lower and upper limits on
the unload quantities. Constraints (11) ensure that if ship v visits
port arrival (i,m), then at least one product must be (un)loaded.
Constraints (12) ensure that if ship v (un)loads one product at visit
(i,m), then wimv must be one. Constraints (13) relate the variables
ok

imv to x jnimv.

Time constraints:

Since the demand is assumed to be constant during the planning
horizon we consider a continuous time model. In order to keep
track of the inventory level it is necessary to determine the start
and the end times at each port arrival. We define the following
parameters: T Q

ik is the time required to load/unload one unit of
product k at port i; Ti jv is the traveling time between port i and j
by ship v; T O

iv indicates the traveling time required by ship v to sail
from its initial port position to port i; T B

i is the minimum interval
between the departure of one ship and the next arrival at port i. T
is a large constant.
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Given the start and end time variables, tim and tEim at port arrival
(i,m), the time constraints can be written as:

tEim = tim +∑
v

T Q
ik qk

imv, (i,m) ∈ SA, (18)

tim− tEi(m−1)+T B
i yi(m+1) ≥ T B

i ,(i,m) ∈ SA : m > 1, (19)

tEim +Ti jv− t jn ≤ T (1− xim jnv), v ∈V,(i,m, j,n) ∈ SXv, (20)

∑
v∈V

T O
iv xoi1v ≤ ti1, i ∈ N. (21)

Constraints (18) define the end time of service of arrival (i,m).
Constraints (19) impose a minimum interval between two consec-
utive visits at port i. Constraints (20) relate the end time of port
visit (i,m) to the start time of port visit ( j,n) when ship sails di-
rectly from port (i,m) to ( j,n). Constraints (21) ensure that start
time at port arrival (i,1) occurs after a ship sails from its initial
port position to port arrival (i,1).

Inventory constraints:

Inventory constraints are considered for each unloading port i (Jk
i =

−1). The demand rate Rk
i of product k at port i, as well as the min-

imum Sk
i and maximum Sk

i stock levels of each products k at the
consumption ports are given. The parameter µ i denotes the maxi-
mum number of visits at port i.

We define the continuous variables sk
im and sk

Eim indicating the
stock level at the start and end of port visit (i,m), respectively.
The inventory constraints are as follow:

sk
im +∑

v
qk

imv +Rk
i tEim−Rk

i tim− sk
Eim = 0,(i,m) ∈ SA,k ∈ K,

(22)

sk
Eim +Rk

i ti(m+1)−Rk
i tEim− sk

i(m+1) = 0, (i,m) ∈ SA,k ∈ K
(23)

Sk
i ≤ sk

im,s
k
Eim ≤ Sk

i , ∀(i,m) ∈ SA,k ∈ K
(24)

Sk
i ≤ sk

Eiµ i
+Rk

i (T − tEiµ i
)≤ Sk

i , ∀i ∈ N,k ∈ K, (25)

Equations (22) calculate the stock level of each product when the
service ends at port arrival (i,m). Similarly, equations (23) relate
the stock level at the start of port arrival (i,m+ 1) to the stock
level at the end of port visit (i,m). The upper and lower bound on
the stock levels are ensured by constraints (24). Constraints (25)
ensure that the stock level at the end of the planning horizon is
within the stock limits.

Objective function:

The objective is to minimize the total routing cost:

∑
v∈V

∑
(i,m, j,n)∈SXv

Ci jvxim jnv (26)

3. EXTENDED FORMULATION

The arc-load flow model provides, in general, large integrality
gaps. In order to improve the original formulation, we propose
and test, for periods up to 15 days, different reformulations. Next
we introduce the formulation that provided best computational re-
sults.

Define f k
im jnv as the amount of product k that ship v transports from

port arrival (i,m) to port arrival ( j,n), and f ok
i1v as the amount of

product k that ship v transports from its initial port position to port
arrival (i,1).

Using these additional variables we can provide the following Arc
Flow (AF) formulation:
min (26) subject to (1)-(6), (10)-(25), and

f ok
j1v + ∑

(i,m)∈SAv

f k
im jnv + Jk

j qk
jnv = ∑

(i,m)∈SAv

f k
jnimv,

v ∈V,( j,n) ∈ SAv,∀k ∈ K (27)

∑
k∈K

f k
im jnv ≤Cvxim jnv, v ∈V,(i,m, j,n) ∈ SXv (28)

Constraints (27) ensure the equilibrium on the quantity on board
the ship, and constraints (28) impose un upper bound of the capac-
ity of ship v.

It can be shown that the AF formulation is stronger than the ALF
formulation. For the computational experiments we considered 11
instances based on real data and used a computer with processor
Intel Core 2 Duo, CPU 2.2GHz, with 4GB of RAM using the opti-
mization software Xpress Optimizer Version 21.01.00 with Xpress
Mosel Version 3.2.0. For a short time horizon of 15 days, the
running times were, in average, lower when the ALF formulation
was used. Of course, other extended formulations, as multicom-
modity type formulations that are not presented here, provide best
lower bounds but higher average running times. The following
table compares the average integrality gaps and average running
time obtained with each formulation. Both formulations have been
tightened with valid inequalities imposing a minimum number of
operations to each port.

Formulation Gap(%) Time (seconds)
ALF 31.8 162
AF 28 129

4. ROLLING HORIZON HEURISTIC

Considering a planning horizon of several months, the tested in-
stances become too large to be solved to optimality by a commer-
cial software. To provide feasible solutions we develop a rolling
horizon heuristic. The main idea of the rolling horizon heuristics
is to split the planning horizon into smaller sub-horizons, and then
repeatedly solve limited and tractable mixed integer problem for
the shorter sub-horizons.

Rolling horizon heuristics have been used intensively in the past,
see for instance the related works [17, 18, 19, 20].

In each iteration k (excepted the first one), the sub-horizon con-
sidered is divided into three parts: (i) a frozen part where binary
variables are fixed; (ii) a central part (CPk) where the nature of the
variables is kept, and (iii) a forecasting period (FPk) where binary
variables are relaxed. We assume that the central and forecasting
periods have equal length. The central period in iteration k be-
comes the frozen period in iteration k+1, and the forecasting pe-
riod from iteration k becomes part of the central period in iteration
k+ 1, see Figure 1. The process is repeated until the whole plan-
ning horizon in covered. In each iteration the limited mixed integer
problem is solved using the AF formulation. When moving from
iteration k to iteration k+1 we (a) fix the value of the binary vari-
ables, (b) update the initial stock level of each product at each port,
(c) calculate the quantity of each product onboard each ship, and
(d) update, for each ship, the initial position and the travel time
and cost from that position to every port. Computational results
are reported.
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ABSTRACT

Nash equilibria are solutions for many problems arising in Eco-
nomics. In a restructured electricity sector, the pool market can be
seen as a game where some players, the producers, submit their
proposals. The profits of each producer depend on the proposals
of the others. So, in this context, the strategies reached by the pro-
ducers in a Nash equilibria are the best solutions for them. Here,
we present our work in the development of techniques that can be
used for determining Nash equilibria for this game.

Keywords: Nash Equilibria, Energy Sector, Adjustmet Process,
Electricity Markets

1. INTRODUCTION

At the end of the 19th century, electricity started to be generated,
transported and distributed through low power networks with small
geographic size. The companies were vertically integrated and
there was not any competition in this sector. This kind of organi-
zation in the electricity market implies that: the consumers could
not choose an electricity company to be supplied, the prices were
defined in an administrative and sometimes unclear way, planning
activities were made with less complexity than today (also because
the economic environment was less volatile). Therefore, before the
oil crises (1973), the electricity companies easily made forecasts,
because the risk or uncertainty were not prior concerns. This situa-
tion changed in the beginning of the 70’s: high inflation and inter-
est rates made the economic environment more volatile. Adding
to this fact, the evolution of technology forced the deregulation of
the electric sector and its vertical unbundling. Thus, new compa-
nies were established and market mechanisms were implemented
in order to generate competition conditions (see [1]).

Nowadays, in this restructured sector, many electricity markets are
based on a pool-based auction for the purchase and sale of power.
In this work, we apply game theory to this problem, in particular
the notion of Nash equilibria. We look at this pool-based auction
as a game, in which producers are the players that have to choose
a strategy (or proposal) to submit. Here, their goal is to submit one
that maximizes the profit. A Nash equilibrium is a set of strate-
gies for each player, where nobody wants to change unilaterally
his behaviour(see [2]). So, in the electricity pool market, we are
interested in finding such equilibrium strategies for the producers,
since it is the best answer that we can give to this non-cooperative
game.

There is some literature related to this subject. For example, [3]
and [4] study strategic bidding in electricity pool markets, with
elastic and inelastic demand, respectively. We assumed almost
inelastic demand because in the current markets this is the most

realistic assumption: the consumers will pay (almost) anything to
meet the demand.

The authors of [5] considered the case of constant, stochastic de-
mand. They used the methodology of [4] to eliminate the bilinear
terms of the generation companies’ profit maximization problem,
using a piecewise linear function and binary variables. They also
contributed with a procedure that has the aim of finding all Nash
equilibria in pure strategies. There, the proposals’ prices and quan-
tities take discrete values, unlike in our work, which focuses on
the use of methods to compute Nash equilibria in games with fi-
nite strategies. However, as reported by the authors of [6], the
discretization of the space of strategies can artificially eliminate
some true Nash equilibria and add some equilibria that do not ex-
ist in the original game. In [7] it is proposed a fast computation of
Nash equilibria in pure strategies by observing their properties; in
that work, discretization is not required.

To approach this problem, we present an adjustment process that
could be seen as a learning process by companies generating elec-
tricity. When this process converges we find a Nash equilibrium in
pure strategies.

This extended abstract is organized as follows: Section 2 presents
the electricity market model, Section 3 clarifies the concept of
Nash equilibrium, explains the developed approach to achieve them
and presents an example, Section 4 presents our future work in this
problem.

2. ELECTRICITY MARKET MODEL

In the pool market, consumers and producers submit their propos-
als to buy and sell electricity. Here we assume very inelastic de-
mand, that is characterized by the real constants m < 0 and b, in
such a way that the demand is represented by almost a vertical seg-
ment y = mx+ b. The generation companies simultaneously sub-
mit their proposals, that corresponds to pairs of quantity (MWh)
and price ($/MWh). Let n be the number of the selling propos-
als. For each hour of the day we have a matrix M that contains
all the information about the proposals of the producers and the
generation costs. This matrix has the following form, for each row
j ∈ {1,2, . . . ,n}:

M j =
[

j s j E j λ j c j
]

where the proposals are indexed by j = 1,2, . . . ,n, s j is the pro-
ducer of proposal j, E j is the proposal quantity in MWh, λ j is the
price in $/MWh and c j is the associated marginal cost.

Then the market operator, an independent agent, carries out an eco-
nomic dispatch, ED, once the price and quantity bids of the pro-
ducers were submitted. He wants to find which proposals should
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be dispatched so that the demand is satisfied and the market clear-
ing price Pd is minimized. The market operator organizes the pro-
posals by ascending order of the prices λ j and aggregates them,
forming the supply curve. Thus the intersection of this curve with
the demand segment gives the market clearing price Pd and quan-
tity Qd , and the proposals that are dispatched, as shown in Figure
1. Therefore, the revenue for each producer i is given by:

Πi = ∑
j∈{ED:s j=i}

(
Pd − c j

)
g j

where g j is the energy produced by i = s j in the ED. This profit
deeply depends on the strategies of the other players, which makes
the problem complex.

3. NASH EQUILIBRIA COMPUTATION

Game theory provides important tools in economics. The concept
of Nash equilibrium of a game plays a relevant role in this context.
Basically, it is a probability distribution over the set of strategies
of each player, such that nobody wants to change unilaterally this
behaviour. If some player would change his strategy with respect
to a Nash equilibrium, his profit would not increase (see [2]).

In our case, the strategies of each player are the proposal prices, so,
in a Nash equilibrium, we have the probability of choosing λ j over
the set [0,b], where b is the maximum price at which the consumers
buy electricity (see section 2 where the demand is defined). A
Nash equilibrium in which each player plays with probability one
a certain strategy is called a equilibrium in pure strategies.

The method that we use in this abstract only provides pure Nash
equilibria, but we are currently working towards finding mixed
Nash equilibria.

3.1. Adjustment Process

In current electricity markets, the producers have to communicate
the market operator their proposals for each hour of the following
day. We admit that each producer predicts exactly the demand for
each hour and knows the technology of his competitors, so that he
knows the marginal costs of the others. Our goal is to find the best
strategy for each company.

We will apply an adjustment process to find out the Nash equilibria
of this non-cooperative game. An adjustment process is an itera-
tive process in which each player adjusts his strategy according to
the past iterations. This is a learning process. It is easy to find
examples in which this method diverges or has chaotic behaviour,
so this process does not always work. However, if a solution is
found, then it is a Nash equilibrium.

In this context, we started only with the prices λ j as decision vari-
ables, but it follows immediately how to adapt the process in order
to have both prices and quantities as decision variables.

We have used two adjustment processes: the ones described in [8]
and in [9]. The first one only uses the data of last iteration to adjust
the strategy, while the second uses an estimation based on the all
past iterations. After some experiences, we noted that the first
method converges faster than the second (in this case) and also it
is simpler to describe. Hence, we focus in that one in this work.
In [10] a very similar process is presented, but there the decision
variables are the quantities.

Our method can be described with the following pseudo code:
1: initialise with an information matrix M, ε > 0, and demand

parameters m and b;
2: let Si be the set of proposals of the producer i and k the number

of producers;

3: repeat
4: X ← fourth column of M;
5: for i = 1 to k do
6: λSi ← argmaxλ j , j∈Si ∑s j∈ED∩Si

(
Pd − c j

)
g j;

7: update the fourth column of M with λ j for j ∈ Si;
8: end for
9: Y ← fourth column of M;

10: ∆← ||Y −X ||;
11: until ∆ < ε

In short, in each step every producer finds the strategy that maxi-
mizes his profit assuming that the other players are going to follow
the strategy of the previous iteration. The process stops when two
iterations are sufficiently close to each other (that means that the
current matrix M is a Nash equilibrium, because nobody made a
significant change in his behaviour. In fact, when ∆ = 0, M is
exactly a Nash Equilibrium). It is important to notice that the
maximization process, in step six, needs a method able to tackle
non-smooth functions, as the profit of the companies is a function
with discontinuities.

The most important step in our adjustment process is the max-
imization of the producers’s profits. To solve this problem, we
have used the MATLAB implementation of a global optimization
method developed by Ismael Vaz and Luís Vicente, see [11]. In
this method we only need to evaluate the objective function values
resulting from pattern search and particle swarm, so this is exactly
what we need in our adjustment process.

3.2. Case Study

In this example, we consider one period of the pool Market, with
five producers, each with one generation unit. They want to know
the prices to attribute to their proposals so as to maximize their
profit. We assume that this is a competitive market, so there is not
cooperation between the companies.

The information matrix M is:

M =




j s j E j λ j c j
1 Producer A 100 0.50 0.40
2 Producer B 150 0.30 0.30
3 Producer C 200 0.80 0.55
4 Producer D 180 0.55 0.50
5 Producer E 250 0.85 0.60




(1)

and the demand is modeled by

y =
−7

2000
x+

7
4
.

This initial situation is represented in Figure 1, with Pd = 0.50$
/MWh, Qd = 342.8571MWh and accepted proposals:

MED =




j s j g j λ j
2 Producer B 150.0000 0.30
1 Producer A 100.0000 0.50
4 Producer D 92.8571 0.55




In our simulation of the pool market, if we have two or more
proposals with the same price we accept them in a proportional
way. For example, the market clearing price is 30 $/MWh and we
need 200MWh to be allocated; we have three proposals with price
30$/Mwh and quantities 300MWh, 60MWh and 240MWh; then
we accept 1

3 = 200
300+60+240 of the quantity of each proposal.

Applying our algorithm to this situation, with ε = 10−9 and a max-
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Figure 1: Pool Market.

imum of 50 adjustment iterations, we achieve:

M =




j s j E j λ j c j
1 Producer A 100 0.400000 0.40
2 Producer B 150 0.300000 0.30
3 Producer C 200 0.550000 0.55
4 Producer D 180 0.549999 0.50
5 Producer E 250 0.600000 0.60




in 17 iterations and final ∆ = 2.44×10−10. This is a Nash equilib-
rium as we can see in Figures 2, 3 and 4 :

Figure 2: Pool Market.

Only the producer D can achieve a larger profit by increasing the
price of the proposal up to 0.55 $/MWh, but if it chooses λ1 = 0.55
it would have to divide the sold quantity with producer C. So it
chooses a price slightly less than 0.55 $/MWh. Figure 3 shows that
this process starts converging to the Nash equilibrium very fast,
despite the existence of some fluctuations in ∆ due to the numerical
optimization process. The ED of this equilibrium is:

MED =




j s j g j λ j
2 Producer B 150.0000 0.300000
1 Producer A 100.0000 0.400000
4 Producer D 92.8571 0.549999


 (2)

with Pd = 0.549999$/MWh and Qd = 342.8571MWh.

It is important to mention that the optimization method PSwarm
used (see [11]) is stochastic, so applying again this method could

Figure 3: Evolution of ∆ through iterations of the adjustment pro-
cess.

Figure 4: Evolution of proposals’s prices through iterations of the
adjustment process.

give different results. We used the adjustment process in this ex-
ample several times and observed that the method always found
this equilibrium, but the number of iterations used ranged between
3 and 25. Another relevant comment is that changing the initial
matrix M can achieve different Nash equilibria. In this example
we always found the same Nash equilibrium on pure strategies.

Note that if we modify, for example, bid 4 in Equation (2) for
a quantity in the domain [92.8571,180], we keep having a Nash
Equilibrium. Thus we expected that adjusting prices and quantities
could lead us to chaotic behaviours and consequently to the non-
convergence of the process, because usually there is more than one
answer with the same profit for the optimization step.

As a matter of fact, producers can also choose the quantities for
their bids, hence we applied to this example a more general adjust-
ment process, where the quantities and prices are decision vari-
ables. To make that possible, we need to add to our data, M, m and
b, the capacity of each generator. Here, it is assumed that the third
column of the initial M is concerned with the maximum capacity
of each generator.

Applying to the matrix of Equation (1) the adjustment process with
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respect to prices and quantities we achieve with four iterations:

M =




j s j E j λ j c j
1 Producer A 100.000 0.400000 0.40
2 Producer B 150.000 0.300000 0.30
3 Producer C 200.000 0.550000 0.55
4 Producer D 92.8571 0.500000 0.50
5 Producer E 250.000 0.600000 0.60




and economic dispatch:

MED =




j s j E j λ j c j
2 Producer B 100.000 0.400000 0.40
1 Producer A 150.000 0.300000 0.30
4 Producer D 92.8571 0.500000 0.50
3 Producer C .354 ·10−6 0.550000 0.55




with ∆ = 0, so there is no doubt that this represent a Nash equilib-
rium.

4. FUTURE WORK

The problem of non-convergence of our process when there is
more than one answer with the same profit for the optimization
step, can possibly be overcomed if we search for equivalence classes
(two proposals are in the same class if both lead to the same profit)
and use a single representant for each class. In this context, we
are studying the convergence conditions that tell us when the ad-
justment process works successfully. Another reason that could
explain the non-convergence of the method is that we may enter a
cycle or an orbit that diverges. Here it may be preferable to use
the adjustment process based in the estimative of past iterations,
because it is more suitable in order to converge.

We are also currently studying the possibility of discretizing the
space of strategies to make it finite (see [6]). In that case, there
is a large number of available methods to find Nash equilibria (in-
cluding mixed Nash equilibria). Then, we can adapt the results to
the original game through interpolation. We have to be careful in
this process because sometimes an equilibrium in discrete games
is not one in the original game. An important step in this process
is to recognize strategies that are dominated, meaning that they are
never adopted and played.

In conclusion, this work addresses important questions arising in
the pool market, and can contribute to the development of algo-
rithms to find mixed Nash equilibria where the sets of strategies
are continuous.
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ABSTRACT

The best places to locate the Gas Supply Units on natural gas sys-
tems and their optimal allocation to loads are the key factors to
organize an efficient upstream gas infrastructure. In this work we
use the P-median problem to locate the GSUs on a gas network
and the transportation problem to assign gas demand nodes to the
source facilities. Due to its mathematical structure, the application
of P-median problem to large networks needs heuristic techniques.
This paper presents two Lagrangean heuristics, tested on a realistic
network - the primary Iberian natural gas network. Computational
results are presented, showing the location arrangement and sys-
tem total costs.

Keywords: Gas supply units – GSUs, Lagrangean heuristic, P-
median problem, Relocation heuristic

1. INTRODUCTION

To comply with natural gas demand growth patterns and Europe
import dependency, the Iberian natural gas industry needs to or-
ganize an efficient upstream infrastructure [1]. Marine terminals,
storage facilities and gas injection points, are the source points of
the natural gas system: the Gas Supply Units – GSUs. The location
of such infrastructures in gas networks, as well as allocated loads,
should be carefully planned in order to minimize overall costs [2].

Most of gas loads are connected to GSUs by pipelines, being the
natural gas transported in the gas form at high pressure . Alterna-
tively, when there is no physical pipeline between supply/demand
points, gas may be transported by virtual pipeline – gas transported
by road trucks in its liquefied form.

The aim of this paper is the presentation of two Lagrangean heuris-
tics to support the decision of GSUs location on a gas network.
This location problem studies the best places to locate GSUs on
network, minimizing total distances between sources and loads
[3].

Once defined, GSUs serve load sites with known gas demands,
minimizing combined GSUs location and transport costs. This
question is addressed by the transportation problem.

For the location problem, we use the P-median problem, that finds
the location of a number of P facilities (in this case, GSUs), so
as to minimize the weighted average distance of the system [4].
Due to its mathematical structure, the P-median problem is NP-
hard and therefore cannot be solved in polynomial time. So, it
is necessary to use heuristics methods for large and realistic P-
median problems.

In [5], was presented a simple Lagrangean heuristic, by using La-
grangean relaxation and subgradient optimization to solve the dual
problem. In this paper we improve the solution by adding the La-
grangean relocation heuristic. This is done by analyzing some
changes between medians and non-medians locations. With this

exhaustive procedure, we can obtain better solutions, not reached
by simple Lagrangean heuristics.

In section two we present the Lagrangean relaxation for P-median
problems. Section three presents the relocation heuristic, an im-
provement to the simple Lagrangean heuristic. To conclude about
the effectiveness of the Lagrangean relocation heuristic, we com-
pare its computational results to those of the simple Lagrangean
approach.

The location modelling presented in this work is applied to the
Iberian natural gas system, to find the best GSUs location and their
optimal allocation to loads.

The Iberian natural gas network is geographically organised with
65 demand nodes (Fig. 1). Most of these demand points are con-
nected by physical pipelines (red lines in Fig. 1); the others are
supplied by road trucks with gas in liquefied form – the virtual
pipelines. These virtual pipelines are all the connections between
two nodes without a physical pipeline.

Figure 1: Iberian natural gas network.

2. THE LAGRANGEAN APPROACH

To exemplify the application of Lagrangean relaxation to the lo-
cation P-median problem, we will consider the following binary
integer programming problem, with m GSUs potential sites and n
demand nodes:

Z = Min
m

∑
i=1

n

∑
j=1

α.dij.Xij (1)

subject to:
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Total Costs (Me)
GSUs Values α/αv Simple Lagrangean

Located (e/m3km) Lagrangean Relocation
Heuristic Heuristic

P = 14 0,015 / 0,018 286.690,7 281.782,2
P = 20 0,019 / 0,022 318.110,3 310.359,3
P = 25 0,024 / 0,027 365.457,4 355.393,9
P = 28 0,027 / 0,030 382.454,2 372.758,9

Table 1: Lagrangean Heuristics Results.

m

∑
i=1

Xij= 1 j = 1, . . . ,n (2)

m

∑
i=1

Xii= P (3)

Xij ≤ Xii i = 1, ..,m; j = 1, ..,n (4)

Xij ∈ {0,1} i = 1, ..,m; j = 1, ..,n (5)

Where:

α .[di j], is the symmetric cost [distance] matrix, with dii = 0, ∀i;α
is the kilometric gas transported cost per gas unit (cubic meter –
m3); [Xi j] is the allocation matrix, with Xi j = 1 if a node i is allo-
cated to node j, and Xi j = 0, otherwise; Xii = 1 if node i has a GSU
and Xii = 0, otherwise; P is the number of GSUs (medians) to be
located.

The objective function (1) minimizes the distance of each pair of
nodes in network, weighted by α . Constraints (2) ensure that each
node j is allocated to a source node i. Constraint (3) determines
the number of GSUs to be located (P). Constraint (4) sets that a
demand node j is allocated to a node i, if there is a GSU at node i.
Constraint (5) states the integer conditions.

The parameter α assumes the cost value in physical pipelines, if
a pipe exists between node i and j. If there is no pipe connection
between nodes, the parameter α is replaced by αv, the cost value
in virtual pipelines (usually, αv is greater than α). These different
transport cost values are implicitly assumed in the algorithm and
have a great influence on the located GSUs solution.

3. RELOCATION HEURISTIC

The Lagrangean heuristic presented to solve the location problem
often gives very good results, but it can be improved with the appli-
cation of an additional heuristic – the relocation heuristic – which
attempts to get closer to the optimal solution than the simple La-
grangean heuristic. The computational results comparing the two
Lagrangean approach are presented in this section.

The relocation heuristic starts from the simple Lagrangean results.
Then, the P clusters are identified, C1, C2, . . . CP, corresponding to
the P medians (GSUs) and their allocated non-medians (gas load
nodes). The solution can be improved by searching for new medi-
ans, swapping the current medians by non-medians and reallocat-
ing the loads. For each swap we analyze the solution achieved by

new location and allocation from new source to loads. If the new
solution is better, we keep it. The process is repeated until no more
improvements are achieved.

In table 1 we can see the behavior of the two implemented La-
grangean heuristics: simple and with relocation. The solution was
taken for different values of α and αv, respectively, kilometric cost
of the natural gas unit transported by physical and virtual pipeline.
The total costs presented in table I are the sum of GSUs implanta-
tion costs and the transport costs.

The increment of P means an increment of medians, so more GSUs
installed, thus, the total costs increase for both approaches. As
observed in table 1, for each case of α/ αv values, the total costs
that resulted from relocation heuristic are better (lower costs) than
the simple Lagrangean heuristic.

As we increase the α/αv value transportation costs are increased,
so the optimization problem minimizes the solution by adding more
GSUs. This is an attempt to minimize transportation cost, but fixed
costs have a big influence, so, the result is a higher total cost.
For all solutions of P, we can see in table I the Lagrangean relo-
cation heuristic presents an obvious improvement in system total
costs.

4. CONCLUSION

Based on Lagrangean heuristics, this work supports GSUs location
decision-make and their optimal allocation to gas demands. The
simple Lagrangean heuristic often gives very good results, but not
necessarily the optimal ones. To improve this resolution approach,
we developed the Lagrangean relocation heuristic, which proved
its efficiency in total costs function minimization. Its performance
was verified for different location scenarios and with different pa-
rameters values.

The developed location model can be applied to any other gas net-
work type with the same good performance.
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ABSTRACT

There is an increasing interest in Multi-objective optimization meta-
heuristics to solve complex problems in many different areas. In
Power Systems, Multi-objective optimization is also under inten-
sive research applied to traditional problems and mainly to the
most recent trends such as Distributed Energy Resources integra-
tion considering SmartGrids paradigm. Therefore, this paper is
proposing a Multi-objective approach to the hybrid EPSO method.
The Multi-objective EPSO method, called MEPSO, is applied to a
discrete problem of DER impact evaluation on electric distribution
network. It was observed, through the several runs, a better perfor-
mance of MEPSO when compared to the NSGA-II method. De-
spite of being an initial evaluation, the results encourage to exploit
the best of EPSO characteristics in the Multi-objective domain.

Keywords: Multi-objective optimization, Meta-heuristics, EPSO,
NSGA-II, DER planning

1. INTRODUCTION

The ever-increasing interest to apply the concepts of Multi-objective
optimization (MO) in real-world problems, and the intense ex-
ploitation of the meta-heuristics as computational solutions to cope
with complex optimization problems are fostering the develop-
ment of many well known search techniques to the multi-objective
domain. In power systems planning area, methodologies based
on MO meta-heuristics are under research, especially in the Dis-
tributed Energy Resources (DER) integration [1]. In general, in
the earlier works, it was used the so-called classic MO methods
such as Weighted Sum or ε-Constraint based on Genetic Algo-
rithms (GA). As they have presented some limitations [2], new
proposals based on Pareto optimality concepts, have being con-
stantly employed. Despite the GA-based methods, such as NSGA-
II and SPEA2, being more often used on DER planning, there are
different MO techniques based on meta-heuristics (e.g. Simulated
Annealing, Tabu Search, PSO [3], [4], and so on) that take advan-
tage of some specific mechanisms of each meta-heuristic.

The Evolutionary Particle Swarm Optimization (EPSO) success-
fully combines evolutionary strategies with the PSO method. A
complete view about performance improvements carried out on
EPSO algorithm is reported in the literature, including on power
system problems [5], [6].

This work proposes a Multi-objective EPSO called MEPSO, which
is applied to a discrete problem of DER integration in electrical

distribution networks. First of all, it is thoroughly presented and
discussed the MEPSO algorithm. After that, an example followed
by some remarks, results and discussions is showed.

2. THE MULTI-OBJECTIVE EPSO PROPOSAL: MEPSO

The EPSO method merges the efficient PSO movement equation
and overall structure with evolutionary strategies, namely self-ada-
ptive mutation and an explicit selection procedure [7]. For the
MEPSO approach some steps of the EPSO algorithm are preserved,
whereas others are strongly changed in order to incorporate MO
concepts. Considering the general algorithm of EPSO presented in
[8], the mutation and replication procedures were fully preserved
in the MEPSO. On the other hand, reproduction, evaluation, and
selection steps were remodeled using some of the MO procedures
introduced by the NSGA-II method [9]. The general algorithm for
MEPSO can be described as follow:

Parameters and variables initialization;
Do i = 0;
Do while i < IterMax;

Rank and sort the swarm based on the concept of dominance;
Update the Pareto List (PL), an external list that keeps the
optimal solution set;
Assign the Global Best (Gb) to each particle of the swarm;
Do for each particle:

Replicate the particle;
Execute on the replicated particle:

Mutation of the strategic parameters;
Execute on both original and replicated particles:

Reproduction (based on PSO movement equation);
Assign the Personal best (Pb);

Add the replicated particle to Replica List (RL) that
keeps whole set of replicated particles;

Combine the original swarm with the RL;
Perform Selection over the combined list of particles;
Do i = i + 1;

Print PL.

The rank and sort of the swarm using the concept of dominance
can be performed in different ways. In this paper, the Fast Non-
dominated Sort (FNS) algorithm [9] was employed. The non-
dominated solutions are the best ranked, belonging to the Pareto
front 1. They are followed by the dominated solutions of only one
solution in the front 2. The process follows in the same way until
the last front.
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The PL update consists of the merger between current PL with the
front one. Thus, the elimination of the repeated and dominated
solutions in the combined set is performed in order to conclude
the update process. The Gb assignment in MEPSO was deeply re-
modeled. The swarm will not have the same Gb assigned for each
particle, as occurs with the Star Communication approach [8]. Ex-
cept for the front 1, where a particle belonging to the front f will
receive, as Gb, a solution randomly chosen from the front f – 1.
The Gb for the front 1 are randomly taken from a reduced set of
the PL, called Gb List. The solutions for Gb List are chosen aim-
ing to favor diversity, i.e., looking for better exploration of poorly
crowded regions of the search space. Hence, the crowding distance
metric [9] was used in order to introduce a measure of dispersion
of the solutions, into objective function space. The Gb List may
sized fixed. In this paper, the five less crowded solutions in PL
was chosen. However, another alternative can be a percentage of
the PL size [10].

After the particle performs a movement, Pb is assigned. The Pb of
a particle is the last non-dominated position visited by the particle
itself in its path, until the current iteration.

The selection stage doesn’t consist in a simple comparison among
the fitness function of a particle and its replicas. The original
swarm and the list of replicas are combined and ranked using FNS.
Then, it is applied an elitist strategy [9], wherein the swarm of the
next iteration is firstly composed by the best ranked solutions ac-
cordingly with dominance and afterward using the diversity crite-
rion based on the crowding distance metric.

2.1. Discussion

There are many features in this MEPSO approach that can be changed
and tested towards performance improvements.

To compare solutions in MO problems isn’t quite trivial like in sin-
gle objective optimization. Several mechanisms should be defined
in order to deal with multiple objectives, to accommodate Pareto
optimality concepts, and to obtain a diversified Pareto front so-
lution set. Here it was utilized the dominance-based rank and the
crowding distance metric from [9], which corresponds to NSGA-II
method improvements over its former version. Thus, other strate-
gies may be matter of investigation.

The Gb assignment structure has huge influence on convergence.
In this approach the main idea is to stimulate diversity and explo-
ration of the search space. For front 1 it is intended to intensify the
search along the PF. However, changes may be performed on how
the Gb is chosen in a front. In this work it is a randomly procedure,
or even the whole assignment procedure.

The selection stage has also a high importance. The current pro-
posal exploits elitist procedure from NSGA-II. Nevertheless, some-
times particle’s information may be lost since a particle and its
replica can be chosen. Tests can be made in order to check the
influence of this behavior on the method performance.

In [10] there is an example of MO PSO based on the NSGA-II
mechanisms. However, it is different from this latter approach,
because it doesn’t incorporating the ES of EPSO, in the personal
and global best assignment and in elitism.

3. DER INTEGRATION PLANNING PROBLEM

It is widely recognized and reported on literature that high penetra-
tion of DER on distribution networks may offers together benefits
and negative consequences [11] to the systems. Both positive and
negative impacts depend on many technical characteristics such
as technology used, size of units, operation and control strategies

to deal with DER as well as capacity and placement on network.
MO optimization stands for an interesting way to cope with DER
integration problem, mainly due to suitable property of combine
objectives from different natures over a discrete manner.

In order to show the potentialities of the proposed method, it is per-
formed a simple set of tests involving MEPSO and NSGA-II meth-
ods. A simplified model of the problem is assumed. It consists of
studying the impact over the network losses and short circuit level
accordingly with the position and size of generation units. A fixed
number of generators to be connected are defined. Also a single
generation and load scenario is used in order to prepare the prob-
lem in a discrete manner with a finite number of solutions. The
methods codification is detailed in [12] and an example is shown
in Fig. 1. Each vector position indicates an available Distributed
Generation (DG) unit and the value assumed in each position indi-
cates the node where the generator is connected.

The rank and sort of the swarm using the concept of 
dominance can be performed in different manners. In this 
paper, the Fast Non-dominated Sort (FNS) algorithm [9] 
was employed. The non-dominated solutions are the best 
ranked and belongs to the front 1 followed by the solutions 
dominated by just one solution (front 2) and so on. 

The PL update consists in compare the solutions in PL 
to those grouped in front 1, the non-dominated solutions, 
found on each iteration. A candidate solution in front 1 will 
be included in PL if it is not dominated by a PL solution and 
was not yet included. 

The Gb assignment in MEPSO was deeply remodeled 
not being used the Star Communication approach, what 
means that the particles do not will have the same Gb 
assigned. Except for the front 1, a particle belonging to the 
front f receives as Gb a solution randomly chosen from the 
front (f  1). The Gb for front 1 solutions are randomly 
taken from a reduced set of the PL, called Gb List. The 
solutions are chosen for Gb List aiming to favor diversity, i. 
e., looking for better exploration of poorly crowded regions 
of the search space. For this purpose the crowding distance 
metric [9] was used in order to introduce a measure of 
dispersion of solutions in the objective function space. The 
Gb List may have a fixed size, as in this approach (was 
chosen the 5 less crowded solutions in PL), or to be a 
percentage of the PL size [10]. 

The Pb is assigned after the particle performs a 
movement. The Pb of a particle is the last non-dominated 
position visited by the particle in its path until the current 
iteration. 

The selection stage do not consists in a simple 
comparison among the particle and the fitness function of its 
replicas. The original swarm and the list of replicas are 
combined and ranked using FNS. Then, it is applied an 
elitist strategy [9], wherein the swarm of the next iteration is 
firstly composed by the best ranked solutions and afterward 
using the diversity criterion based on the crowding distance 
metric. 
 
2.1. Discussion 
There are many features in this MO EPSO approach that can 
be altered and tested seeking for performance 
improvements. 

Compare solutions in MO is not trivial like in single 
objective optimization. Mechanisms have to be defined 
permitting to deal with multiple objectives, to accommodate 
Pareto optimality concepts and to obtain a diversified and 
close to the true Pareto front solution set. Here it was 
utilized the dominance-based rank and the crowding 
distance metric from [9], that corresponds to NSGA-II 
method improvements over its former version. Thus, other 
strategies may be matter of investigation. 

The Gb assignment structure has huge influence on 
convergence. In this approach the main idea is to stimulate 
diversity and exploration of the search space. For front 1 it 
is intended to intensify the search along the PF. However, 

changes may be performed on how the Gb is chosen in a 
front, in this work is randomly, or even the whole 
assignment procedure. 

The selection stage has also a high importance. The 
current proposal exploits elitist procedure from NSGA-II. 
Nevertheless, sometimes particle s information may be lost 
since a particle and its replica can be chosen. Tests can be 
made in order to check the influence of this behavior on the 
method performance. 

In [10] there is an example of MO PSO based on the 
NSGA-II mechanisms. However, it is different from this 
latter approach for not incorporating the ES of EPSO, in the 
personal and global best assignment and in elitism. 
 

3. DER INTEGRATION PLANNING PROBLEM 
It is widely recognized and reported on literature that high 
penetration of DER on distribution networks may offers 
together benefits and negative consequences [11]. Both 
positive and negative impacts depend on many technical 
characteristics such as technology used, size of units, 
operation and control strategies to deal with DER as well as 
capacity and placement on network. MO optimization stands 
for an interesting way to cope with DER integration 
problem, mainly due to suitable property of combine 
objectives from different natures over a discrete manner. 

In order to show the potentialities of the proposed 
method, it is performed a simple set of tests involving 
MEPSO and NSGA-II methods. A simplified model of the 
problem is assumed. It consists of studying the impact over 
the network losses and short circuit level accordingly with 
the position and size of generation units. A fixed number of 
generators to be connected is defined. Also a single 
generation and load scenario is used in order to prepare the 
problem in a discrete manner with a finite number of 
solutions. The methods codification is detailed in [12] and 
an example is shown in Fig. 1. Each vector position 
indicates an available Distributed Generation (DG) unit and 
the value assumed in each position indicates the node where 
the generator is connected. 

 

806 818
1 2DG units

 
Fig. 1. Codification example of the problem. 

 

 
 
3.1. Problem formulation 
The two objectives to be minimized, real power loss and 
short circuit level, and whose tradeoff relationship is desired 
to be observed, are represented through the two indices ILp 
and ISC3 written as follows.  

i. Total Real Power Losses index (ILp) [13]: in 
(1) it is evaluated the DG impact over the real 
power losses by calculating the ratio between 

Figure 1: Codification example of the problem.

In Fig. 1, for instance, the DG unit “1” is connected on node “806”,
and the generator unit “2” on node “818”.

3.1. Problem formulation

The two objectives to be minimized are real power loss and short
circuit level. They could be viewed through the use of some in-
dices, where the tradeoff between both is observed. The indices
ILp and ISC3 are written as follows:

1. Total Real Power Losses index (ILp) [13]: in (1) it is evalu-
ated the DG impact over the real power losses by calculat-
ing the ratio between the network total real power loss for
a DG configuration (LossDG) and the total real power loss
without DG (Loss0).

ILp =
LossDG

Loss0 (1)

1. Three-Phase Short-Circuit Level index (ISC3) [13]: this in-
dex, defined in (2), contributes to the DG impacts evalua-
tion concerning the network fault protection strategies.

ISC3 = max
i=1,NN

(
ISCabcDG

i

ISCabc0
i

)
(2)

where: ISCabcDG
i represents three-phase fault current value in node

i for a given DG configuration on the network; ISCabc0
i represents

three-phase fault current value in node i for the network without
DG; NN is the number of nodes.

Both indices follow the distribution utilities requirements in terms
of DG unit connections. In some cases, losses and short-circuit are
the most important variables for connecting DG.

The problem formulation is presented in equations (3) to (8).

Min ILp (3)

Min ISC3 (4)
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Subject to:

0.95 ·VS/S ≤
∣∣∣V DG

i

∣∣∣≤ 1.05 ·VS/S (5)

∣∣∣IDG
j

∣∣∣≤ Imax
j (6)

nDG
i ≤ 1 (7)

NDG
network = NDG

available (8)

where VS/S is rated voltage at the Substation; VDG
i is the voltage at

the node i for a given DG configuration; IDG
j is the current through

the branch j for a given DG configuration; Imax
j is the maximum

rated current for branch j; nDG
i is the number of DG units con-

nected in node i; NDG
network is the total number of DG units con-

nected in the network; and NDG
available is the total number of DG

units available.

This formulation guides the distribution companies that own DG
units, allowed in some places as a way to invest in the network
[14], to take advantage of the connection by means of a tradeoff
analysis. The study may also represent a scenario of DER not
owned by the utility where the information provided give a por-
trait of the impact over the network technical performance, then
driving a policy of incentive or not the DER connection on certain
locations.

Sometimes even the solutions that violate constraints may have
relevance in the tradeoff analysis if the gain in some objective jus-
tifies the investment on turning feasible solutions, depending on
the extent of the violation and the violated constraint. For this rea-
son and in order to observe the performance of the methods for
a larger number of PF, the tests will be performed for both con-
strained (CONS) and unconstrained (UNCONS) problems.

Two radial electric distribution networks with different features are
used: the IEEE-34 and IEEE-123 [15]. The DG units to be allo-
cated in the networks were defined in such a way to produce a
similar penetration level in both grids. Two generators were cho-
sen to each network: one of rated power of 200 kW and another
of 400 kW for the IEEE-123 network; and one of rated power of
100 kW and another of 200 kW for the IEEE-34 network. The
information about each network and the search space is shown in
Table 1. The substation node is not a candidate node to receive a
generator. It is also presented in the last Table 1 column how much
MaxEvals represents related to the search space size.

Network Vs/s Nodes DG Solutions in Max Max
(pu) (except units the search Evals Evals

S/S) space (%)
IEEE-123 1.0 113 2 12656 5000 39.5
IEEE-34 1.05 32 2 992 400 40.3

Table 1: Summary of the networks, tests and search space features.

Finally, the methods performance is compared here by the number
of points found in the calculated PF (PFcalc) that belongs to the
true PF (PFtrue). For this purpose it is observed the cardinality of
the PFcalc, the number of dominated solutions (DS) in this set, and
also the metric PF ratio (PFR) is used, defined by (4), which gives
the percentage of PFtrue found.

PFR =
|PFcalc∩PFtrue|
|PFtrue|

×100 (9)

4. RESULTS

Table 2 shows the cardinality of the true PF for constrained and
unconstrained problems considering both networks.

IEEE123 IEEE34
CONS UNCONS CONS UNCONS

|PFtrue| 29 91 52 76

Table 2: Number of Pareto Front points for different cases.

The results are presented in Tables 3 and 4 for both electric net-
works considering constrained and unconstrained problem.

CONS34 UNCONS34
NSGA-II MEPSO NSGA-II MEPSO

|PFcalc| 50 50 67 70
DS - - - -
PFR 96.2 96.2 88.2 92.1

Table 3: Summary of results for the CONS34 and UNCONS34
test cases.

CONS123 UNCONS123
NSGA-II MEPSO NSGA-II MEPSO

|PFcalc| 26 28 85 91
DS - - - -
PFR 89.6 96.6 93.4 100.0

Table 4: Summary of results for the CONS123 and UNCONS123
test cases.

In all test cases the final solution obtained by each method does not
have points dominated by the PFtrue. Then, both methods demon-
strated good convergence to the true PF. However, they generally
were not able to define the whole PFtrue set.

Comparing the methods performance, except for CONS 34 test
case where both methods had the same PFR, MEPSO found more
solutions of the true PF than NSGA-II, keeping always a PFR
higher than 90%. Additionally, only MEPSO found the whole true
PF for the UNCONS123 test case.

It is important to remark that although MEPSO presented PFR
equal or higher than NSGA-II, it does not means that NSGA-II
solution set is contained in the MEPSO solution set, as can be seen
in the Fig. 2.

The EPSO method presents performance improvements and fea-
tures that can be exploited in MO. This paper shows in details a
multi-objective proposal for EPSO and an example of application
in Power System research field, where MO is being increasingly
used. The results demonstrate that MEPSO is comparable or even
better than NSGA-II, a method largely employed in the proposed
problem. MEPSO also preserved a simple framework and a user-
friendly parameter setting.

However, MEPSO must be applied to problems with different sizes
and features in order to clearly define its behavior.
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ABSTRACT

We present a Branch and Fix Coordination algorithm for solving
medium and large scale multi-stage mixed 0-1 & combinatorial
optimization problems under uncertainty. The uncertainty is rep-
resented via a nonsymmetric scenario tree. The basic idea con-
sists of explicitly rewriting the nonanticipativity constraints (NAC)
of the 0-1 and continuous variables in the stages with common
information. As a result an assignment of the constraint matrix
blocks into independent scenario cluster submodels is performed
by a compact representation. This partitioning allows to generate
a new information structure to express the NAC which link the re-
lated clusters, such that the explicit NAC linking the submodels to-
gether is performed by a splitting variable representation The new
algorithm has been implemented in a C++ experimental code that
uses the open source optimization engine COIN-OR, for solving
the auxiliary LP and mixed 0-1 submodels. Some computational
experience is reported to validate the new proposed approach. We
give computational evidence of the model tightening effect that
have preprocessing techniques in stochastic integer optimization as
well, by using the probing and Gomory and clique cuts identifica-
tion and appending schemes of the optimization engine of choice.

Keywords: Integer Programming, Mathematical Programming,
Stochastic integer optimization

1. INTRODUCTION

Stochastic Optimization is actually one of the most robust tools
for decision making. It is broadly used in real-world applications
in a wide range of problems from different areas such as finance,
scheduling, production planning, industrial engineering, capacity
allocation, energy, air traffic, logistics, etc. The integer problems
under uncertainty have been studied in [1], [2] and [3], just for
citing a few references. An extended bibliography of Stochastic
Integer Programming (SIP) has been collected in [4].

It is well known that a mixed 0-1 & combinatorial optimization
problem under uncertainty with a finite number of possible future
scenarios has a mixed 0-1 Deterministic Equivalent Model (DEM),
where the risk of providing a wrong solution is included in the
model via a set of representative scenarios. However, as any graph
representation of this type of multi-stage models can suggest,
the scenario information structuring for this type of problems is

more complex than for the approximation made by considering
two-stage stochastic mixed 0-1 & combinatorial models. We
should point out that the scenario tree in real-life problems is very
frequently a nonsymmetric one and then, the traditional splitting
variable representation for the nonanticipativity constraints (for
short, NAC), see [1, 5], on the 0-1 and continuous variables does
not appear readily accessible to manipulations that are required by
the decomposition strategies. A new type of strategies is necessary
for solving medium and large scale instances of the problem.
The decomposition approaches that appear most promising are
based on some forms of branching selection, and scenario cluster
partitioning and bounding that definitively use the information
about the separability of the problem, see our work in [6].

In full version of this work [7] we present a stochastic mixed 0-1
optimization modeling approach and a parallelizable Branch and
Fix Coordination (BFC) algorithm for solving general mixed 0-1
& combinatorial optimization problems under uncertainty, where
it is represented by nonsymmetric scenario trees. Given the struc-
turing of the scenario clusters, the approach generates independent
cluster submodels, then, allowing parallel computation for obtain-
ing lower bounds to the optimal solution value as well as feasible
solutions for the problem until getting the optimal one. We present
a splitting variable representation with explicit NAC for linking the
submodels together, and a compact representation for each sub-
model to treat the implicit NAC related to each of the scenario clus-
ters. Then, the algorithm that we propose uses the Twin Node Fam-
ily (TNF) concept, see [6], and it is specially designed for coordi-
nating and reinforcing the branching nodes and the branching 0-1
variable selection strategies at each Branch-and-Fix (BF) tree. The
nonsymmetric scenario tree which will be partitioned into smaller
scenario cluster subtrees. The new proposal is denoted Nonsym-
metric BFC-MS algorithm. We report some computational expe-
rience to validate the new approach by using a testbed of medium
and large scale instances.

2. SPLITTING VARIABLE REPRESENTATION IN
STOCHASTIC OPTIMIZATION

Let us consider the following multi-stage deterministic mixed 0-1
model
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min ∑
t∈T

atxt + ctyt

s.t.
A1x1 +B1y1 = b1
A′txt−1 +Atxt +B′tyt−1 +Btyt = bt ∀t ∈T −{1}
xt ∈ {0,1}nxt , yt ∈R+nyt , ∀t ∈T

(1)

where T is the set of stages (without loss of generality, let us
consider that a stage is only included by one time period), such
that T = |T |, xt and yt are the nxt and nyt dimensional vectors
of the 0-1 and continuous variables, respectively, at and ct are the
vectors of the objective function coefficients, and At and Bt are the
constraint matrices for stage t.

This model can be extended to consider uncertainty in some of
the main parameters, in our case, the objective function, the rhs
and the constraint matrix coefficients. To introduce the uncertainty
in the parameters, we will use a scenario analysis approach. A
scenario consists of a realization of all random variables in all
stages, that is, a path through the scenario tree. In this sense, Ω
will denote the set of scenarios, ω ∈ Ω will represent a specific
scenario, and wω will denote the likelihood or probability assigned
by the modeler to scenario ω , such that ∑ω∈Ω wω = 1. We say that
two scenarios belong to the same group in a given stage provided
that they have the same realizations of the uncertain parameters up
to the stage. Following the nonanticipativity principle, see [1, 5],
among others, both scenarios should have the same value for the
related variables with the time index up to the given stage. Let also
G denote the set of scenario groups (i.e., nodes in the underlying
scenario tree), and Gt denote the subset of scenario groups that
belong to stage t ∈ T , such that G = ∪t∈T Gt . Ωg denotes the set
of scenarios in group g, for g ∈ G .

The splitting variable representation of the DEM of the full
recourse stochastic version related to the multi-stage deterministic
problem (1) can be expressed as follows,

zMIP = min ∑
ω∈Ω

∑
t∈T

wω(aω
t xω

t + cω
t yω

t
)

s.t.
A1xω

1 +B1yω
1 = b1 ∀ω ∈Ω

A′ωt xω
t−1 +Aω

t xω
t +B′ωt yω

t−1 +Bω
t yω

t = bω
t , ∀ω ∈Ω, t ≥ 2

xω
t − xω ′

t = 0, ∀ω,ω ′ ∈Ωg : ω 6= ω ′, g ∈ Gt , t ≤ T −1

yω
t − yω ′

t = 0, ∀ω,ω ′ ∈Ωg : ω 6= ω ′, g ∈ Gt , t ≤ T −1

xω
t ∈ {0,1}nxω

t , yω
t ∈R+nyω

t , ∀ω ∈Ω, t ∈T .

(2)

Observe that for a given stage t, A
′ω
t and Aω

t are the technology
and recourse matrices for the xt variables and B

′ω
t and Bω

t are the
corresponding ones for the yt variables. Notice that xω

t − xω ′
t = 0

and yω
t − yω ′

t = 0 are the NAC. Finally, nxω
t and nyω

t denote the
dimensions of the vectors of the variables x and y, respectively,
related to stage t under scenario ω .

3. SCENARIO CLUSTERING IN SCENARIO TREES

It is clear that the explicit representation of the NAC is not required
for all pairs of scenarios in order to reduce the dimensions of
model. In fact, we can represent implicitly the NAC for some pairs
of scenarios in order to gain computational efficiency.

Definition 1. A scenario cluster is a set of scenarios whose NAC
are implicitly considered in model (2).

We will decompose the scenario tree into a subset of scenario
clusters, where P = {1, ...,q} denotes the set of clusters and

q = |P|. Let Ωp denote the set of scenarios that belongs to a
generic cluster p, where p ∈P and ∑q

p=1 |Ωp| = |Ω|. It is clear
that the criterion for scenario clustering in the sets, say, Ω1, . . . ,Ωq

is instance dependent. Moreover, we favor the approach that shows
higher scenario clustering for greater number of scenario groups in
common. In any case, notice that Ωp⋂Ωp′ = /0, p, p′ = 1, . . . ,q :
p 6= p′ and Ω = ∪q

p=1Ωp. Let also G p ⊂ G denote the set of
scenario groups for cluster p, such that Ωg ∩Ωp 6= /0 means that
g∈G p, G p

t =Gt∩G p denotes the set of scenario groups for cluster
p ∈P in stage t ∈T .

Definition 2. The break stage t∗ is the stage t such that the
number of scenario clusters is q = |Gt∗+1|, where t∗ + 1 ∈ T .
Observe that cluster p ∈P includes the scenarios that belong to
group g ∈ Gt∗+1, i.e., Ωp = Ωg.

Notice that the choice of t∗ = 0 corresponds to the full model and
t∗ = T −1 corresponds to the scenario partitioning.

4. COMPUTATIONAL EXPERIENCE

The approach has been implemented in a C++ experimental code.
It uses the open source optimization engine COIN-OR for solving
the LP relaxation and mixed 0-1 submodels, in particular, we have
used the functions: Clp (LP solver), Cbc (MIP solver), Cgl (Cut
generator), Osi, OsiClp, OsiCbc and CoinUtils.

The computational experiments were conducted in a Workstation
Debian Linux (kernel v2.6.26 with 64 bits), 2 processors Xeon
5355 (Quad Core with 2x4 cores), 2.664 Ghz and 16 Gb of RAM.

Table 1 gives the dimensions of the DEM of the full stochastic
model in compact representation for difficult medium and large
scale problems. Table 2 gives µ , the mean and σ , standard
deviation for dimensions of the cluster submodels; so, we can
observe the variability of the nonsymmetric clusters. The headings
are as follows: m, number of constraints; nx, number of 0-1
variables; ny, number of continuous variables; nel, number of
nonzero coefficients in the constraint matrix; and dens, constraint
matrix density (in %).

Inst. m nx ny nel dens
P1 696 160 376 1550 0.42
P2 1202 530 241 3053 0.33
P3 7282 1878 4152 20818 0.05
P4 16172 4270 9340 53257 0.02
P5 23907 5560 11675 68937 0.02
P6 32914 6672 14010 105854 0.02
P7 2085 450 1155 9105 0.27
P8 4696 1090 2516 9935 0.06
P9 11298 2668 5962 25262 0.03
P10 16870 4600 10430 42015 0.02
P11 31648 7984 17676 83252 0.01
P12 40020 8847 19377 100680 0.01
P13 5256 1176 2904 12861 0.06
P14 11121 2538 6045 27315 0.03
P15 14570 3370 7830 32508 0.02
P16 28176 6584 15008 62934 0.01
P17 45844 10794 24256 102480 0.01
P18 76424 18108 40208 170954 0.00

Table 1: Testbed problem dimensions

Table 3 shows some results of our computational experimentation.
The headings are as follows: |P|, number of clusters; |Ω|, number
of scenarios; |G |, number of scenario groups; ZLP, solution
value of the LP relaxation of the original DEM in compact

ALIO-EURO 2011 – 164



Proc. of the VII ALIO–EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4–6, 2011

Inst. µm (σm) µnx (σnx) µnel (σnel) µdens (σdens)
P1 133 (30) 28 (7) 275 (62) 2.31 (0.68)
P2 496 (68) 230 (20) 1227 (171) 0.76 (0.08)
P3 869 (305) 193 (70) 2145 (767) 0.46 (0.20)
P4 1788 (579) 397 (131) 4961 (1617) 0.24 (0.09)
P5 2815 (21) 561 (4) 6953 (51) 0.14 (0.00)
P6 3823 (28) 673 (5) 10675 (78) 0.13 (0.00)
P7 750 (187) 160 (43) 3236 (859) 0.80 (0.20)
P8 643 (191) 138 (41) 1259 (372) 0.49 (0.21)
P9 1241 (537) 269 (117) 2544 (1097) 0.30 (0.18)
P10 2007 (454) 516 (146) 4711 (1333) 0.15 (0.03)
P11 3322 (1208) 729 (266) 7608 (2759) 0.11 (0.05)
P12 3748 (1455) 740 (288) 8423 (3265) 0.12 (0.06)
P13 950 (260) 199 (56) 2171 (610) 0.37 (0.14)
P14 1751 (544) 365 (114) 3930 (1217) 0.20 (0.06)
P15 1973 (617) 423 (133) 4081 (1275) 0.17 (0.09)
P16 3403 (984) 733 (212) 7010 (2025) 0.09 (0.03)
P17 5000 (2216) 1081 (480) 10266 (4549) 0.08 (0.05)
P18 5126 (1967) 824 (317) 8604 (3300) 0.07 (0.03)

Table 2: Testbed cluster-subproblem dimensions

representation; Z0, optimal expected solution value obtained by
solving independently the mixed 0-1 cluster submodels; zMIP,
optimal solution value of the original DEM.We can observe
the very good lower bounds Z0, that can allow to improve the
convergence speed of the algorithm.

Inst. |P| |Ω| |G | ZLP Z0 zMIP
P1 6 52 80 4395695 4654305 4654305
P2 3 6 12 75103.6 58589.1 58585.1
P3 10 247 313 5691.3 442336 573848
P4 11 347 427 11601.4 725490 903367
P5 10 1001 1112 4977.8 385471 468277
P6 10 1001 1112 6116.5 540241 653638
P7 3 13 30 20210.9 964395 973038
P8 8 377 545 3156.8 156064 156064
P9 10 1021 1334 3829.5 239683 239683
P10 9 674 920 5757.0 394469 505729
P11 11 1569 1996 5474.1 401435 401435
P12 9 674 920 5757.0 394469 505729
P13 6 208 392 8071.8 371498 372296
P14 7 523 846 6157.3 339381 339381
P15 8 1140 1685 3941.7 212593 212593
P16 9 2372 3292 3521.9 258977 258977
P17 10 4063 5397 2629.0 303900 303900
P18 11 7058 9054 3824.7 318958 318958

Table 3: Computational results. Stochastic solution

It is well known that one of the most important contributions to
the advancement of the theory and applications of deterministic
integer & combinatorial optimization has been the development of
the preprocessing techniques for solving large scale instances in
affordable computing effort, due to the tightening of the models
and, so, reducing the LP feasible space without eliminating any
feasible integer solution that potentially could become the optimal
one. Some of the key ingredients in preprocessing are the
probing techniques [8, 9, 10] and schemes for identifying and
appending Gomory cuts [11, 12] and clique cuts [13], among other
important schemes. So, our algorithm for solving large instances
of the mixed integer DEM takes benefit from the preprocessing
techniques of the optimization engine of choice. They are used
for solving the auxiliary mixed integer submodels related to the
scenario clusters. The difference in computing time by using
preprocessing compared with the alternative that does not use it

Nonsymmetric BFC-MS B&B
Inst. T nT NF tt ttC tt ttC
P1 4 1 0.4 0.3 4000.2 0.8
P2 4 114 198.1 138.8 1304.2 1304.2
P3 4 8 21.8 1.7 41.4 1.7
P4 4 16 171.6 11.7 1530.8 19.4
P5 4 8 162.1 8.8 448.5 13.4
P6 4 10 229.5 8.5 889.7 48.4
P7 5 81 142.5 41.8 188.3 35.9
P8 5 1 2.7 0.9 272.3 6.1
P9 5 1 9.1 1.4 100.0 4.5
P10 5 10 206.6 45.8 7992.7 296.4
P12 5 1 80.2 14.9 12113.1 126.8
P12 5 7 513.8 66.8 3566.2(*) 867.5
P13 6 3 13.2 2.6 1304.2 10.2
P14 6 1 14.2 3.5 — 22.9
P15 6 1 19.7 4.9 7226.3(*) 19.2
P16 6 1 81.2 26.4 628.5(*) 48.5(*)
P17 6 1 152.8 8.7 1897.3 67.3
P18 6 1 377.0 24.1 — 202.9
—: Time limit exceeded (6 hours)
(*): Time for obtaining quasioptimum (0.05)

Table 4: Nonsymmetric BFC-MS performance vs B&B

is crucial in solving large scale instances. Table 4 shows the
efficiency and stability of the Nonsymmetric BFC-MS algorithm
proposed in the full version [7] of the paper. The headings are
as follows: T , number of stages; nT NF , number of TNFs; B&B,
plain use of the Branch-and-Bound procedure for the full model by
using the Cbc function of COIN-OR; and tt and ttC, total elapsed
time (in seconds) without and with preprocessing. Although other
break stages have been considered, we have obtained the best
results with the break stage t∗ = 1 and, then, q = |G2| for both
the Nonsymmetric BFC-MS algorithm and the plain use of the Cbc
function of COIN-OR.

5. CONCLUSIONS

A modeling approach and an exact Branch-and-Fix Coordination
algorithmic framework, so-called Nonsymmetric BFC-MS, is
being proposed in the full version of the paper for solving multi-
stage mixed 0-1 & combinatorial problems under uncertainty in
the parameters. The 0-1 and continuous variables can also appear
at any stage. The approach treats the uncertainty by scenario
cluster analysis, allowing the scenario tree to be nonsymmetric.
This last feature has not been considered in the literature that
we are aware of. However, in our opinion, it is crucial for
solving medium and large scale problems, since the real-life mixed
integer optimization problems under uncertainty that, at least, we
have encountered have very frequently nonsymmetric scenarios
to represent the uncertainty. We can observe (1) the efficiency
of using the preprocessing techniques (i.e., probing and Gomory
and clique cuts identification and appending schemes) and (2)
the astonishing small computing time required by the proposed
algorithm, such that it clearly outperforms the plain use of the
optimization engine of choice.
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ABSTRACT

In this paper we introduce a scenario cluster based Lagrangean De-
composition (LD) scheme for obtaining strong lower bounds to the
optimal solution of two-stage stochastic mixed 0-1 problems. At
each iteration of the Lagrangean based procedures, the traditional
aim consists of obtaining the optimal solution value of the corre-
sponding Lagrangean dual via solving scenario submodels once
the nonanticipativity constraints have been dualized. Instead of
considering a splitting variable representation over the set of sce-
narios, we propose to decompose the model into a set of scenario
clusters. We compare the computational performance of several
Lagrangean dual schemes, as the Subgradient Method, the Vol-
ume Algorithm and the Progressive Hedging Algorithm for differ-
ent number of the scenario clusters and different dimensions of the
original problem. Our computational experience shows how the
bound value and its computational effort depend on the number of
scenario clusters to consider. In any case, the computational expe-
rience reported in this extended abstract (as well as the extensive
one reported in the full paper) shows that the scenario cluster LD
scheme outperforms the traditional LD scheme for single scenarios
both in lower bounds’s quality and computing effort. All the pro-
cedures have been implemented in a C++ experimental code that
uses the open source optimization engine COIN-OR, for solving
the auxiliary LP and mixed 0-1 cluster submodels. We also give
computational evidence of the model tightening effect that prepro-
cessing techniques have in stochastic integer optimization as well,
by using the probing and Gomory and clique cuts identification
and appending schemes of the optimization engine of choice.

Keywords: Stochastic integer programming, Lagrangean decom-
position, Subgradient, Volume, Progressive hedging algorithm, Sce-
nario clusters

1. INTRODUCTION

In this work we consider a general two-stage stochastic mixed 0-1
problem. The uncertainty is modeled via a finite set of scenarios
ω = 1, ..., |Ω|, each with an associated probability of occurrence
wω , ω ∈ Ω. The traditional aim in this type of problems is to
solve the so-called Deterministic Equivalent Model (DEM), which
is a mixed 0-1 problem with a special structure, see e.g. [1] for
a good survey on some mayor results in the area obtained dur-
ing the last decade. A Branch-and-Bound algorithm for problems

having mixed-integer variables in both stages is designed in [2],
among others, by using Lagrangean relaxation for obtaining lower
bounds to the optimal solution of the original problem. A Branch-
and-Fix Coordination (BFC) methodology for solving such DEM
in production planning under uncertainty is given in [3, 4], but
the approach does not allow continuous first stage variables or 0-
1 second stage variables. We propose in [5, 6] a BFC algorith-
mic framework for obtaining the optimal solution of the two-stage
stochastic mixed 0-1 integer problem, where the uncertainty ap-
pears anywhere in the coefficients of the 0-1 and continuous vari-
ables in both stages. Recently, a general algorithm for two-stage
problems is described in [7]. We study in [8] several solution meth-
ods for solving the dual problem corresponding to the Lagrangean
Decomposition (LD) of two-stage stochastic mixed 0-1 models.
At each iteration of these Lagrangean based procedures, the tra-
ditional aim consists of obtaining the optimal solution value of
the corresponding parametric mixed 0-1 Lagrangean dual problem
via solving scenario submodels once the nonanticipativity con-
straints (NAC) have been dualized, and the parameters (i.e., the
Lagrangean multipliers) are updated by using different subgradi-
ent based methodologies.

Instead of considering a splitting variable representation over the
set of scenarios, in this paper we propose to decompose the model
into a set of scenario clusters. For different choices of the num-
ber of scenario clusters we computationally compare the solution
given by the plain use of the optimization engine COIN-OR, see
[9], against various schemes for solving the Lagrangean dual prob-
lems. After this comparison we observe that very frequently the
new bounds give the optimal solution to the original problem. More-
over, the performance of the scenario cluster LD scheme outper-
forms the LD scheme based on single scenarios in both the bounds’s
quality and computing effort. These successful results may open
the possibility for tightening the lower bounds of the solution at
the candidate Twin Node Families in the exact BFC scheme for
both two-stage and multistage types of problems.

2. TWO-STAGE STOCHASTIC MIXED 0-1 PROBLEM

Let us consider the compact representation of the DEM of a two-
stage stochastic mixed integer problem (MIP),
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(MIP) : zMIP = mincT
1 δ + cT

2 x+ ∑
ω∈Ω

[wω qωT
1 γω +wω qωT

2 yω ]

s.t. b1 ≤ A
(

δ
x

)
≤ b2

hω
1 ≤ T ω

(
δ
x

)
+W ω

(
γω

yω

)
≤ hω

2 ,ω ∈Ω

δ ,γω ∈ {0,1},x,yω ≥ 0,∀ω ∈Ω,

(1)

where the uncertainty in the parameters is introduced by using a
scenario analysis approach, such that a scenario consists of a re-
alization of all random variables in both stages through a scenario
tree. Notice that there are two types of decision variables at each
stage, namely, the set of δ 0-1 and x continuous variables for the
first stage, and the set of γω 0-1 and yω continuous variables for
the second stage. Notice also that for simplifying reasons, the ob-
jective function to optimize in the models dealt with in this paper
is the expected value over the set of scenarios Ω.

Let us suppose that we have selected a set of scenario clusters
for the second stage, whose number is say p̂. In general, given
a scenario tree, p̂ can be chosen as any value between 1 and |Ω|.
Now, we can represent the MIP model (1) by a splitting variable
representation, see [10, 11] among others, where the full model
is included by the p̂ cluster submodels and their related linking
NAC. Additionally, we consider a compact representation for the
Ωp scenarios into each cluster submodel p, where p ∈ {1, ..., p̂},
and |Ωp| defines the size of scenario cluster, p, i.e., the number of
scenarios that belong to the corresponding cluster, for p = 1, ..., p̂.
The scenario clusters are defined in terms of consecutive scenar-
ios, Ω1 = {1, ..., |Ω1|}, Ω2 = {|Ω1|+1, ..., |Ω1|+ |Ω2|},..., Ωp̂ =
{|Ω1|+ ...+ |Ω p̂−1|+1, ..., |Ω|}. The mixed 0-1 submodel to con-
sider for each scenario cluster p can be expressed by the compact
representation,
(MIPp) : zp = minwpcT

1 δ p +wpcT
2 xp + ∑

ω∈Ωp
wω [qωT

1 γω +qωT
2 yω ]

s.t. b1 ≤ A
(

δ p

xp

)
≤ b2

hω
1 ≤ T ω

(
δ p

xp

)
+W ω

(
γω

yω

)
≤ hω

2 ,ω ∈Ωp

xp ≥ 0,δ p ∈ {0,1},γω ∈ {0,1},yω ≥ 0,∀ω ∈Ωp,
(2)

where wp = ∑ω∈Ωp wω denotes the likelihood for scenario cluster
p, and δ p and xp are the variable vectors δ and x for scenario
cluster p. Moreover, the p̂ submodels (2) are linked by the NAC

δ p−δ p′ = 0 (3)

xp−xp′ = 0, (4)

for p, p′ = 1, . . . , p̂ : p 6= p′. So, the mixed 0-1 DEM (1) is equiva-
lent to the splitting variable representation over the set of scenario
clusters,

(MIP) : zMIP = ∑p̂
p=1 zp

s.t.
(5)

δ p−δ p+1 ≤ 0, ∀p = 1, ..., p̂−1,
δ p̂ ≤ δ 1

xp−xp+1 ≤ 0, ∀p = 1, ..., p̂−1, .
xp̂ ≤ x1.

(6)

Observe that the NAC (3)-(4) have been represented as the set of
inequalities (6), in order to avoid the use of non-signed vectors
of Lagrangean multipliers in the dualization of such constraints,
see below. Additionally, notice that for p̂ = 1, the model (5)-(6)
coincides with the mixed 0-1 DEM in the compact representation
(1), and for p̂ = |Ω| we obtain the splitting variable representation
via scenarios.

3. SCENARIO CLUSTERING IN SCENARIO TREES

The scenario cluster Lagrangean Decomposition (LD) of the mixed
0-1 DEM, (MIP) model (5)-(6), for a given set of scenario clus-
ters and a given nonnegative vector of Lagrangean multipliers µ =

(µδ ,µx), is the µ-parametric mixed 0-1 minimization model (7) in
(δ ,x,γ,y) with objective function value zLD(µ, p̂). Let us denote
this model as (MIPp̂

LD(µ)).

(MIP p̂
LD(µ)) : zLD(µ, p̂) = min

p̂

∑
p=1

[wpcT
1 δ p +wpcT

2 xp+

+ ∑
ω∈Ωp

wω [qωT
1 γω +qωT

2 yω ]]+

+
p̂−1
∑

p=1
µ p

δ (δ
p−δ p+1)+µ p̂

δ (δ
p̂−δ 1)+

+
p̂−1
∑

p=1
µ p

x (xp−xp+1)+µ p̂
x (xp̂−x1)

(7)

s.t. b1 ≤ A
(

δ p

xp

)
≤ b2, p = 1, ..., p̂

hω
1 ≤ T ω

(
δ p

xp

)
+W ω

(
γω

yω

)
≤ hω

2 ,ω ∈Ωp, p = 1, ..., p̂

xp ≥ 0,δ p ∈ {0,1},∀p = 1, ..., p̂

yω ≥ 0,γω ∈ {0,1},∀ω ∈Ωp, p = 1, ..., p̂

It is well known that (MIPp̂
LD(µ)) is a relaxation of (MIP), since (i)

the feasible set of (MIPp̂
LD(µ)) contains the feasible set of (MIP),

and (ii) for any (δ ,x,γ,y) feasible for (MIP) and any µ ≥ 0 and
1 < p̂≤ |Ω|, it results that zLD(µ, p̂)≤ zMIP. Notice that if p̂ = 1,
for any µ ≥ 0, zLD(µ,1)= zMIP by definition of the compact repre-
sentation. Then, it follows that the optimal value zLD(µ, p̂), which
depends on µ is a lower bound of the optimal value of (MIP), zMIP
for any choice of p̂, with 1 < p̂≤ |Ω|.

Definition 1. For any choice of p̂, with 1 < p̂ ≤ |Ω|, the problem
of finding the tightest Lagrangean lower bound on zMIP is

(MIPLD) : zLD = max
µ≥0

zLD(µ, p̂).

It is called Lagrangean dual of (MIP) relative to the (complicating)
NAC (6), and p̂ denotes the number of scenario clusters.

It can be shown, see [16], that the Lagrangean decomposition gives
equal or stronger bounds of the solution value of the original prob-
lem than the Lagrangean relaxation of the constraints related to
any of the scenario clusters to be decomposed. See also [14].

Given a choice of the set of p̂ scenario clusters, the µ-parametric
(MIPp̂

LD(µ)) model (7) must be solved, where the parametric vec-
tor (µ) = (µδ ,µx) is given. Moreover, the corresponding objective
function in (7) can be rewritten as the sum of the objective function
values of smaller submodels, one for each scenario cluster.

zLD(µ, p̂) = min∑p̂
p=2[[w

pcT
1 +(µ p

δ −µ p−1
δ )]δ p+

+ [wpcT
2 +(µ p

x −µ p−1
x )]xp+

+ ∑ω∈Ωp wω [qωT
1 γω +qωT

2 yω ]]+

+ [w1cT
1 +(µ1

δ −µ p̂
δ )]δ

1+

+ [w1cT
2 +(µ1

x −µ p̂
x )]x1+

+ ∑ω∈Ω1 wω [qωT
1 γω +qωT

2 yω ]

(8)

s.t. b1 ≤ A
(

δ p

xp

)
≤ b2, p = 1, ..., p̂

hω
1 ≤ T ω

(
δ p

xp

)
+W ω

(
γω

yω

)
≤ hω

2 , ω ∈Ωp, p = 1, ..., p̂

xp ≥ 0,δ p ∈ {0,1}, ∀p = 1, ..., p̂

yω ≥ 0,γω ∈ {0,1}, ∀ω ∈Ωp, p = 1, ..., p̂

That is, the MIPp̂
LD(µ) model can be decomposed in p̂ smaller

submodels, and its optimal solution value be calculated as the sum
of the related zp

LD(µ
p) values, i.e., the optimal solution value of

each pth scenario cluster model, and p = 1, ..., p̂.
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4. COMPUTATIONAL EXPERIENCE

We have implemented the three procedures: Subgradient method
[17], Volume algorithm [12] and Progresive Hedging Algorithm
[11] in a C++ experimental code. The free optimization engine
COIN-OR is used for solving the linear and mixed 0-1 auxiliary
submodels and the whole model as well. The computational ex-
periments were conducted in a Workstation Debian Linux (kernel
v2.6.26 with 64 bits), 2 processors Xeon 5355 (Quad Core with
2x4 cores), 2.664 Ghz and 16 Gb of RAM. Table 1 gives the di-
mensions of the mixed 0-1 DEM, in compact representation. The
headings are as follows: m, number of constraints; nδ+γ , num-
ber of 0-1 variables; nx+y, number of continuous variables; nel,
number of nonzero coefficients in the constraint matrix; dens, con-
straint matrix density (in %); and |Ω|, number of scenarios. The
testbed used for the reported experimentation is available from the
authors under request.

Table 1: Testbed problem dimensions

Case m nδ+γ nx+y nel dens |Ω|
P1 136 132 132 2112 5.88 32
P2 148 138 138 3984 9.75 32
P3 324 483 327 6440 2.45 80
P4 520 516 516 8256 1.54 128
P5 520 516 516 8256 1.54 128
P6 516 771 519 10280 1.54 128
P7 532 522 522 14736 2.65 128
P8 1290 1290 1290 51400 1.54 128
P9 712 612 612 146496 16.81 128

Table 2: Stochastic Solution

Case zMIP zLP GAP TCOIN TLP zLD
P1 -80.48 -81.14 0.81 0.71 0.01 -73.02
P2 -99.89 -100.42 0.52 1.12 0.02 -90.38
P3 -45.61 -47.48 3.95 256.30 0.03 -4.74
P4 -23.86 -27.19 12.23 10.55 0.05 -13.59
P5 -28.75 -31.71 9.33 16115.80 0.04 -3.17
P6 — -52.77 — — 0.03 -5.27
P7 -218.67 -277.95 21.33 6.33 0.07 -27.79
P8 — -63.76 — — 0.13 -6.37
P9 -1937.85 -2070.47 6.40 2.01 0.36 -5.27
—: Time limit exceeded (7 hours)

Table 2 shows some results of our computational experimentation.
See an extensive computational experience in the full paper [19].
The headings of table 2 are as follows: zMIP and zLP, solution
values of the original stochastic mixed 0-1 problem and its LP re-
laxation, respectively; GAP, optimality gap defined as zMIP−zLP

zLP
(in

%); TCOIN and TLP, elapsed times (in seconds) to obtain the zMIP
and zLP solution values, respectively, by plain use of COIN-OR;
and zLD, upper bound of the optimal solution value of the original
problem.

Table 3 shows some of our main computational results. We present
the Lagrangen bounds that we obtain, with p̂ = 4 scenario clusters,
see the results for other choices of the number of clusters in the full
paper. The headings are as follows: zSUB, zVOL, and zPHA, lower
bounds of the optimal solution for the original problem obtained
by the Subgradient Method (SUB), Volume Algorithm (VOL) and
Progressive Hedging Algorithm (PHA), respectively; TSUB, TVOL
and TPHA elapsed times (in seconds) to compute the related La-
grangean bounds; and, finally, nitSUB, nitVOL and nitPHA, number
of iterations to compute the corresponding bounds.

The results in bold font are those where the Lagrangean bound
coincides with the optimal solution value of the original stochastic

Table 3: Lagrangean bounds with p̂ = 4 scenario clusters

zSUB TSUB nitSUB
P1 -80.48 7.42 35
P2 -99.89 3.72 20

zVOL TVOL nitVOL
P1 -80.48 7.54 37
P2 -99.94 0.99 5

zPHA TPHA nitPHA
P1 -80.48 15.25 72
P2 -99.89 5.66 30

zSUB TSUB nitSUB
P3 -45.61 22.09 35

zVOL TVOL nitVOL
P3 -45.61 28.04 41

zPHA TPHA nitPHA
P3 -45.64 31.44 53

zSUB TSUB nitSUB
P4 -23.86 23.65 21
P5 -28.76 21.86 10
P6 -49.79 16.10 0
P7 -218.67 0.66 0
P8 -61.63 10593.90 29
P9 -1937.85 2.19 0

zVOL TVOL nitVOL
P4 -23.86 235.52 202
P5 -28.75 926.75 362
P6 -49.79 16.54 0
P7 -218.67 0.66 0
P8 -61.76 1212.43 3
P9 -1937.85 0.53 0

zPHA TPHA nitPHA
P4 -23.86 32.89 32
P5 -28.76 68.24 33
P6 -49.79 16.26 0
P7 -218.67 0.60 0
P8 -61.60 22071.50 59
P9 -1937.85 0.42 0

integer problem. Notice that in general all the Lagrangean bounds
obtained are very close to the optimal solution value, so, they are
very good bounds, and are obtained after few iterations (zero, in
many cases).

We propose to use preprocessing and probing techniques [15] and
schemes for identifying and appending Gomory cuts and clique
cuts [18] before solving the scenario cluster mixed 0-1 submodels.
As it is well known, due to the tightening of these models, it is
possible to reduce the LP feasible space without eliminating any
feasible integer solution that potentially could become the opti-
mal one. The difference in computing time by using preprocessing
compared with the alternative that does not use it can be crucial
in the whole procedure for obtaining good bounds for large scale
instances with affordable computing effort. However, a very good
performance of the Volume Algorithm has been reported in [13]
for a highly combinatorial problem as it is the stochastic set pack-
ing problem.

5. CONCLUSIONS

In this paper we have presented a scenario cluster based Lagrangean
Decomposition (LD) scheme for obtaining strong lower bounds to
the optimal solution of two-stage stochastic mixed integer prob-
lems, where the uncertainty appears anywhere in the coefficients
of the 0-1 and continuous variables in the objective function and
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constraints in both stages. For obtaining the bounds we have used
three popular subgradient based schemes, namely, the traditional
Subgradient Method, the Volume Algorithm and the Progressive
Hedging Algorithm. Based on the computational results that we
have presented (and the extensive computational experience re-
ported in the full paper), we can draw some conclusions: (1) Very
frequently the new bounds give the optimal solution to the original
problem; (2) The performance of the scenario cluster LD scheme
outperforms the LD scheme based on single scenarios in both the
bounds’s quality and computing effort; and (3) it is difficult for the
new Lagrangean multipliers updating schemes to outperform the
traditional Subgradient Method in this type of problems.
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ABSTRACT

The Positive Edge is a new pricing rule for the Primal Simplex: it
identifies, with a probability error less than or equal to 2−62 in dou-
ble precision binary floating-point format, variables allowing for
non-degenerate pivots. These are identified directly from a short
calculation on the original coefficients of the constraint matrix. If
such a variable has a negative reduced cost, it strictly improves the
objective function value when entered into the basis. Preliminary
computational experiments made with CPLEX and COIN-OR show
its high potential.

Keywords: Linear programming, Simplex, Degeneracy

1. INTRODUCTION

Consider the following linear programming problem (LP) in stan-
dard form

minimize c>x subject to: Ax = b, x≥ 0, (1)

where x,c ∈ Rn, A ∈ Rm×Rn, and b ∈ Rm. We are interested in
problems for which the basic solutions are highly degenerate, that
is, for which the number of non-zero variables is much less than
m, the size of the basis. In that case, the Primal Simplex algorithm
is likely to encounter degenerate pivots and possibly to cycle. To
avoid cycling, several pivot rules and right-hand side perturbation
methods have been proposed, e.g., [2, 10, 1, 6, 9]. However, these
do not strongly improve the performance of the Primal Simplex
algorithm. Another way is by using the steepest edge criterion [5]
which computes the improvement of the cost function for possible
entering variables. Hence, if one exists, it selects a variable with a
non-degenerate pivot. However, this requires a significant amount
of CPU time.

Pan [7] proposes the use of a reduced problem with a smaller num-
ber of constraints and variables. The method starts with an initial
basic solution and identifies its p non-zero basic variables. Con-
straints are split in two: set P where the basic variables takes a
positive value and set Z where the basic variables are zero. Vari-
ables are also split in two sets. Compatible variables are those
for which all values are zero in the updated simplex tableau for
constraint indices in Z, other variables are said to be incompati-
ble. The m− p constraints in Z are temporarily removed to leave

a smaller constraint matrix with only p rows. To preserve feasibil-
ity, incompatible variables are also removed to form the reduced
problem. Since the p× p basis of the reduced problem is non-
degenerate, the next pivot is automatically non-degenerate. The
resulting reduced problem is solved to optimality over the com-
patible variables and the reduced costs are computed by means of
its dual variables. In Pan’s method, dual variables of LP corre-
sponding to the m− p eliminated constraints are arbitrarily set to
zero. Next, incompatible variables are considered. If such a vari-
able is to become basic, some of the eliminated constraints must
be reintroduced in the reduced problem. When compared to his
own implementation of the primal simplex algorithm, [7] reports
speed-up factors of 4 to 5.

In a column-generation framework (which can be seen as a Primal
Simplex approach), authors of [3] propose a Dynamic Constraint
Aggregation (DCA) method for the solution of the linear relaxation
of set partitioning problems. Considering only the p non-zero ba-
sic variables, the DCA method identifies identical rows (composed
of zeros and ones) of the corresponding columns. In the constraint
aggregation phase, a single constraint per row-group remains in
the reduced problem. Authors show that, once the reduced prob-
lem has been solved, the dual variable of a kept constraint is equal
to the sum of the dual variables of the corresponding row-group. A
full set of dual variables is recovered by distributing adequately the
values of the dual variables of the reduced problem. For set parti-
tioning problems, this is done by solving a shortest-path problem.
These dual variables are used to price out the generated columns,
allowing for updates of the constraint aggregation. On a set of
large-scale bus driver scheduling problems, DCA reduces the solu-
tion time by a factor of more than 23 over the classical column-
generation method.

The Improved Primal Simplex (IPS) method of [4] combines ideas
from the reduced problem of Pan [7] and from DCA [3] to solve
linear programming problems. Considering only the p non-zero
basic variables, IPS identifies a set of p rows that are linearly inde-
pendent and removes from the reduced problem all the other m− p
constraints. As in [7], the reduced problem is solved using the
compatible variables only. Next, a complementary problem is con-
structed and solved to prove that the current solution of the reduced
problem is optimal for LP, otherwise it selects a set of incompat-
ible variables to be introduced into the current reduced problem.
Authors of [4] show that when the solution of the reduced prob-
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lem is not optimal for LP, the re-optimization after adding all the
incompatible variables of the chosen set strictly decreases the ob-
jective function value. Indeed, they show that in that case, there
exists a convex combination of the selected incompatible variables
that is compatible with respect to the reduced problem, hence with
a strictly positive step size.

The complementary problem contains all the incompatible vari-
ables and its coefficient matrix is created at the same time as the
reduced problem. Both problems are built according to a modifica-
tion of the original constraint matrix. Indeed, this modified matrix
(which is the result of an updated simplex tableau) is obtained by
multiplying A by the current inverse of the basis matrix. The com-
plexity of computing this modified matrix for the identification of
the compatible variables is O(m2n). The computational results of
[8] show that, on medium-sized instances (m≈ 5000, n≈ 25 000),
IPS is faster than the primal simplex algorithm of CPLEX by factors
ranging from 5 to 20. However, on large-scaled problems (m ≈
100 000, n ≈ 450 000), constructing the reduced and the comple-
mentary problems is too costly compared to the Primal Simplex
algorithm itself.

2. THE POSITIVE EDGE RULE

As in IPS, the Positive Edge rule gives priority to non-degenerate
pivots. However, compatible variables that form the reduced prob-
lem are identified directly from the original constraint matrix A
instead of from the modified matrix obtained by multiplying it by
the inverse of the basis. Determining which variables are com-
patible is done in O(mn), i.e., O(m) for each variable, the same
complexity as for the reduced cost computation of such a variable.
Obviously, as in IPS, one might have to execute some degenerate
pivots to reach optimality.

3. COMPUTATIONAL EXPERIMENTS

Preliminary computational experiments made with CPLEX show
its high potential. We designed a simple algorithm using two exter-
nal procedures: one identifies variables that allow for non-degene-
rate pivots while the other identifies variables with negative re-
duced cost. These are sent to the Primal Simplex algorithm of
CPLEX. It has been tested on fourteen medium-sized aircraft fleet
assignment instances (5000 constraints and 25 000 variables), two
large-scale manpower planning problems (100 000 constraints and
450 000 variables), and nine PDS instances from the Mittelmann
library. All these problems are highly degenerate. On the first

group, our algorithm is 7.4 times faster than CPLEX on average
and the number of pivots is almost reduced by a factor 2. On the
second and third groups, it is 50% faster and the number of pivots
is decreased by 2.4 and 3.6, respectively. It has also been tested on
Fome12 and Fome13 from the Mittelmann library. For these two
highly dense problems, our simple implementation failed.

The recent integration of the positive edge rule within the primal
simplex code of COIN-OR prevents such cases by eliminating the
external procedures and taking advantage of partial pricing strate-
gies. Computational experiments show that the positive edge can
help in solving difficult LPs in about half of the time required with
the Devex rule.
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ABSTRACT

The intensity modulated radiation therapy (IMRT) treatment plan-
ning problem is usually divided in three smaller problems that are
solved sequentially: geometry problem, intensity problem, and re-
alization problem. There are many models and algorithms to ad-
dress each of the problems satisfactorily. However, the last two
problems can not be seen separately, because strong links exist
between them. In practice, the linkage between these problems is
done, most of the time, by rounding, which can lead to a significant
deterioration of the treatment plan quality. We propose a combi-
natorial optimization approach and use a binary genetic algorithm
to enable an improved transition from optimized to delivery flu-
ence maps in IMRT treatment planning. A clinical example of a
head and neck cancer case is used to highlight the benefits of using
a combinatorial optimization approach when linking the intensity
problem and the realization problem.

Keywords: Radiotherapy, IMRT, Fluence Map Optimization, Com-
binatorial Optimization

1. INTRODUCTION

The goal of radiation therapy is to deliver a dose of radiation to the
cancerous region to sterilize the tumor minimizing the damages
on the surrounding healthy organs and tissues. In the inverse plan-
ning of radiation therapy, for a prescribed treatment plan, a corre-
spondent set of parameters (beams and fluences) is algorithmically
computed in order to fulfil the prescribed doses and restrictions.
Inverse treatment planning allows the modeling of highly complex
treatment planning problems and optimization has a fundamental
role in the success of this procedure. An important type of inverse
treatment planning is IMRT where the radiation beam is modulated
by a multileaf collimator (MLC) that enables the transformation of
the beam into a grid of smaller beamlets of independent intensities
(see Figure 1). Despite the illustration of Figure 1, beamlets do
not exist physically. Their existence is generated by the movement
of the leaves of the MLC that block part of the beam during por-

tions of the delivery time. The MLC has movable leaves on both
sides that can be positioned at any beamlet grid boundary. In the
“step and shoot mode", considered here, the leaves are set to open
a desired aperture during each segment of the delivery and radia-
tion is on for a specific fluence time or intensity. This procedure
generates a discrete set (the set of chosen beam angles) of intensity
maps like in Figure 1.

Figure 1: Illustration of a beamlet intensity map.

A common way to solve the inverse planning in IMRT optimiza-
tion problems is to use a beamlet-based approach. This approach
leads to a large-scale programming problem with thousands of
variables and hundreds of thousands of constraints. Due to the
complexity of the whole optimization problem, many times the
treatment planning is divided into three smaller problems which
can be solved separately: geometry problem, intensity problem,
and realization problem. The geometry problem consists of find-
ing the minimum number of beams and corresponding directions
that satisfy the treatment goals using optimization algorithms (see,
e.g., [1]). After deciding which beam angles should be used, a
patient will be treated using an optimal plan obtained by solving
the intensity problem - the problem of determining the optimal
beamlet weights for the fixed beam angles. Many mathematical
optimization models and algorithms have been proposed for the
intensity problem, including linear models (e.g., [2]), mixed inte-
ger linear models (e.g., [3]), nonlinear models (e.g., [4]), and mul-
tiobjective models (e.g., [5]). After an acceptable set of intensity
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Structure Mean Dose Max Dose Prescribed Dose
Spinal cord – 45 Gy –
Brainstem – 54 Gy –
Left parotid 26 Gy – –
Right parotid 26 Gy – –
PTV left – – 59.4 Gy
PTV right – – 50.4 Gy
Body – 70 Gy –

Table 1: Prescription dose for the target volumes and tolerance
doses for the organs at risk.

maps is produced, one must find a suitable way for delivery (re-
alization problem). Typically, beamlet intensities are discretized
over a range of values (0 to 7, e.g.) and one of the many existing
techniques (see, e.g., [6]) is used to construct the apertures and in-
tensities that approximately match the intensity maps previously
determined.

Most of the research published relates to each of the above prob-
lems separately. However, there is the need to link well the three
problems. While the linkage between the geometry problem and
the intensity problem is straightforward, the linkage between the
intensity problem and the realization problem is all but simple and
may lead to significant deterioration of plan quality.

The outcome of the intensity problem is a set of optimal fluence
maps (one for each fixed beam) that can be represented by real ma-
trices whose entries correspond to each beamlet intensity. These
matrices, solutions of the intensity problem, cannot be directly im-
plemented, because of hardware constraints. The matrices have to
be transformed to accommodate hardware settings, with a result-
ing degradation of the plan quality. The process of converting an
optimal fluence map into a set of MLC segments is called segmen-
tation. Segmentation needs to receive as input integer matrices,
that are obtained by the discretization of each beamlet intensity
over a range of values. This discretization, typically done by sim-
ple rounding of the optimized beamlets, is one of the main causes
for deterioration of plan quality. This subject is poorly documented
in literature (see [7], e.g.) and the general idea transmitted is that
deterioration is mainly caused by segmentation issues. The lack of
criteria to increase or reduce a beamlet intensity should be avoided
since all optimization effort is jeopardized by doing so. Using a
clinical example of a head and neck cancer case, numerical ev-
idence of the resulting deterioration of plan quality is presented
next.

2. ILLUSTRATION OF PLAN QUALITY
DETERIORATION USING A HEAD & NECK CLINICAL

EXAMPLE

A clinical example of a head and neck case is used to verify the
deterioration caused by the rounding of the optimal fluence maps.
In general, the head and neck region is a complex area to treat with
radiotherapy due to the large number of sensitive organs in this re-
gion (e.g. eyes, mandible, larynx, oral cavity, etc.). For simplicity,
in this study, the OARs used for treatment optimization were lim-
ited to the spinal cord, the brainstem and the parotid glands. The
tumor to be treated plus some safety margins is called planning
target volume (PTV). For the head and neck case in study it was
separated in two parts: PTV left and PTV right (see Figure 2). The
prescribed doses for all the structures considered in the optimiza-
tion are presented in Table 1.

In order to facilitate convenient access, visualization and analysis
of patient treatment planning data, the computational tools devel-
oped within Matlab [8] and CERR [9] (computational environment
for radiotherapy research) were used as the main software platform

Figure 2: Structures considered in the IMRT optimization visual-
ized in CERR.

Level level intensity beamlet intensity range
0 0.0000 [0.0000 ; 1.2857)
1 2.5714 [1.2857 ; 3.8571)
2 5.1429 [3.8571 ; 6.4286)
3 7.7143 [6.4286 ; 9.0000)
4 10.285 [9.0000 ; 11.571)
5 12.857 [11.571 ; 14.142)
6 15.428 [14.142 ; 16.714)
7 18.000 [16.714 ; 18.000]

Table 2: Beamlet distribution to correspondent intensity level for
7 levels.

to embody our optimization research and provide the necessary
dosimetry data to perform optimization in IMRT.

A linear model was used to perform IMRT optimization on this
case [7]. Our tests were performed on a 2.66Ghz Intel Core Duo
PC with 3 GB RAM. We used CERR 3.2.2 version and MATLAB
7.4.0 (R2007a). The dose was computed using CERR’s pencil
beam algorithm (QIB) with seven equispaced beams in a copla-
nar arrangement, with angles 0o, 51o, 103o, 154o, 206o, 257o and
309o, and with 0o collimator angle. To address the linear problem
we used one of the most effective commercial tools to solve large
scale linear programs – Cplex[10]. We used a barrier algorithm
(baropt solver of Cplex 10.0) to tackle our linear problem.

In order to acknowledge the degree of plan quality deterioration,
results obtained for the optimal fluence maps were compared with
the fluence maps obtained after rounding optimal intensities using
7 levels and 5 levels. In Tables 2 and 3 we have the beamlet in-
tensity range for each intensity level. By decreasing the number
of levels, the segmentation problem will be simplified resulting in
more efficient delivery. However, by decreasing the number of lev-
els the beamlet intensity range will increase, potentiating a more
expressive deterioration of results. In the best case scenario for
both levels there are no differences between the optimal intensities
and the rounded intensities. However, for the worst case scenario,
for 7 levels the difference between the optimal and the rounded in-
tensity for each beamlet is 1.2857 and for 5 levels that difference
is 1.8.

The quality of the results can be perceived considering a variety of
metrics and can change from patient to patient. Typically, results
are judged by their cumulative dose-volume histogram (DVH).
The DVH displays the fraction of a structure’s volume that re-
ceives at least a given dose. An ideal DVH for the tumor would
present 100% volume for all dose values ranging from zero to the
prescribed dose value and then drop immediately to zero, indicat-
ing that the whole target volume is treated exactly as prescribed.
Ideally, the curves for the organs at risk would instead drop imme-
diately to zero, meaning that no volume receives radiation.
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Level level intensity beamlet intensity range
0 0.0000 [0.0000 ; 1.8000)
1 3.6000 [1.8000 ; 5.4000)
2 7.2000 [5.4000 ; 9.0000)
3 10.800 [9.0000 ; 12.600)
4 14.400 [12.600 ; 16.200)
5 18.000 [16.200 ; 18.000]

Table 3: Beamlet distribution to correspondent intensity level for
5 levels.

In Figure 3, DVH curves for tumor volumes and parotids are pre-
sented for optimal fluences obtained by the linear model and for
the rounded optimal intensities when using 5 and 7 levels. DVH
curves for OARs other than parotids only suffer residual changes
with the rounding procedure. By simple inspection of Figure 3 we
can observe the deterioration of the results from the transition of
the optimal fluence maps to the rounded ones. That deterioration
affect mostly the PTVs and is aggravated when fewer levels are
considered, i.e., when faster delivery is aimed.

Another metric usually used considers prescribed dose that 95%
of the volume of the PTV receives (D95). Typically, 95% of the
prescribed dose is required. D95 is represented in Figure 3 with an
asterisk and we can observe that the rounded fluences fail to meet
that quality criteria. Note that no segmentation was done and the
observed deterioration is exclusively caused by the rounding of the
optimal fluence maps.

3. COMBINATORIAL OPTIMIZATION APPROACH

After obtaining an optimal fluence map, and defining the num-
ber of levels of intensity to consider, we need to decide to which
level of intensity each beamlet should be assigned to. The typi-
cal approach is to decide based on smaller distance and assign the
level intensity closer to the optimal fluence (rounding). However,
that decision criteria can put two beamlets with very close opti-
mal intensities in distinct levels of intensity. Moreover, in such
a complex large-scale optimization process, with such interdepen-
dence between beamlet intensity values, increasing or reducing the
intensity of a beamlet should not be based on distance to closest in-
tensity level. An alternative decision criteria is to decide between
the two boundary levels of the optimal beamlet intensity, based on
a dose-volume response, rather than on a distance criteria.

The combinatorial optimization problem of deciding, based on a
dose-volume criteria, to which neighbor intensity level a beamlet
intensity should be assigned to, can be stated as a binary optimiza-
tion problem. Let xopt denote the vector of the optimal beamlet
intensities obtained in the end of the intensity problem. Let xround

denote the vector of the usual rounded intensities and let xtrunc

denote the vector of the truncated intensities, i.e., the vector of
the intensities corresponding to the smaller intensity value of the
two neighbor level intensities. The difference of intensity levels
between xround and xtrunc is a binary vector, where each 1 repre-
sents a choice of an upper level of intensity, and each 0 represent a
choice of an under intensity level. The combinatorial optimization
problem can be stated as

min f (x)
x binary,

where f (x) is a penalty function of the distances between the DVH
curves for xopt and DVH curves for xtrunc + x× (levels range).

This formulation originates a large combinatorial optimization prob-
lem. For the head and neck problem introduced in the previous
section, the number of beamlets is 1613, which means we have
21613 = 3.6423E485 possibilities to consider. The magnitude of

(a)

(b)

Figure 3: DVH for ideal optimal fluence using LP vs 7 and 5 level
for right PTV and PRT – (a) and DVH for rounded fluence using
LP vs 7 and 5 level for left PTV and PRT– (b).

those numbers implies that both an exhaustive approach and an
exact approach (branch and bound) are inviable.

There exists a number of heuristics to address successfully this
problem. Here, we used a tailored version of binary genetic al-
gorithms (using the Genetic Algorithm Optimization Toolbox of
MATLAB).

In Figure 4, DVH curves for PTV’s and parotids are presented for
optimal fluences obtained by the linear model, for the rounded op-
timal fluences using 7 levels of intensity, and the fluences obtained
by the resolution of the combinatorial optimization problem us-
ing the binary genetic algorithm. Again, DVH curves for OARs
other than parotids only suffer residual changes. Even for parotids,
DVH differences are not significative. However, looking at the
DVH curves for PTV’s we can see the benefit of the combinatorial
optimization approach on the improvement of the rounded solu-
tion. That improvement is particularly notorious in Figure 4(a),
for DVH curve of PTV right, since the DVH curve of the rounded
LP fluences failed to meet the criteria of having 95% of the vol-
ume of the PTV receiving 95% of the prescribed dose. Not only
the DVH curves of the optimal CO fluences for PTV right meet
that criteria (DVH curve is over the asterisk) but they are almost as
good as the DVH curves for the optimal LP fluences. The benefit
of the combinatorial optimization approach on the improvement of
the rounded solution is amplified when using less intensity levels.
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(a)

(b)

Figure 4: Cumulative dose volume histogram comparing the op-
timal beamlets obtained by the linear model (optimal LP), the
rounded optimal beamlets using 7 levels (rounded LP), and the
beamlets solution of the combinatorial optimization problem (op-
timal CO), for PTV right – (a) and PTV left – (b).

4. CONCLUSION

A common way to solve the inverse planning in IMRT optimiza-
tion problems is to use a beamlet-based approach. This approach
leads to a large-scale programming problem, with thousands of
variables and hundreds of thousands of constraints, and as a con-
sequence, typically, the treatment planning is divided into three
smaller problems which can be solved separately: geometry prob-
lem, intensity problem, and realization problem. That division
has the consequence of causing a plan quality deterioration arising
from the transition between the intensity problem and realization
problem. Typically, after the optimal beamlet intensities are deter-
mined, they are discretized over a range of values using a distance
criteria (rounding). However, that decision criteria is not appro-
priate and can lead to severe plan quality deterioration. Here, we
propose an alternative decision criteria based on a dose-volume re-
sponse. That criteria has physical meaning and originates a combi-
natorial optimization problem of deciding, based on a dose-volume

criteria, to which intensity level a beamlet intensity should be as-
signed. A binary genetic algorithm was used to solve the combina-
torial optimization problem. A head and neck clinical example was
used to test the ability of the proposed formulation and resolution
method to obtain improved plans compared to the usual rounding
procedure. The results obtained did improve the rounded solution,
with a clear increase of the plan quality. Although these results
were obtained for a particular clinical example, and using a linear
model to solve the intensity problem, we believe that the transition
using this combinatorial approach can always improve the usual
transition between the intensity problem and the realization prob-
lem, regardless the model used to solve the intensity problem and
the clinical case at hand. Future work includes the development of
tailored binary combinatorial algorithms, suited to tackle the prob-
lem at hand more efficiently, both in terms of final solution and in
terms of computational time.
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ABSTRACT

Demographic change towards an ever aging population entails an
increasing demand for specialized transportation systems to com-
pliment the traditional public means of transportation. Typically,
users place transportation requests specifying a pickup and a drop
off location and a fleet of minibuses or taxis is used to serve these
requests. Those systems are usually referred to as demand respon-
sive transportation systems. The underlying optimization problem
can be modeled in terms of a dial-a-ride problem. In the dial-a-
ride problem considered in this article, total routing costs are min-
imized while respecting time window, maximum user ride time,
maximum route duration, and vehicle capacity restrictions. We
propose a hybrid large neighborhood search algorithm and com-
pare different hybridization strategies on a set of benchmark in-
stances from the literature.

Keywords: Dial-a-ride, Large neighborhood search, Hybrid

1. INTRODUCTION

Demand responsive transportation services are requested, e.g. in
remote rural areas, where no general public transportation systems
exist, as a complementary service to available public transporta-
tion systems for the elderly or disabled, or in the area of patient
transportation to and from hospitals or other medical facilities.
All these services involve the transportation of persons who place
transportation requests, specifying an origin and a destination lo-
cation. The underlying optimization problem is usually modeled
in terms of a dial-a-ride problem (DARP). The field of dial-a-
ride problems has received considerable attention in the literature.
However, due to the application oriented character of this problem,
the objectives considered as well as the constraints imposed vary
considerably. Rather recent surveys covering dial-a-ride problems
and demand responsive transportation are due to Cordeau and La-
porte [1] and Parragh et al. [2].

In the DARP considered in this article, the objective corresponds
to the minimization of the total routing costs. A homogeneous
fleet of vehicles of size m has to serve a given set of transportation
requests n. These are all known in advance of the planning. In
the following we will refer to the origin or pickup location of a
request i by i, and to its destination or drop off location by n+ i.
Users specify time windows for either the origin or the destina-
tion. In a addition, maximum user ride times, route duration limits,
and vehicle capacity constraints have to be considered in the plan-
ning. This version of the DARP has been considered by Cordeau
and Laporte [3], who propose a tabu search heuristic and a set of
20 benchmark instances, and by Parragh et al. [4], who develop a
competitive variable neighborhood search heuristic. A formal def-

inition of the problem can be found in [5], where a branch-a-cut
algorithm is proposed that solves instances with up to 36 requests.

In recent years, the field of hybrid metaheuristics, and matheuris-
tics in particular, has received more and more attention [6, 7]. In
the field of vehicle routing, metaheuristic and column generation
hybrids have shown to be especially successful: Prescott-Gagnon
et al. [8] propose a branch-and-price based large neighborhood
search algorithm for the vehicle routing problem with time win-
dows; heuristic destroy operators are complimented by a branch-
and-price based repair algorithm. Muter et al. [9], on the other
hand, propose a hybrid tabu search heuristic, where the column
pool is filled with feasible routes identified by the tabu search. The
search is then guided by the current best lower and upper bound;
the current best lower bound is obtained from solving the linear
relaxation of a set covering type formulation on the current col-
umn pool; the current best upper bound is computed by impos-
ing integrality on the decision variables. The resulting method is
also tested on benchmark instances for the vehicle routing problem
with time windows.

Given its success for several vehicle routing problems [10], and the
pickup and delivery problem with time windows in particular [11],
we investigate and compare different hybridization strategies of
large neighborhood search (LNS) and column generation (CG) in
the context of the DARP.

2. SOLUTION METHOD

In the following we first describe LNS and CG. Thereafter, we
introduce different hybridization schemes.

2.1. Large neighborhood search

LNS has been introduced by Shaw [12]. Its principle is relatively
simple: in each iteration the incumbent solution is partially de-
stroyed and then it is repaired again; that is, first a given number
of elements are removed and these elements are then reinserted.
Every time these operations lead to an improved solution, the new
solution replaces the incumbent solution, otherwise it is discarded.

Ropke and Pisinger [11] propose to use a number of different de-
stroy and repair operators; in this article, we use the following
(they are all based on [11]): random removal, worst removal, re-
lated removal, greedy insertion, and k-regret insertion.

Before a removal operator is applied to the incumbent solution,
the number of requests to be removed q has to be determined. In
our case, in each iteration, q is chosen randomly between 0.1n
and 0.5n. Then, one of the destroy operators is randomly se-
lected. The random removal operator randomly removes q re-
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quests from the incumbent solution. The worst removal oper-
ator randomly removes requests while biasing the selection to-
wards requests whose removal would improve the objective func-
tion value the most. Finally, the related removal operator removes
related requests. Two requests i and j are said to be related if
(|Bi−B j|+ |Bn+i−Bn+ j|+ ti j + tn+i,n+ j) is small; ti j denotes the
distance between location i and j; and Bi the beginning of service
at i.

In a next step, a solution that has been partially destroyed is re-
paired again. We randomly choose a repair operator among greedy
insertion, 2-regret insertion, 3-regret insertion, 4-regret insertion
and m-regret insertion; see [11] for further details.

In order to further diversify the search we allow solutions that de-
teriorate the incumbent solution by at most 3% to be accepted with
a probability of 1%. In order to facilitate switching between LNS
and exact components, in a first step, we decided to refrain from
using more sophisticated acceptance schemes.

Furthermore, following the findings of [11], in each iteration, we
randomly choose if the selected repair operator is used in its deter-
ministic or in its randomized version. If the randomized version is
selected, every time the evaluation function is called, it randomly
chooses a noise factor in [0.5,1.5] and multiplies the original in-
sertion costs by it.

Finally, like in [4], every time a new solution is generated and it
is at most 5% worse than the current best solution, the new solu-
tion undergoes local search based improvement; we refer to [4] for
details on this procedure.

2.2. Column generation

In order to use column generation based components, we formu-
late the DARP in terms of a set covering problem. Let Ω denote
the set of feasible routes and let P denote the set of requests. The
parameter m denotes the number of available vehicles. For each
route ω ∈ Ω, let cω be the cost of the route and let the constant
biω represent the number of times vertex i ∈ P is traversed by ω .
Binary variable yω takes value 1 if and only if route ω is used in
the solution. The problem can thus be formulated as the following
set-covering problem (SCP):

min ∑
ω∈Ω

cω yω (1)

subject to

∑
ω∈Ω

biω yω ≥ 1 ∀i ∈ P, (2)

∑
ω∈Ω

yω ≤ m, (3)

yω ∈ {0,1} ∀ω ∈Ω. (4)

Replacing (4) by,

yω ≥ 0 ∀ω ∈Ω, (5)

we obtain the linear relaxation of SCP denoted as LSCP.

Due to the large size of Ω, LSCP cannot be solved directly. In-
stead, a restricted version of LSCP, denoted as RLSCP, considering
only a small subset of columns Ω′ ⊂Ω, is solved. Usually, the set
Ω′ is generated using column generation. In column generation,
in each iteration, the column or route that is associated with the
smallest negative reduced cost value is searched. The according
problem is usually referred to as the subproblem whereas RLSCP
is denoted as the master problem. In our case, the reduced cost of
a given column is computed as follows:

c̄ω = cω −∑
i∈P

biω πi−σ , (6)

where πi denotes the dual variable associated with constraint (2)
for index i, and σ the dual variable associated with constraint (3).
The solution of the master and the subproblem are iterated until no
more negative reduced cost columns can be found. In this case, the
optimal solution of LSCP has been found. The column generation
concept can also be exploited in a heuristic way. In the following,
we describe how we intend to use it.

2.3. Hybridization schemes

We investigate three hybridization schemes. In all schemes, all
feasible routes identified by LNS are added to the common column
pool Ω′. We apply the following column pool management. In the
case where a column already exists, the new column replaces the
old one if the new column is associated with lower routing costs;
otherwise, the old column is kept and the new column is discarded.

In the first hybridization scheme (denoted as h1), in addition to the
above described destroy and repair operators, a destroy and a re-
pair operator taking into account dual information are introduced.
Before executing either of the two operators, the RLSCP is solved
on the current column pool. The destroy operator works in a simi-
lar way as the worst removal operator; but instead of the difference
in cost, selection is biased towards requests with a high πi value.
The repair operator also uses this idea. It sequentially inserts all
currently not routed requests ordered with respect to their πi val-
ues, at the the best possible position.

In the second hybridization scheme (denoted as h2) we follow
ideas of [13]. Every 1000 iterations we interrupt the LNS and we
solve RSCP, that is the restricted integer set covering problem, on
the current column pool. Since we solve a set covering problem
and not a set partitioning problem, requests might appear on more
than only one route. In this case, duplicated requests are sequen-
tially removed in a greedy way and LNS resumes the search from
this solution.

The third hybridization scheme (denoted as h3) is always com-
bined with h2. Here we propose to use additional heuristic col-
umn generators that take into account dual information to popu-
late the column pool. These column generators are called in the
same frequency as RSCP. Since they use dual information in order
to find routes of negative reduced cost, RLSCP has to be solved
as well. We use several different column generators. The simplest
one works in a similar way as the new repair operator and gener-
ates a new route from scratch. A second more sophisticated gen-
erator uses ideas from variable neighborhood search [14]. It con-
siders one route at a time. The size of a neighborhood is defined
as the percentage share of requests that is removed, inserted from,
or swapped with requests currently not on this route. It starts from
each route part of the current optimal solution of RLSCP; in ad-
dition, it considers the new route that was generated from scratch,
an empty route, and a randomly generated route. The third column
generator uses ideas from LNS and works in a similar way as the
LNS based column generator introduced in [15]. It is only called
if the first two column generators are not able to find columns of
negative reduced cost.

In Algorithm 1, we outline the LNS and the different hybridization
schemes.

3. PRELIMINARY RESULTS

The algorithm was implemented in C++ and for the solution of the
set covering problems CPLEX 12.1 together with Concert Tech-
nology 2.9 was used. All tests were carried out on a Xeon CPU at

ALIO-EURO 2011 – 178



Proc. of the VII ALIO–EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4–6, 2011

Algorithm 1: LNS hybridization schemes
1: generate a feasible starting solution s
2: sbest := s
3: initialize column pool Ω′
4: repeat
5: randomly choose a destroy Hd and a repair heuristic Hr
6: [h1:also choose from heuristics based on dual information]

7: apply first Hd and then Hr to s yielding s′

8: add columns to Ω′
9: if s′ is better than sbest then

10: sbest := s′

11: s := s′

12: else if s′ meets the acceptance criteria then
13: set s := s′

14: end if
15: [h3: every 1000 iterations solve RLSCP on Ω′
16: generate columns by heuristic column generators
17: add columns to Ω′]
18: [h2: every 1000 iterations solve RSCP on Ω′ yielding s∗

19: sbest := s∗

20: s := s∗]
21: until some stopping criterion is met
22: return sbest

2.67 GHz with 24GB of RAM (shared with 7 other CPUs). In
the following we describe the test data set and then the results
obtained. Note that the results reported in this article, although
promising, are of preliminary nature. Additional parameter tuning
tests and improvements of the implementation are still necessary.

3.1. Test instances

Cordeau and Laporte [3] proposed a data set of 20 randomly gener-
ated instances. They contain 24 to 144 requests. In each instance,
the first n/2 requests have a time window on the destination, while
the remaining n/2 instances have a time window on the origin. For
each vertex a service time di = 10 was set and the number of per-
sons transported per request was set to 1. Routing costs and travel
times from a vertex i to a vertex j are equal to the Euclidean dis-
tance between these two vertices. The instances are split into two
parts. In the first 10 instances, narrow time windows are consid-
ered. For the second 10 instances, wider time windows are given.
The route duration limit was set to 480, the vehicle capacity to 6,
and the maximum ride time to 90, in all instances.

3.2. Comparison of the different hybridization schemes

We test all of the different hybridization strategies and benchmark
them against pure LNS as described above. In all experiments,
LNS is run for 25000 iterations. In setting LNS+ h1, in addition
to the heuristic destroy and repair operators, the dual information
based ones are used. In setting LNS+ h2, every 1000 iterations
RSCP is solved. In setting LNS+ h1+ h2, both of the above hy-
bridization schemes are used and in setting LNS+ h1+ h2+ h3,
all three hybridization schemes are employed.

In Table 1, the different results on a per instance level are given.
The best values per column and instance are marked in bold. The
results displayed are average values over five random runs per in-
stance. Comparing LNS and LNS+h1, it is not clear if the dual in-
formation based operators, proposed in h1, are contributing to the
search in a positive way; purely heuristic LNS seems to be the bet-
ter option. Hybridization scheme h2, on the other hand, definitely
has a positive impact on the overall performance; it obtains most

of the per instance average best results. On a total average level, it
ties with LNS+h1+h2. This seems to indicate that in combination
with h2, h1 does not have a negative impact on the overall perfor-
mance of the method. It even has a slightly positive impact in the
case of the largest instances of the first half of the data set. Last
but not least, we also tested a combination of all three hybridiza-
tion schemes. In the table it is denoted as LNS+h1+h2+h3. The
total average value associated with this method is comparable to
the total average values of LNS+h2 and LNS+h1+h2. On a per
instance level, it obtains the best per instance average results for
the largest instances in the second part of the data set.

In comparison to the variable neighborhood search proposed in [4],
both solution quality as well as run times are comparable. The
deviations of the latter three settings from the average results of
the variable neighborhood search are less then 0.5% on average.
So far, we were able to improve one best known solution.

4. CONCLUSIONS AND OUTLOOK

As noted above, the presented results are of very preliminary char-
acter. They do, however, indicate that the different hybridiza-
tion schemes have a positive impact on the overall performance
of the solution method. At the moment it seems as if hybridization
scheme h2 increases the performance the most; but also the other
two schemes show positive potential.

Further tests with different parameter settings are still needed in
order to fully understand the interplay between the heuristic and
the different column generation based components. In addition,
an adaptive layer as in [11] and a simulated annealing [16] based
acceptance scheme should be incorporated into the LNS, to fur-
ther improve its performance as a stand alone method. Finally,
using ideas of [9], we also plan to investigate different guiding
mechanisms that allow the search to switch between the different
components as needed.
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ABSTRACT

Elective surgery planning is an important problem for any hos-
pital. In particular, in Portugal, this problem reaches a level of
great importance as it has direct relation with an efficient use of
the operating theater, which also results on reducing waiting lists
for surgery. Thus, a better surgical suite planning has economic
and social impact. Both outcomes appear as guidelines of the Por-
tuguese National Health Plan for 2004-2010. The authors present
an integer linear programming model approach developed to ad-
dress the elective surgery planning problem of a hospital in Lisbon,
as well as results obtained with real data from the hospital. The re-
sults are analyzed in view of the impact on productivity indicators
of the surgical suite and, as a consequence, on the hospital’s wait-
ing list for surgery.

Keywords: Health Care, Operating rooms, Elective case schedul-
ing, Integer Programming

1. INTRODUCTION

The health sector has been progressively affected by increasingly
restrictive budgets that not only call for an urgent need to promote
a resource rationalization practice among hospitals but, above all,
the demand for greater efficiency in the use of resources and in the
performance of each service. The surgical suite is widely regarded
as hospital’s central engine as it has a direct impact in many other
hospital departments, such as surgical wards and recovery units
[1, 2]. As such, it is deemed a priority to improve the efficiency of
this component. On the other hand, improvement of the surgical
suite’s efficiency may lead to increased productivity, in terms of
the number of surgeries undertaken, thus contributing to a reduc-
tion in surgery waiting lists. Costs involved in keeping a patient
on the waiting list for surgery are high, at both prevention and
maintenance levels, even more so as considering the user’s quality
of live. In addition, according to Portugal’s General Direction of
Health [3], reducing surgery waiting list is one of the priorities of
the National Health Service (SNS). Cutting down waiting lists for
surgery is beneficial in many respects, at human and scientific, as
well as economic levels.

This work focuses on a general, central and university hospital in
Lisbon, incorporated within the Portuguese National Health Ser-
vice. It has no maternity or outpatient emergency service and
performs about 5 000 surgeries per year. The hospital has five
surgical specialties. Its surgical suite has six operating theaters,
one of which is reserved for ambulatory surgeries. Although all
rooms in the surgical suite are equipped with the same basic equip-
ment, the practice of this hospital is to daily assign the rooms for
conventional surgeries to surgical specialties. Between two surg-
eries performed in the same room, cleaning and disinfecting pro-
tocols, performed by auxiliary staff and taking about 30 minutes
must take place. Each operating room has a fixed and permanent
nursing team assigned throughout the surgical suite’s regular time.
Each patient is assigned to a surgeon at waiting list booking time
and, therefore, when planning, patient and surgeons are already
assigned. Currently, the surgical suite’s regular work schedule is
between 8 am and 8 pm, from Monday to Friday. Surgery plan-
ning is performed on a weekly base and is finalized on Friday for
the following week. The problem considers daily and weekly op-
erating time limits for each surgeon, different priorities related to
the surgeries and surgeons’ unavailability.

In the literature, there are other integer programming approaches to
surgeries’ scheduling [4, 5, 6, 7, 8] and some heuristic approaches
to the same problem [9, 10]. The specificities of the different cases
under study are the most relevant factor contributing to the diver-
sity of each work in this area.

2. MATHEMATICAL MODEL

The problem described in the previous section consists of schedul-
ing elective surgeries for a day, a room and a starting time pe-
riod, with a weekly planning horizon. Since surgeries are non-
preemptive jobs, starting time variables were considered in formu-
lating the problem [11]. Thus, the decision variables used in the
model are: xsrtd = 1, if surgery s starts at the beginning of period
t on day d in room r. Additional variables were also considered
to register, on a daily basis, the surgical specialty assigned to each
operating room: y jrd = 1, if a surgery of specialty j starts in room
r on day d.
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In response to the urgent need of improving efficiency in resources
utilization of the operating theater, the model objective function
maximizes surgical suite occupation. The model constraints re-
flect the structure of the problem as presented in the previous sec-
tion. There are constraints forcing the higher priority surgeries to
be scheduled on Monday. Other constraints oblige surgeries of
the following level of priority to be scheduled during the planning
week, and the remaining surgeries may be scheduled or not dur-
ing the planning week. There are constraints assuring that differ-
ent surgeries do not overlap in the same room. These constraints
also impose empty periods for room cleaning at the end of each
surgery. An additional set of constraints provides the possibility to
consider surgeons’ or patients’ unavailability periods. Constraints
preventing assignment of more than one surgery specialty to each
room and day are also included. Therefore, it is not permitted to
exchange surgery specialty in the room during the day. It is also
ensured that surgeons do not overlap between rooms in the same
time period and day. In the real situation of the hospital involved,
surgeons may exchange operating rooms. On the one hand, this ex-
change is feasible as the rooms are physically side by side. On the
other hand, permission to exchange operating rooms by surgeons
allows them to work in another operating room during hygiene
periods in the previous room (about 30 minutes idle). Daily and
weekly operating time limits for each surgeon are also considered.

If the hospital objective was to reduce the waiting list for surgery,
the same set of constraints could be used. Only the objective func-
tion should be changed to the maximization of the number of surg-
eries planned.

The model objective function and constraints are all linear, thus
resulting in a binary integer programming model.

3. SOLVING APPROACH

The problem is highly complex and attains a large dimension in
hospital real instances [12]. Hence, the elective surgeries’ schedul-
ing problem was decomposed into two hierarchical phases accord-
ing to the nature of surgeries: conventional surgeries are planned in
the first phase and ambulatory surgeries are planned in the second
phase. The first planning phase generates a high dimension prob-
lem, while the second one is of rather reduced dimension. The
output of the conventional planning phase is included as input for
the ambulatory surgery planning to ensure feasibility of the whole
week’s planning due to common resources (surgeons) between the
two planning phases.

In each planning phase, an integer linear programming solver is
used with limited time. If solver times out without optimality, the
best feasible integer solution obtained is improved using a simple
improvement heuristic.

4. COMPUTATIONAL RESULTS

The solution approach was tested with real data from the hospital,
for seven planning weeks of 2007. The binary integer program-
ming models were solved using CPLEX 11.0 with CONCERT 2.5
[13, 14]. The improvement heuristic was coded in C++ language.
All tests were performed in a Core2 Duo, 2.53 GHz computer with
4GB of RAM. Time limit to run the model with Cplex was set to
30 000 seconds.

The proposed approach originated a valid surgical plan for all tested
weeks, producing a potential surgical suite occupation rate in reg-
ular time superior to 75%, well above the corresponding rate cur-
rently obtained in hospital planning (under 40%). Furthermore,
this approach also achieves to improve the waiting list reduction
rate of the hospital surgical plans, which shows that the hospi-

tal surgical plans are clearly dominated by the corresponding pro-
posed surgical plans with respect to these two conflicting criteria.

A similar approach can be used if we consider the objective to be
the waiting list reduction. In this case, we also improve the waiting
list reduction rate (above 11%) of the hospital surgical plans (under
6%), with a potential surgical suite occupation rate in regular time
superior to 64%.

The previous results clearly show that the two criteria considered
are conflituous. In the first case, longer surgeries are planned (with
less cleaning periods) contrary to what happens in the second case
where shorter surgeries are chosen.

Detailed results will be presented and discussed at the talk.

5. FINAL REMARKS

The approach employed allowed the authors to obtain an operat-
ing plan for each one of the seven weeks tested. The operating
plans obtained are feasible and meet the necessary requirements
imposed by the hospital in question. This approach enables the
hospital surgical suite to be more efficiently used, thus achieving
the purpose of the study undertaken and responding to the hospital
management’s interest. Moreover, the methodologies developed
have also an impact on reducing the waiting list for surgery.
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ABSTRACT

Integrated production and distribution planning has received a lot
of attention throughout the years and its economic advantages over
a decoupled approach is well documented. However, for highly
perishable products this integrated approach has to include, fur-
ther than the economic aspects, the intangible value of customers’
willingness to pay, which is related to product freshness. Hence,
in this work we explore, through a multi-objective framework, the
potential advantages of integrating these two intertwined planning
problems at an operational level for this kind of products. We for-
mulate integrated and decoupled models for the case where perish-
able goods have a fixed and a loose shelf-life in order to test our
hypothesis. An illustrative example is used to interpret the models
and the results show that the economic benefits derived from using
an integrated approach are much dependent on the freshness level
of products delivered that the planner is aiming at as well as on the
type and degree of perishability the product is subject to.

Keywords: Suppy chain planning, Multi-objective, Perishability

1. INTRODUCTION

Rapidly deteriorating perishable goods, such as fruits, vegetables,
yoghurt and fresh milk, have to take into account the perishability
phenomenon even for the operational level of production and dis-
tribution planning, which has a timespan ranging from one week
to one month. Usually these products start deteriorating from the
moment they are produced on. Therefore, without proper care,
inventories may rapidly get spoiled before their final use making
the stakeholders incur on avoidable costs. The customers of these
products are aware of the intense perishability they are subject to,
and they attribute an intangible value to the relative freshness of
the goods [1]. To evaluate freshness customers rely on visual cues
which may differ among the broad class of perishable products.
Nahmias [2] dichotomized deteriorating goods in two categories
according to their shelf-life: (1) fixed lifetime: items’ lifetime is
pre-specified and therefore the impact of the deteriorating factors
is taken into account when fixing it. In fact, the utility of these
items may decrease during its lifetime, and when passing its life-
time, the item will perish completely and become of no value, e.g.,
milk, inventory in a blood bank, and yoghurt, etc. (2) random life-
time: there is no specified lifetime for these items. The lifetime
for these items is assumed as a random variable, and its probabil-
ity distribution may take on various forms. Examples of items that
keep deteriorating with some probability distribution are electronic
components, chemicals, and vegetables, etc.

When the shelf-life is fixed the most common visual cue that cus-
tomers rely on is the best-before-date (BBD). The BBD can be

defined as the end of the period, under any stated storage condi-
tions, during which the product will remain fully marketable and
retain any specific qualities for which tacit or express claims have
been made. In this case, customers will adapt their willingness to
pay for a product based on how far away the BBD is. On the other
hand, when the expiry date of a product is not printed and then
the shelf-life is loose, customers have to rely on their senses or ex-
ternal sources of information to estimate the remaining shelf-life
of the good. For example, if a banana has black spots or if flow-
ers look wilted, then customers know that these products will be
spoiled rather soon.

In the case of loose shelf-life, especially in the fresh food industry,
manufacturers can make use of predictive microbiology to esti-
mate the shelf-life of these kind of products based on external con-
trollable factors, such as humidity and temperature [3]. To make
concepts clearer, shelf-life is defined as the time period for the
product to become of no value for the customer due to the lack
of the tacit initial characteristics that the product is supposed to
have. Thus, in our case, this period starts on the day the prod-
uct is produced. The determination of shelf-life as a function of
variable environmental conditions has been the focus of many re-
search activities in this field and a considerable number of reliable
models exist, such as the Arrhenius model, the Davey model and
the square-root model. These models take into account the knowl-
edge about microbial growth in decaying food goods under differ-
ent temperature and humidity conditions.

Regarding production and distribution planning, many authors have
shown the economic advantages of using an integrated decision
model over a decoupled approach [4, 5]. These advantages are
believed to be leveraged when the product suffers a rapid deterio-
ration process and hence pushes towards a more connected view of
these intertwined problems. For perishable goods the final prod-
ucts inventory that is usually used to buffer and decouple these
two planning decisions have to be questioned since customers dis-
tinguish between different degrees of freshness and there is an ac-
tual risk of spoilage. In this work, we want to study the potential
advantages of using an integrated approach for operational produc-
tion and distribution planning of perishable goods compared with
a decoupled one. These advantages will be analysed through the
economic and product freshness perspective. We focus on highly
perishable consumer goods industries, with a special emphasis on
food processing, which have to cope with complex challenges,
such as the integration of lot sizing and scheduling, the defini-
tion of setup families considering major and minor setup times
and costs, and multiple non-identical production lines [6]. We are
also interested in understanding if these potential advantages differ
among the two distinct perishable goods classes that we have men-
tioned before: with fixed shelf-life and with loose shelf-life. For
both cases, since we are interested in rapidly deteriorating goods,
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we consider a customer who prefers products with a higher fresh-
ness level. To tackle explicitly this customer satisfaction issue we
embedded our integrated operational production and distribution
planning problem in a multi-objective framework distinguishing
two very different and conflicting objectives of the planner. The
first objective is concerned with minimizing the total costs over
the supply chain covering transportation, production, setup and
spoilage costs. The second one aims at maximizing the fresh-
ness of the products delivered to distribution centres and, therefore,
maximize customers’ willingness to pay [7].

2. PROBLEM STATEMENT

The production and distribution planning problem considered in
this paper consists of a number of plants having dedicated lines
which produce multiple perishable items with a limited capacity
to be delivered to distribution centres. It is relevant to understand
the importance of the design choice of having such a complex sup-
ply chain instead of just considering one plant and multiple distri-
bution centres. As said before, we focus on perishable consumer
goods industries which are known for demanding increasing flex-
ibility in the supply chain planning processes. Thus, to consider
a network of production plants which can add increased flexibil-
ity and reliability to hedge against the complex dynamics of such
industries is crucial. Therefore, although we are tackling an oper-
ational level of decision making for these two planning tasks we
assume a central organizational unit which makes decisions that
are followed directly at a local level. The length of the planning
horizon for such planning problem ranges from one week to one
month.

All product variants belonging to the same family form a block.
Therefore a product can only be assigned to one block. Blocks
are to be scheduled on parallel production lines over a finite plan-
ning horizon consisting of macro-periods with a given length. The
scheduling takes into account that the setup time and cost between
blocks is dependent on the sequence of production (major setup).
The sequence of products in a block is set a priori due to natural
constraints in this kind of industries. Hence, when changing the
production between two products of the same block only a minor
setup is needed that is not dependent on the sequence, but only on
the product to be produced.

In order to consider the initial stock that might be used to fulfil
current demand it is important to have an overview of the inventory
built up in each macro-period due to perishability concerns. The
length of the horizon that needs to be considered is related to the
product with the longest shelf-life. One shall consider an integer
multiple X of past planning horizons that is enough to cover the
longest shelf-life, i.e. X = dmaxũk

T e, where ũk is a conservative
value for shelf-life of product k.

A macro-period is divided into a fixed number of non-overlapping
micro-periods with variable length. Since the production lines
can be scheduled independently, this is done for each line sepa-
rately. It is important to notice that each line is assigned to a plant.
The length of a micro-period is a decision variable, expressed by
the production of several products of one block in the respective
micro-period on a line and by the time to set up the block in case
it is necessary. A sequence of consecutive micro-periods, where
the same block is produced on the same line, defines the size of
a lot of a block through the quantity of products produced during
these micro-periods. Therefore, a lot may aggregate several prod-
ucts from a given block and may continue over several micro and
macro-periods. Moreover, a lot is independent of the discrete time
structure of the macro-periods. The number of micro-periods of
each day defines the upper bound on the number of blocks to be
produced daily on each line.

There is no inventory held at production plants. Thus, at the end
of each day the production output is delivered to distribution cen-
tres (DCs), which have an unlimited storage capacity. The deliv-
ery function is assured by a third-party logistics (3PL), and we
assume that it charges a flat rate per pallet transported between a
plant and a DC. Moreover, it is assumed that the 3PL is able to
cope with whatever distribution planning was decided beforehand
and, hence, there is no capacity restriction for transportation. The
distances between production plants and distribution centres are
small enough so that the product is delivered on the same day it
is produced. Therefore, the decrease of freshness during the trans-
portation process is considered to be negligible. The small distance
assumption is quite realistic in supply chains of highly perishable
goods where the distribution centres are not very far away from
the production plants. For our purposes these assumptions shall
not pose a problem since we are still considering directly the most
important cost drivers for transportation services: distance, quan-
tity and service level. The demand for an item in a macro-period at
a distribution centre is assumed to be dynamic and deterministic.

The problem is to plan production and distribution so as to mini-
mize total cost and maximize mean remaining shelf-life of prod-
ucts at the distribution centres over a planning horizon.

3. RESULTS

To understand the trade-off present in the two developed models
(fixed and loose shelf-life) regarding total costs and product fresh-
ness as well as the differences between using an integrated over
a decoupled approach for production and distribution planning an
illustrative example was developed.

In this instance there are four products to be scheduled and pro-
duced on two production lines that are located in two different
production plants. Each of these products belongs to a different
block and therefore there is always sequence dependent setup time
and cost to consider when changing from one product to another.
Moreover, although the first line is able to produce every prod-
uct, the second one is not able to produce all of the products.
The production lines are considered similar and, therefore, vari-
able production costs are neglected. The number of micro-periods
per macro-period was set at the constant value of four allowing the
production of all products in a macro-period. The capacity of each
line is the same in all macro-periods and every production plant.
The planning horizon is ten days (macro-periods) and the shelf-life
of products varies considerably among them, from highly perish-
able ones (one day) to others which can last throughout the entire
planning horizon. Demand has to be satisfied in two different DCs
and products can be transported between any pair production plant
– DC. Initial stock was set to zero in both DCs. In case shelf-life is
not fixed, there are three different temperature levels possible to be
chosen at each DC influencing its duration. Finally, a sensitivity
analysis regarding the perishability impact was conducted and dif-
ferent scenarios where shelf-lives and decay rates are varied were
analysed.

3.1. Fixed Shelf-Life (Case 1)

In this section results for the case where the shelf-life is fixed are
presented. In Figure 1 the Base scenario solutions of the Pareto-
optimal fronts for both the integrated and decoupled approach are
presented.

It is rather clear from the comparison of the Pareto fronts that the
integrated approach strongly dominates the decoupled one. Both
curves have a similar behaviour, which means that for the lower
values of freshness just a small increase in costs fosters signifi-
cantly the remaining shelf-life of delivered products. Nevertheless,
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Figure 1: Pareto-optimal fronts of the illustrative example when
using an integrated and a decoupled approach (Case 1).

when we are approaching a strict Just-in-Time (JIT) accomplish-
ment of the demand, touching very high freshness standards, the
costs start to increase in a more important way. Furthermore, it is
interesting to notice that the savings in costs when using an inte-
grated approach over a decoupled one tend to fade when we aim
at an increased freshness. This may be explained by the fact that
to achieve very high freshness standards almost no inventory is
allowed since we are working under in a JIT policy, this will con-
strain so much the solution space that the integrated and coupled
solutions are rather the same. Finally, in Figure 2 we perform a
sensitivity analysis regarding the perishability settings. The per-
centage saving of using an integrated approach over a decoupled
one is plotted for the three scenarios. In order to calculate the sav-
ing both Pareto fronts (integrated and decouple approach) were es-
timated through a second-order polynomial regression which has
a good fit to the experimental data with all R2 above 90%.

Figure 2: Total percentage saving when using a integrated ap-
proach over a decoupled one for three scenarios (Case 1).

The potential savings of using an integrated approach over a de-
coupled one are rather considerable for the fixed-shelf-life case
and, independently of the scenario, the behaviour over the remain-
ing shelf-life is quite similar. For the scenario with highly perish-
able products the savings can ascend up to 42% when aiming at
70% of remaining shelf-life.

When comparing the three scenarios it is observable that the ad-
vantages of using an integrated approach are leveraged by the de-
gree of perishability the goods are subject to. In fact, when we are
planning using a decoupled approach and the products are subject
to intense perishability, the myopic mistakes incurred in produc-
tion planning will be hardly corrected by the distribution process
because the buffer between those activities is reduced by the small
amount of time that goods can stay stored. Therefore, the advan-
tages of using an integrated approach are boosted considerably for
this scenario. On the other hand, when dealing with products with
low perishability the buffer enables the possibility of correcting the

potential production mistakes and the integrated approach has less
comparative advantage.

3.2. Loose Shelf-Life (Case 2)

In this section we focus on the case where the shelf-life is loose.
In Figure 3 the results of the Pareto fronts for both integrated and
decoupled approach are presented. These solutions concern the
Base scenario.

Figure 3: Pareto-optimal fronts of the illustrative example when
using an integrated and a decoupled approach (Case 2).

As it happened with the results of Case 1, the Pareto front related to
the integrated approach strongly dominates the one corresponding
to the decoupled approach. It is interesting to note that both Pareto
fronts are non-convex. The other reasoning made before for Case
1 regarding the behaviour of the fronts also applies to this case.

As done before for Case 1, in Figure 4 the results of the sensitiv-
ity analysis to understand the effect of different perishability set-
tings is presented. The percentage saving of using an integrated
approach over a decoupled one is plotted for the three scenarios.

Figure 4: Total percentage saving when using a integrated ap-
proach over a decoupled one for three scenarios (Case 2).

Unlike Case 1 the savings are not as bold and the maximum saving
ascends to 20% for an average remaining shelf-life of about 65%
in the Base scenario, which is still rather remarkable. Neverthe-
less, the behaviour of both saving curves (from Case 1 and Case 2)
is very similar. The explanation for the difference in the amount of
savings between the fixed and loose shelf-life case may lie in the
fact that for the loose shelf-life case the distribution process has
much more freedom to influence both costs and specially product
freshness. Hence, for the decoupled approach even after the pro-
duction process has fixed the production quantities, the distribution
process is still able to compensate potential mistakes through the
decisions on temperature of storage.

Looking to the differences between the three scenarios it is inter-
esting to notice that in this case the reasoning is not as straightfor-
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ward as in Case 1. Here, the two extreme scenarios have a similar
behaviour for different reasons. The scenario with products sub-
ject to low perishability has a rather humble saving when using
an integrated approach for the same reasons as in Case 1. Hence,
since the time buffer between production and distribution is rather
large the advantages of using an integrated approach are hindered.
In the scenario having products with a high perishability the ex-
planation for the relative low saving is related to the possibility of
correcting freshness problems coming from a myopic production
planning in the decoupled approach through controlling the tem-
perature of storage in the distribution planning. When products
are highly perishable a small decrease in the storage temperature
will entail a strong percentage augmentation of shelf-life. Hence,
fi in a product with 7 days of shelf-life we are able to augment
it to 8 days through storing it at cooler temperature, then the per-
centage increasing of shelf-life is not very significant. But, if the
product is highly perishable, then an absolute increase of one day
will reflect a strong percentage increase. Therefore, the scenario
with products subject to intermediate perishability (Base scenario)
is the one which gains more from an integrated approach.

4. CONCLUSIONS

In this paper, we have discussed the importance of integrating the
analysis for a production and distribution planning problem deal-
ing with perishable products. The logistic setting of our opera-
tional problem is multi-product, multi-plant, multi-DC and multi-
period. We have developed models for two types of perishable
products: with fixed shelf-life and with loose shelf-life, always
taking into account that customers attribute decreasing value to
products while they are aging until they completely perish. The
novel formulations allow a comprehensive and realistic understand-
ing of these intertwined planning problems. Furthermore, the loose-
shelf-life model was able to incorporate the possibility of dealing
with the underlying uncertainty of a random spoilage process with
the help of predictive microbiology. To understand the impact of
the integrated approach in both the economic and the freshness
perspective a multi-objective framework was used. Since the for-
mulations for the loose shelf-life case were not possible to solve
with standard solvers, even for a small example, a simple heuristic
was developed for these cases.

Computational results for an illustrative example show that the
Pareto front of the integrated approach strongly dominates the Pareto

front of the decoupled one for both classes of perishable products.
The economic savings that this coupled analysis entail is smoothed
as we aim to deliver fresher products. Nevertheless, in the fixed
shelf-life case for a 70% mean remaining shelf-life of delivered
products we may reach savings around 42%. The explanation re-
garding the fact that the gap between the integrated and the decou-
pled approach tends to smooth for very high freshness standards,
may be due to the reason that in the latter case no inventory is al-
lowed since we are working completely under a JIT policy, turning
the problem at hand so constrained that the integrated and cou-
pled solutions are rather the same. The multi-objective framework
proved to be essential to draw these multi-perspective conclusions.
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ABSTRACT

We consider the design of a two-echelon production distribution
network with multiple manufacturing plants, customers and a set
of candidate distribution centers. On this study we incorporate
uncertainty on the demand of the customers which is represented
through scenarios.

As well, there are several transportation options available for each
pair of facilities between echelons. Each option represents a type
of service with associated cost and time parameters leading an
inverse correspondence between them. This tradeoff is handled
through a bi–objective optimization model, where the involved
objectives should be minimized. One criterion minimizes the ex-
pected cost of facility location, transportation, and the penalty for
unmet demand. The other criterion looks for the minimum time
to transport the product along any path from the plants to the cus-
tomers.

An estimated Pareto robust front is found using several tabu searches.
Preliminary experiments show the computational effect.

Keywords: Robust optimization, Multiobjective optimization, Sup-
ply chain, Metaheuristic, Tabu search

1. INTRODUCTION

In this study, we address the design of a supply chain of a two–
echelon distribution system. The supply chain planning decisions
can be classified as those concerning inventory, transportation and
facility location [1]. This work is devoted to facility location and
the selection of transportation modes, where both define the distri-
bution network in the supply chain.

Network design decisions determine the supply chain configura-
tion and have a significant impact in logistic costs and responsive-
ness [2]. For instance, facility location has a long term impact in
the supply chain because of the high cost to open a facility or to
move it. While cost related to opening a new facility and inventory
pooling costs induce to reduce the number of facilities, responsive-
ness causes a contrary effect. A high number of facilities may re-
duce the lead time to deliver a product to the final customer. In cer-
tain products lead time can be viewed as an added value so that the
firm that makes them available first can obtain short and long term
competitive advantages in the market. As it can be seen, facility lo-
cation decisions play a critical role in the strategic design of supply
chain networks. For more details, a recent review on this topic can
be found at [3]. The authors highlight the facility location models
incorporated inside the supply chain management (SCM) frame-
work, in particular, the integration of location decisions with other

decisions relevant to the design of a supply chain network (typical
decisions as capacity, inventory, procurement, production, routing,
and the choice of transportation modes). As well as strengthen the
missing literature involving uncertainty on the SCM.

In this study we consider a set of potential locations for new distri-
bution centers. Each candidate site has a fixed cost for opening a
facility with a limited capacity. In the supply network the number
and location of plants and customers are known.

There are several transportation options available for each pair
of facilities between echelons. The alternatives are generated by
the supplier from different companies, the availability of different
types of service at each company (e.g. express and regular), and
the use of different modes of transportation (e.g. truck, rail, air-
plane, ship or inter–modal). Commonly, these differences involve
an inverse correspondence between time and cost, i.e. a faster ser-
vice will be more expensive.

In order to balance the economic concerns with prompt demand
satisfaction, our approach is to minimize the total cost and the
maximum time needed for shipping the product across the whole
supply chain, simultaneously.

This bi–objective problem was first introduced by [4] as the “Ca-
pacitated Fixed Cost Facility Location Problem with Transporta-
tion Choices”. In their contribution, the authors consider that all
the design parameters are deterministic.

However, in practice, supply chains are characterized by numer-
ous sources of technical and commercial uncertainties. Critical
parameters as customer demands, prices and future facility capac-
ities are quite uncertain. The fact that meeting customer demand
is what mainly drives most supply chain initiatives motivated us to
study the problem considering that the demand is a random vari-
able whose value is not known at the time of designing the net-
work.

Literature reveals that there are several studies which deal with
uncertainty in supply chain management at different levels. In tac-
tical level supply chain planning we can mention, for example,
some papers related to the distribution of raw materials and prod-
ucts [5, 6]. At the strategic level, there is a great deal of research
in the facility location component of supply chain network design
under uncertainty. A good review can be found in the studies of
[7, 3].

The optimization focus in traditional SCM problems on maximiz-
ing profit or minimizing costs as a single objective [8, 9, 10]. Nev-
ertheless, other criteria to meet customer demand on time such as
customer response time, or fill rate should be taken into account
because they are related to the most basic functions of the SCM:
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to meet customer requirements.

In the last years customer response time related considerations
have been revisited in the distribution network design [11, 12].
Controlling lead time is becoming a competitive advantage for
many firms because of the transformation of the manufacturing–
distribution chains throughout the world. This parameter has ef-
fects on costs and also can be affected by the supply chain config-
uration.

Papers involving an integrated design of supply chain networks un-
der uncertainty and considering several objectives are significantly
smaller in number [13, 14, 15].

As commented in [3] in relation to the type of the objective func-
tion measuring supply chain performance, 75% attempts a cost
minimization function, 16% attempts a profit maximization and
only 9% refers to models with multiple and conflicting objectives.

In this study we assume that the response time is influenced by
the selection of the transportation channel between facilities. The
existence of third party logistic companies allows that different
transportation services are available in the market, so in this paper
we consider several alternatives to transport the product between
facilities, where each option represents a type of service with asso-
ciated cost and time parameters. The implicit assumption is that a
faster transportation mode is also a more expensive one, creating a
tradeoff between cost and time that affects the distribution network
configuration.

The selection of a transportation channel has commonly been lim-
ited to the transportation mode. In an international context, differ-
ent transportation modes are usually a consequence of the natural
options of transportation around the world: by air, by sea or by
land. On this matter, the literature related to supply chain man-
agement allowing several transportation modes to be chosen is too
few, only four papers feature this characteristic on the review given
by [3]. In this study, the term “transportation channel” is more
generic and includes not only choices for the transportation mode
but also for different types of services from one or several trans-
portation companies. Although the principles may be the same,
this distinction is important to describe a more general case.

Therefore, on one side, the objective of this study is to select the
appropriate sites to open distribution centers and determine the
flow between facilities to minimize the total expected cost involv-
ing facility location, transportation and a penalty for unmet de-
mand. The last term describes model infeasibility and represents
unmet demand under some scenario. An application in agile man-
ufacturing is shown in [16].

On the other side, it is desired to minimize the transportation time
from the plant to the customers. This part of the problem deter-
mines which services will be selected in order to reduce the trans-
portation time in each echelon of the supply chain. Hence, the
tradeoff between cost and time creates a bi–objective problem.

Even though there are studies that identify the cost–time tradeoff
as an important element in supply chain design, they do not relate
this balance to the availability of transportation choices between
facilities [17, 18]. In [19], authors use an aggregated function
for time and cost. Although different transportation modes are
included in their model (rail and truck), the problem is to select
between a direct and an inter–modal shipping strategy. They do
not have transportation choices between each pair of locations.

The cost–time trade off, in conjunction with the uncertainty in de-
mands, means that we are handling a novel multi–objective opti-
mization problem under uncertainty. The contribution of this study
is to propose a procedure to find a set of non-dominated robust so-
lutions this problem

2. PROBLEM DESCRIPTION

The “Stochastic Capacitated Fixed Cost Facility Location Problem
with Transportation Choices” (SCFCLP–TC) is based on a two–
echelon system for the distribution of one product in a single time
period. In the first echelon the manufacturing plants send product
to distribution centers (DC). The second echelon corresponds to
the flow of product from the distribution centers to the customers.
The number of customers is known. The number of plants, their
locations and manufacturing capacities are also known. There is
a set of potential locations to open distribution centers. The num-
ber of open DC is not defined a priori. Each candidate site has
a fixed cost for installing a DC, where the DC will have a lim-
ited operational capacity. There are several transportation options
available for each pair of facilities between echelons. Each option
represents a type of service with associated cost and time param-
eters. Each customer has an associated product demand, which
must be supplied from a single DC. The exact demand realization
is not known in advance. Thus, the demand will be considered as
a random variable modeled through scenarios.

Figure 1: Supply Chain Configuration

An improved stochastic programming called robust programming
was presented by [20]. An optimal solution to a robust optimiza-
tion model is defined as solution robust if it remains “close” to
optimal for all scenarios of the input data, and model robust if it
remains “almost” feasible for all data scenarios. In this way, min-
imizing the expected combined cost of transportation and facility
location will lead to a solution robust, while minimizing the ex-
pected cost for unmet demand will contribute to a model robust.
That is, we are penalizing the unmet demand, so in the final solu-
tion the amount of unmet demand will be as small as possible.

The robust optimization model, by design, yield solutions that are
less sensitive to the model data, given that the model measures the
tradeoff between solution and model robustness.

The decision related to the transportation options has an impact on
the transportation time from the plant to the customer. The tradeoff
between cost and time must be considered in the formulation of a
mathematical model that minimizes both criteria simultaneously.
Hence, the problem should be addressed through a bi–objective
optimization model. Following this approach, one criterion mini-
mizes the combined expected cost of transportation, facility loca-
tion, and the penalty for unmet demand. The other criterion looks
for the minimum time to transport the product along any path from
the plants to the customers.

3. METHODOLOGY PROPOSED

Metaheuristics have many desirable features to be an excellent
method to solve very complex SCM problems: in general they are
simple, easy to implement, robust and have been proven highly
effective to solve hard problems [21].
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The procedure for determining an estimated Pareto front is based
in MOAMP [22] which consists on the following three phases:

1. Look for efficient solutions close to the ends of the Pareto
frontier, that is, solutions that approximate to the best solu-
tions of the single-objective problems that result consider-
ing each objective separately

2. Look for additional points inside the efficiency curve, that
is, find the efficient points that represent a good compro-
mise between the distinct objectives considered

3. Intensify the search around the efficient points found in pre-
vious phases

The first phase of MOAMP starts from an arbitrary initial solution
and optimizes, at first, the objective f1. Starting from the last point
visited at the end of this search (usually a local optimum for f1) the
search is conducted again to find the best solution to the problem
with the single objective f2. In the case of two objectives, one
more search is carried out for the objective f1, starting from the
best point found in the last search.

In our implementation, we first build a near optimal solution for
objective f1 and this point is considered as the initial point for
the optimization process for f2. Then, we build a near-optimal
solution for f2 and from this point we start the optimization for f1.

In the second phase we launch several tabu searches using a global
criterion method. In this step, the aim is to minimize a function
that measures the distance to the ideal point following the notion
of compromise programming, on the understanding that is logical
for the decision maker to prefer a solution that is closer to the
ideal point over the one that is farther away. The metric employed
is the L∞ because it has been shown to lead to balanced efficient
solutions, as showed in [22]. In general, a point that minimizes an
Lq (1≤ q≤∞) distance to the ideal point is an efficient point. The
set of all points obtained in this way is called the compromise set.
These have the characteristic of providing a good balance among
the values of the p objective functions.

A graphical representation of the two phases of MOAMP is shown
in figure 2.

Finally, the third phase consists on an intensification process of the
initial Pareto front obtained during the first two phases. Here, each
point on the efficient set is improved via a local search. After each
point is improved the set of efficient points will be the approxima-
tion to the Pareto front provided.

f2

f1

f1
x2

x3

x1

x4

Figure 2: A general framework of the MOAMP procedure for a
biobjective problem

4. DISCUSSION AND EXPERIMENTAL PRELIMINARY
RESULTS

As mentioned before, the first part of MOAMP starts from an “ar-
bitrary point”. In our case, we first build a near optimal solution
for objective f1 and this point is considered as the initial point
for the optimization process for f2. The solution for objective
f1 is made via a GRASP procedure. For constructing a feasible

solution, we proceed in a backward form. Starting from the sec-
ond level of the supply chain, we solve a generalized assignment
problem and apply the procedure developed by [23]. Once the
customer-distribution center assignment has been determined, the
first level of the supply chain gets the structure of a transportation
problem, so we proceed solving that problem to complete a fea-
sible solution. The objective function that guides the construction
of this initial point is a robust function that minimizes the total
expected cost for facility location, transportation and the penalty
for demand unmet. Then, this feasible solution is improved us-
ing a local search procedure, exchanging customers–distribution
centers assignments until it is not possible to get a better solution.

After that, an initial near-optimal solution for f2 is constructed
using also a GRASP procedure. This procedure is similar to the
one designed for constructing a solution for objective f1, however,
the greedy function that guides the search is properly re-defined to
take now into account the time required to transport the products
along the supply chain.

For the intensification phase the same local search used in the
GRASP procedure is applied. All visited points during the searches
conducted on the three phases are checked for inclusion in the set
of non-dominated solutions, which is the output of the algorithm.

In order to validate the proposed algorithm, several computational
experiments have been designed. The first experiment intends to
measure the performance of the method regarding to the size of
the problem. For that purpose preliminary test were conducted on
instances with 3 and 5 plants, 3 and 5 distribution centers, 4 and
8 customers, 2 or 3 transportation channels, and 2 or 3 scenarios.
The second experiment attempts to measure the contribution of
each phase of the proposed method toward the quality of the final
approximation of the efficient set.

5. CONCLUSIONS

In this paper, we have studied a supply chain design problem that
involves uncertainty on the customers’ demands modeled by sce-
narios. Two conflicting objectives are considered: as well as the to-
tal cost, the maximum time needed for shipping the product across
the chain total transportation time, has to be minimized.

We have formulated it by a biobjective model that minimizes the
cost for opening distribution centers, the expected value of the
transportation cost and the expected value for unmet demand. Si-
multaneously, the model minimizes the sum of the maximum lead
time for the plants to the customers through each distribution cen-
ter.

As the model penalizes the unmet demand in the final solution the
amount of unmet demand will be as small as possible.

Taking into account the computational complexity of the addressed
problem we have designed a solution approach based on meta-
heuristics. Preliminary results show the proposed method per-
forms well, but the computational time grows as the numbers of
scenarios increase. Therefore, ongoing work is conducted in order
to improve this.
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ABSTRACT

In this work we present a metaheuristic based on tabu search, de-
signed with the objective of minimizing makespan in a hybrid
flow shop problem. In order to assess the performance of the pro-
posed method we performed tests using both well known bench-
marks and randomly generated instances; preliminary results indi-
cate that the approach is valid.

Keywords: Scheduling, Metaheuristics, Flow Shop, Combinato-
rial Optimization

1. INTRODUCTION

A Hybrid Flow Shop (HFS) consists of series of production stages,
each of which has one or more machines operating in parallel; at
least one stage has multiple machines, and at least one job has
more than one stage. HFS problems appear as a natural extension
of the traditional Flow Shop Problem. With the increasing com-
plexity of modern production systems, the introduction of parallel
machines, as well as additional constraints, are nowadays com-
mon. The HFS problem was initially stated in [1]; surveys of
problems arising in this area and methods for solving them was
provided in [2], [3], and more recently in [4].

In the HFS, each job is processed by one machine in each stage,
and it must go through one or more stages. It can be defined as
follows: there is a set of n jobs to be processed in m stages; all
jobs have the same production direction, from stage 1 to stage m,
and the production times tik of job i at stage k, are known. In this
paper, we make the following further assumptions:

• setup and transportation times between stages are negligi-
ble;

• there are buffers with infinite capacity between stages;

• each machine can only process a job at a given time;

• a job can only be processed by a single machine at each
stage;

• job preemption is not allowed.

While many objective functions are considered in the literature, we
will focus on makespan minimization.

Figure 1 shows an example of an HFS with two machines at the
first and second stages, and three machines at the third stage.

The numerous practical applications of HFS have attracted many
researchers, and many approaches have been developed, from sim-
ple dispatching heuristics to exact methods. Regarding metaheuris-
tics, there are two common exploration strategies: the first is to
find the best job/machine association at each stage, as in [5], the
second—the one we will use in this study—is to consider permu-
tation schedules as in [6]. The main idea is to generate a permuta-
tion that defines the job order at the first stage; in the subsequent

Figure 1: Hybrid Flow Shop example.

stages, jobs join a queue and are loaded to the machines in FIFO
order, being assigned to the first available machine. Although this
approach may fail to find the optimal association of jobs to stage
machines, it is one of the most widely used in practice [7], as it
prevents stock accumulation between stages, and naturally keeps
the work in process at low levels, two important requirements in
modern production systems.

Figure 2 presents an example of a seven job Gantt chart for the
HFS presented in Figure 1. Notice that there is an exchange in
the production order of jobs six and seven from the first to the
second stage; this is due to different orders of arrival to the queues
between those stages.

Figure 2: Gantt chart example.

2. TABU SEARCH

Tabu Search was proposed by Glover [8] as a method to guide
heuristics through the solution space. Its main characteristic is the
avoidance of being trapped in local optima, through the use of a
tabu list: a recent memory record that prevents the repetition of
moves as long as they are kept in the list. This avoids cycling
in many cases (depending on the length of that list), leading the
algorithm to explore promising regions.

Our implementation is based on the insertion neighborhood, and
is relatively problem independent; it can easily be adapted to other
objectives, if required.
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procedure tabuSearch(πinit )
π∗ = πinit # initialize best found solution
π = πinit # initialize incumbent solution
forall πk in π: tabu [πk ] = 0 # initialize tabu list
iter = 0 # iteration counter
while termination criteria not satisfied do

iter = iter+1
select L non-tabu jobs of π
let r be a random integer, rmin ≤ r ≤ rmax
let R be a set of r randomly chosen jobs of L
evaluate N (R,π)
let π ′ be the best neighbor found and π ′b the job selected for insertion
update solution and tabu list
if ob j (π ′)< ob j (π∗) then

π∗ = π ′
forall πk in π ′: tabu [πk ] = 0
tabu [πb ] = iter+1

else
let t be a random integer, 1≤ t ≤ tmax
tabu [πb ] = iter+ t

end if
end while
return π∗

end procedure

Figure 3: Tabu Search pseudocode

2.1. Moves and Neighborhood

Tabu search exploration is based on moving iteratively to a solu-
tion in the neighborhood. In our algorithm we use insertion moves:
given a permutation π and a pair of positions (i, j) , i 6= j, the per-
mutation π ′ obtained by removing job at position i and inserting it
at position j is:

π ′ = π1, . . . ,πi−1,πi+1, . . . ,π j,πi,π j+1, . . . ,πn if i < j;

π ′ = π1, . . . ,π j−1,πi,π j, . . . ,πi−1,πi+1, . . . ,πn if j < i.

Having a set of U jobs we define N (U,π) as the neighborhood
that contains all the possible insertion moves of the jobs in U.

2.2. Tabu list and search strategy

In our implementation the tabu list consists of an array: for each
job i we assign a value tabu [ i ], at iteration iter we say that job
i is tabu if tabu [ i ] > iter. The job πb chosen to perform the
move becomes tabu for t iterations, where 1 ≤ t ≤ tmax. Hence,
we update tabu [πb ] = iter + t, except when the best known so-
lution is improved; in that case, we set tabu [k ] = 0,∀k 6= πb and
tabu [πb ] = iter+1, in order to prevent immediate reversion. Eval-
uating the neighborhood generated by trying insertion among any
consecutive pair of jobs is a demanding computational task, so we
propose a neighborhood restriction: instead of evaluating the com-
plete neighborhood we evaluate a set of r randomly chosen jobs,
with rmin ≤ r ≤ rmax.

To illustrate the behaviour of the algorithm, let us consider the
example from Figure 2. Suppose that at a given iteration we have
as incumbent solution (1,2,3,4,5,6,7). The operations to perform
during a tabu search iteration are the following:

1. find the list of legal (non tabu moves) L; suppose we obtain
L = (1,2,3,4);

2. draw r to find the number of jobs to evaluate; suppose we
obtain r = 2;

3. randomly choose r jobs from L; suppose we choose jobs 1
and 4 so R = (1,4);

4. evaluate N (R,π), i.e., the permutations

(2,1,3,4,5,6,7)
(2,3,1,4,5,6,7)
(2,3,4,1,5,6,7)
(2,3,4,5,1,6,7)
(2,3,4,5,6,1,7)

(2,3,4,5,6,7,1)
(4,1,2,3,5,6,7)
(1,4,2,3,5,6,7)
(1,2,4,3,5,6,7)
(1,2,3,5,4,6,7)
(1,2,3,5,6,4,7)
(1,2,3,5,6,7,4).

Then, we choose the permutation that yields the best objective as
the incumbent solution. Suppose the first permutation is chosen;
in this case, set πb = 1. The final step is to update the tabu list, as
stated previously.

An extensive computational experiment is currenlty being con-
ducted. The results of our method are being compared with the
lower bound of [9] and known heuristics; though the results are
preliminary, quality of the proposed method is very promising,
with respect to other results found in the literature. We also re-
fer that establishing a direct comparison with results from other
authors is very hard, as each reports results based on its own set
of randomly generated instances. In table 1 we present some re-
sults with instances from [10], initialy proposed for the flow shop
problem and available in the Internet. Each instance as n jobs to
be processed on m stages, p is the number of parallel machines
introduced at each stage. LB is the value of the lower bound of
[9], B is the best makespan found by our method and AD is the
average of the relative percentage error D, were D is calculated by
Equation 1.

D =
heusol −LB

LB
.100 (1)

The results are derived from five runs on each instance with a run-
ning time of n.m.45 ms of CPU time in a computer AMD Athlon
64 X2 Dual Core 3800+ with 2Gb of RAM running OS Mandriva
2010 Free. For the problems with 5 and 10 stages we can observe
small values of AD, though they are slightly larger for instances
with 20 stages. To our knowledge, this is the first time results for
this problem with 20 stages are presented.

p=2 p=4
inst n m LB B AD LB B AD

ta001 20 5 688 721 5.41 428 459 7.57
ta011 10 885 1009 14.44 657 737 12.48
ta021 20 1332 1578 19.11 1237 1261 2.10
ta031 50 5 1395 1405 0.77 756 756 0.44
ta041 10 1572 1713 9.66 931 1052 13.64
ta051 20 2077 2430 17.59 1430 1658 16.58
ta061 100 5 2766 2803 1.47 1443 1468 1.93
ta071 10 2961 3058 3.71 1606 1737 8.61
ta081 20 3202 3720 16.79 1948 2270 17.26
ta091 200 10 5533 5603 1.61 2898 2966 3.22
ta101 20 5756 6290 10.05 3167 3569 13.81
ta111 500 20 13199 14246 8.25 6848 7666 12.30

Table 1: Average results for 5 independent runs on Taillard’s
benchmark

3. ACKNOWLEDGEMENTS

The presented research was developed at INESC Porto under the
European Commission, Framework Programme 7 project FIT4U:
Framework of Integrated Technologies for User Centred Products.

4. REFERENCES

[1] T. Arthanari and K. Ramamurthy, “An extension of two ma-
chines sequencing problem,” Opsearch, vol. 8, pp. 10–22,
1971.

ALIO-EURO 2011 – 193



Proc. of the VII ALIO–EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4–6, 2011

[2] R. Linn and W. Zhang, “Hybrid flow shop scheduling: A
survey,” Computers & Industrial Engineering, vol. 37, no. 1-
2, pp. 57 – 61, 1999, proceedings of the 24th international
conference on computers and industrial engineering.

[3] H. Wang, “Flexible flow shop scheduling: optimum, heuris-
tics and artificial intelligence solutions,” Expert Systems,
vol. 22, no. 2, pp. 78–85, 2005.

[4] R. Ruiz and J. Vázquez-Rodríguez, “The hybrid flow shop
scheduling problem,” European Journal of Operational Re-
search, vol. 205, no. 1, pp. 1–18, 2010.

[5] E. Nowicki and C. Smutnicki, “The flow shop with paral-
lel machines: a tabu search approach,” European Journal of
Operational Research, vol. 106, no. 2-3, pp. 226–253, 1998.

[6] D. Santos, J. Hunsucker, and D. Deal, “FLOWMULT: Per-
mutation sequences for flow shops with multiple processors,”
Journal of Information and Optimization Sciences, vol. 16,
pp. 351–366, 1995.

[7] M. Pinedo, Scheduling: theory, algorithms, and systems.
Springer Verlag, 2008.

[8] F. Glover, “Future paths for integer programming and links
to artificial intelligence,” Computers & Operations Research,
vol. 13, no. 5, pp. 533–549, 1986.

[9] D. Santos, J. Hunsucker, and D. Deal, “Global lower bounds
for flow shops with multiple processors,” European Journal
of Operational Research, vol. 80, no. 1, pp. 112–120, 1995.

[10] E. Taillard, “Benchmarks for basic scheduling problems,”
European Journal of Operational Research, vol. 64,
no. 2, pp. 278 – 285, 1993, project Management
anf Scheduling. [Online]. Available: http://www.
sciencedirect.com/science/article/B6VCT-48MYGV0-4W/
2/9dd8e0f50213f3302f7ebf1a80dca3b7

ALIO-EURO 2011 – 194



Proc. of the VII ALIO–EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4–6, 2011

Sequencing approaches in Synchronous Manufacturing

Jan Riezebos ∗

∗ University of Groningen, The Netherlands
P.O.box 800, 9700AV Groningen, The Netherlands

j.riezebos@rug.nl

ABSTRACT

We consider a sequencing problem in a synchronized manufactur-
ing environment. Order release is an essential part of this system.
As orders may differ in the amount and distribution of their capac-
ity requirements over subsequent production stages, total capacity
load may vary over time. We encountered this problem in a labor-
intensive cellular environment. In practice, heuristics are used to
solve this problem, but their effectiveness is questioned. This pa-
per examines heuristics that are based on insights from assembly
system design and work load control. The heuristics are evaluated
in a rolling schedule environment.

Keywords: Synchronous manufacturing, Bottleneck, Employee
scheduling

1. INTRODUCTION

The basic idea of synchronous manufacturing is to create a flow of
work through the manufacturing system, either continuous or in-
termittent, in order to achieve short and constant throughput times
and a predictable loading of the resources in the system. Recently,
fixed cycle-time synchronization approaches have been developed
that no longer implicitly assume an inflexible capacity. They con-
sider total capacity to be limited, but capacity to be flexible be-
tween the stages of the production system. The reason for relaxing
this assumption is that workers are nowadays increasingly multi-
skilled and cross-trained. This flexibility makes it possible to han-
dle capacity fluctuations between stages in a production system.
However, total capacity in terms of the number of workers avail-
able does not increase through such measures. Therefore, these
synchronization approaches aim at an order release decision that
effectively uses the available capacity of the multi-skilled workers
while still realizing a high output for the whole production system.
Examples of papers in this area are [1], [2], [3], [4], and [5]. The
complexity of the resulting synchronization problems has been an-
alyzed by [6]. They showed that most leveling problems in such
systems are NP-complete, even if they only consist of two stages.
Therefore, in practice heuristic solutions are being used to solve
the order release decision, as the number of stages often is much
larger than two.

This paper discusses various single pass heuristics for the order
release decision in such a synchronization approach with a fixed
cycle time in a multi-product multi-stage situation. Single pass
heuristics determine a sequence without back tracking or pair wise
interchanging parts of a solution. Such heuristics are often used
in practice. The question is whether these heuristics can be im-
proved by incorporating insights from related fields, such as work-
load control and assembly line balancing. This paper will examine
the performance of several heuristics in a rolling schedule environ-
ment. Testing in a rolling schedule environment provides better
insights in the performance of these heuristics in the long term, as
it prohibits the negative impact of postponing problems to the end

of the cycle.

2. PROBLEM DEFINITION

In a synchronous manufacturing mode, stages represent a subset of
operations that are to be performed in a cell within a fixed period
of time. At the end of each period, all jobs that are in progress
are transferred to their next stage. At such a transfer moment,
employees may have to switch to other tasks within the cell.

The cell starts each period with a new order that is selected from a
list of orders that should be completed during the cycle (i.e., at the
end of the week). The batch size, process plans, and work content
per stage may differ per order. Therefore, capacity requirements
may vary strongly, both per order and per stage.

An important problem faced in such synchronous manufacturing
systems concerns the capacity balance over time ([7]). A cellular
system makes it less appropriate to vary the total number of em-
ployees over time. Employees should feel themselves responsible
for the whole task of the cell. A relatively constant number of
employees over various periods is therefore preferred.

Figure 1 presents a realistic example with 10 orders that have to
be released during one week. We have 10 orders (A,. . . ,J) and five
stages j=1,. . . ,5. An order that starts in period t=1 in stage j=1
arrives in period t = 2 in stage j=2, and leaves the system at the
end of period t=5, if stage j=5 has been finished. Orders are repre-
sented using different shades. The amount of capacity required in
a stage differs per order and is presented in the cells of the table. A
row shows the fluctuating capacity requirements of that stage. Or-
ders may also require a different total number of employees (i.e.
the sum of the cells with identical shade). However, the sum of
the cells in the same column is more important for the capacity
management of the firm. This shows the total number of employ-
ees needed in a single period. If this number exceeds the available
capacity, the firm has to hire additional employees or change the
sequence of orders. The problem is to determine one or more se-
quences for the orders A,. . . ,J such that the available capacity in
each period t is not exceeded as long as possible. For the first
four periods, earlier decisions on the sequence in a previous cycle
affect the loading of the available capacity. The cells at the bottom-
left side express the capacity requirements of these already started
orders that still have to complete one or more stages. The same
effect appears at the end of the cycle, as the last four orders in the
sequence affect not only capacity in this cycle, but also capacity
requirements in the next cycle. Here the end-of-horizon effect or
truncated-horizon effect appears (see e.g. [8]). The loading should
result in a sequence for which the available capacity per period
is not exceeded. The sequence presented in Figure 1 results in
four periods that encounter a capacity shortage if available capac-
ity equals 20 per period: t=2,6,9,10. Can a better order sequence
be found?
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Figure 1: Sequencing 10 products, 5 stages, period length 4 hours, cycle length one week

3. MATHEMATICAL PROBLEM FORMULATION

The problem can be formulated as:
Given:

• a set of i=1,. . . ,n orders that have to start during periods
t=1,. . . ,n;

• their capacity requirements Ci j during j=1,. . . ,m stages of
completion;

• the capacity requirements CRt j for orders that have already
started but are not yet completed;

• average required capacity in stage j (j=1,. . . ,m-1)

ARC j =
∑ j−1

t=1 CRt j +∑n
i=1 Ci j

n+ j−1
,

• capacity requirements to complete stage j in period t Yt j
(t=1,. . . ,n+m-1; j=1,. . . ,m);

• available capacity per period ACt ,

• capacity shortage (expected) in period t
CSt = max(0,∑m

j=1 Yt j−ACt) (t=1,. . . ,n+m-1)

• weight factor for capacity shortage in period t wt
(wt = 1 if t = 1, ...,n; wt ≤ 1 if t > n (t=1,. . . ,n+m-1))

determine the sequence of the n orders Xit(i = 1, ...,n; t = 1, ...,n)

such that ∑n+m−1
t=1 wtCSt is minimized, where

Xit = 1 if order i starts in period t, else 0 (i=1,. . . ,n; t=1,. . . ,n)

The problem can mathematically be formulated as:

Minimize
n+m−1

∑
t=1

wt ·CSt (1)

such that
n

∑
i=1

Xit = 1∀t = 1, ...,n (2)

n

∑
i=1

Xit = 1∀i = 1, ...,n (3)

Yt j =CRt j∀ j = 2, ...,m∀t = 1, ..., j−1 (4)

Yt j = ARC j∀ j = 1, ..., t−n∀t = n+1, ...,n+m−1 (5)

Yt+ j−1, j =
n

∑
i=1

Xit ·Ci j∀t = 1, ...,n∀ j = 1, ...,m (6)

m

∑
j=1

Yt j−CSt <= ACt∀t = 1, ...,n+m−1 (7)

Xit ∈ [0,1] ;CSt ≥ 0;Yt j ≥ 0; (8)

Constraints (2) and (3) guarantee that a feasible assignment is ob-
tained. Constraint (4) shows that we use this model in a rolling
schedule environment, as we take the effects of the release de-
cisions in the former cycle into account in the current decision.
Constraint (5) calculates the consequences for future periods that
will be affected by the current decision. We use the average load
in a stage if the actual load is not being determined in the cur-
rent decision round. Constraint (6) determines the consequences
of the release decision for the stage load in subsequent periods.
Constraint (7) calculates the capacity shortage per period. The
objective function (1) minimizes a weighted sum of the capacity
shortages over time. Through the use of positive weights <1 for
periods behind the sequence horizon, the end of horizon effect is
avoided.

4. ORDER RELEASE HEURISTICS

As similar sequencing problems in [6]are NP complete in the strong
sense for situations with the number of stages m greater or equal to
three, we have investigated heuristics to determine a sequence of
orders for release. The first heuristic FillCap was shown to be the
most effective single pass heuristic in [9]. It is compared with a
new heuristic FillCapBottleneck. Both heuristics are presented in
the appendix. FillCap chooses the work order that can maximally
fill the capacity of period t at the beginning of that period from the
set of assignable orders. The set of assignable orders consists of
orders to be released and have a capacity requirement in stage j
not exceeding the available capacity. In situations when there are
more than one order available, it will choose randomly. The prob-
lem of FillCap is that it only focuses on filling the capacity in the
current period. It does not take into account the effect of sequenc-
ing decisions in the next periods. Therefore, FillCapBottleneck
has been developed so that work orders can be properly selected to
minimize the difference between available capacity and expected
work load at the bottleneck stage. In this case, the set of assignable
work orders in period t contains all work orders that still have to be
released in this cycle and have an expected capacity requirement
in the bottleneck stage nearest to the available capacity of period
t. The expected capacity at a bottleneck stage is calculated based
upon the average load of preceding stages and the already assigned
work load of orders for the succeeding stages.

5. RESULTS

We evaluate the approaches on the total capacity shortage per cy-
cle. This is a kind of tardiness measure, as capacity shortage is zero
if there is overcapacity in every bucket. For each bucket t = 1,. . . ,n
we calculate the capacity shortage CSt and add it to the total ca-
pacity shortage in that cycle. We experimented with problems of
different size, i.e. cycles with 10 jobs, 20 jobs, and 40 jobs. The
number of stages equals 5. See figure 2 for the results.
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Figure 2: Optimal solution compared with heuristics

The results show that in 73% of the cases, FillCapBottleneck out-
performs FillCap, while in 18% of the cases FillCap was better.
However, the gap with the optimal solution remains very high,
making it attractive to extend the search or apply the optimal solu-
tion method if time allows. Calculation time of the optimal solu-
tion rapidly increases with the number of products (0.4 sec for 10-
products, 1.6 hours for 40-products). See Figure 3 for an overview.

Figure 3: Execution time optimal solution and heuristics

6. CONCLUSIONS

The concept of synchronous manufacturing aims at achieving short
and reliable throughput times through the introduction of fixed
transfer moments between several stages of production. This causes
a loading of the resources that can be predicted in advance, which
makes it easier for planners to do their job.

We developed optimal and heuristic solution approaches for this
multi-product multi-stage problem. The FillCap heuristic focuses
on maximum utilization of the first stage. It selects an order that
consumes as much capacity in the first stage as possible, while
FillCapBottleneck focuses on loading the bottleneck stage.

Future research should verify if other heuristics, such as genetic
algorithms, can be applied as well. The current study has applied
deterministic optimization in a rolling schedule horizon. We think
that the use of a rolling schedule has important benefits when test-
ing the performance of different solution approaches.
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ABSTRACT

Affinely-Adjustable Robust Counterparts are used to provide
tractable alternatives to (two-stage) robust programs with arbitrary
recourse. We apply them to robust network design with polyhedral
demand uncertainty, introducing the affine routing principle. We
compare the affine routing to the well-studied static and dynamic
routing schemes for robust network design. It is shown that affine
routing can be seen as a generalization of the widely used static
routing still being tractable and providing cheaper solutions. We
investigate properties on the demand polytope under which affine
routings reduce to static routings and also develop conditions on
the uncertainty set leading to dynamic routings being affine. We
show however that affine routings suffer from the drawback that
(even strongly) dominated demand vectors are not necessarily sup-
ported by affine solutions. The proofs and computational results
are not presented due to the space restriction.

Keywords: Robust optimization, Network design, Recourse, Affine
Adjustable Robust Counterparts, Demand polytope

1. INTRODUCTION

In the classical deterministic network design problem, a set of
point-to point commodities with known demand values is given,
and capacities have to be installed on the network links at min-
imum cost such that the resulting capacitated network is able to
accommodate all demands simultaneously by a multi-commodity
flow. In practice however, exact demand values are usually not
known at the time the design decisions must be made. Robust opti-
mization overcomes this problem by explicitly taking into account
the uncertainty of the data introducing so-called uncertainty sets.
A solution is said to be feasible if it is feasible for all realizations
of the data in a predetermined uncertainty set D [1]. Introduc-
ing even more flexibility, two-stage robust optimization allows to
adjust a subset of the problem variables only after observing the
actual realization of the data [2]. In fact, it is natural to apply this
two-stage approach to network design since very often first stage
capacity design decisions are made in the long term while the ac-
tual routing is adjusted based on observed user demands. This
second stage adjusting procedure is called recourse which in the
context of network design relates to what is known as traffic en-
gineering. Unrestricted second stage recourse in robust network
design is called dynamic routing, see [3]. Given a fixed design, the
commodity routing can be changed arbitrarily for every realization
of the demands. In [3] it is shown that allowing for dynamic rout-
ing makes robust network design intractable. Already deciding
whether or not a fixed capacity design allows for a dynamic rout-

ing of demands in a given polytope is N P-complete (on directed
graphs).

This paper is motivated by the scarcity of works using affine rout-
ing. Following [2], we introduce affine routing as a generaliza-
tion of static routing allowing for more routing flexibility but still
yielding polynomially solvable robust counterparts, (in opposition
to the schemes from [4] and [5]). In this context affine routing pro-
vides a tractable alternative in between static and dynamic routing.
Affine routing has been used implicitly already in [6] for a robust
network design problem with a particular uncertainty set. The con-
tributions of this paper consist of a theoretical and empirical study
of network design under the affine routing principle for general
polyhedral demand uncertainty sets D . Section 2 introduces the
mathematical models and defines formally static, affine and dy-
namic routings. In Section 3 we present our main results. Proofs
are ommited due to space restrictions. We also conducted numer-
ical comparisons of static, affine and dynamic routings, which are
not presented due to space restrictions.

2. ROBUST NETWORK DESIGN WITH RECOURSE

We are given a directed graph G = (V,A) and a set of commodities
K. A commodity k ∈ K has source s(k) ∈ V , destination t(k) ∈
V , and demand value dk ≥ 0. A flow for k is a vector f k ∈ RA

+
satisfying:

∑
a∈δ+(v)

f k
a − ∑

a∈δ−(v)
f k
a = dkψvk for all v ∈V, (1)

where δ+(v) and δ−(v) denote the set of outgoing arcs and in-
coming arcs at node v, respectively. For node v ∈V and commod-
ity k ∈ K we set ψvk := 1 if v = s(k), ψvk := −1 if v = t(k), and
ψvk := 0 else. Flows are non-negative. A multi-commodity flow is
a collection of flows, one for each commodity in K. A circulation
(or cycle-flow) is a vector g ∈ RA satisfying

∑
a∈δ+(v)

ga− ∑
a∈δ−(v)

ga = 0 for all v ∈V. (2)

A circulation is not necessarily non-negative. A value ga < 0 can
be seen as a flow from the head of arc a to its tail. We call a cir-
culation g non-negative if g≥ 0 and positive if additionally g 6= 0.
Notice that any two flows f̂ k, f k for k only differ by a circulation,
that is, there always exists a circulation g such that f̂ k = f k +g.

In many practical situations, the demand vector d ∈ RK
+ is un-

certain. In the sequel we assume that d ∈ D ⊂ RK with D be-
ing a polytope. Any d ∈ D is said to be a realization of the de-
mand. A routing is a function f : D → RA×K

+ that assigns a multi-
commodity flow to every realization of the demand. We say that
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f serves D and call f a dynamic routing if there is no further re-
striction on the routing. A capacity allocation x ∈ RA

+ is said to
support the set D if there exists a routing f serving D such that
for every d ∈ D the corresponding multi-commodity flow f (d) is
not exceeding the arc-capacities given by x. Robust network de-
sign now aims at providing the cost minimal capacity allocation
supporting D . In this respect, robust network design is a two-stage
robust program with recourse, following the more general frame-
work described by [2]. The capacity design has to be fixed in the
first stage and observing a demand realization d ∈ D , we are al-
lowed to adjust the routing f (d) in the second stage. The problem
can be written as the following (semi-infinite) linear program:

(RND) min ∑
a∈A

κaxa

∑
a∈δ+(v)

f k
a (d)− ∑

a∈δ−(v)
f k
a (d) = dkψvk, v ∈V,k ∈ K,d ∈D

(3)

∑
k∈K

f k
a (d)≤ xa, a ∈ A,d ∈D

(4)

f k
a (d)≥ 0, a ∈ A,k ∈ K,d ∈D

(5)

xa ≥ 0, a ∈ A,

where κa ∈R+ is the cost for installing one unit of capacity on arc
a ∈ A. As already mentioned, deciding whether or not a given ca-
pacity vector x supports D is N P-complete for general polytopes
D [3]. It follows that (unless P =N P) it is impossible to derive
a compact formulation for (RND) with dynamic routing. Using a
branch-and-cut approach based on Benders decomposition, Mattia
[7] shows how the solve the N P-hard separation problem for ro-
bust metric inequalities using bilevel and mixed integer programs.

Most authors ([8, 9, 10], among others) use a simpler version of
(RND) introducing a restriction on the second stage recourse known
as static routing (also called oblivious routing). Each component
f k : D → RA

+ is forced to be a linear function of dk:

f k
a (d) := yk

adk a ∈ A,k ∈ K,d ∈D . (6)

Notice that by (6) the flow for k is not changing if we perturb the
demand for h 6= k. By combining (6) and (3) it follows that the
multipliers y∈RA×K

+ define a multi-commodity (percentage) flow.
For every k ∈ K, the vector yk ∈ RA

+ satisfies (1) setting dk = 1.
The flow y is called a routing template since it decides, for every
commodity, which paths are used to route the demand and what is
the percental splitting among these paths. The routing template has
to be used by all demand scenarios d ∈D under the static routing
scheme.

Ben-Tal et al. [2] introduce Affine Adjustable Robust Counterparts
restricting the recourse to be an affine function of the uncertainties.
Applying this framework to (RND) means restricting f k to be an
affine function of all components of d giving

f k
a (d) := f 0k

a + ∑
h∈K

ykh
a dh ≥ 0, a ∈ A,k ∈ K,d ∈D , (7)

where f 0k
a ,ykh

a ∈ R for all a ∈ A,k,h ∈ K, also see [6]. In what
follows, a routing f serving D and satisfying (7) for some vectors
f 0 and y is called affine. We see immediately that static routing
can be obtained from (7) by imposing f 0k

a = 0 and ykh
a = 0 for

each a∈ A and all k,h∈K with k 6= h. In this context affine routing
generalizes static routing allowing for more flexibility in reacting
to demand fluctuations, but it is not as flexible as dynamic routing.
Formally it holds

optdyn ≤ opta f f ≤ optstat ,

where optdyn, opta f f , and optstat denote the cost values of the op-
timal solution to (RND) where f is allowed to be dynamic, affine,
or static, respectively. Note that there is a proven (tight) worst-
case optimality gap of O(log|V |) between the dynamic and static
routing principle, see [11]. In this paper we do not establish opti-
mality gaps between the three routing principles. We rather focus
on studying properties of the demand scenarios D that either yield
optstat = opta f f or opta f f = optdyn.

Given a demand polytope D , a static routing f is completely de-
scribed by the vector y ∈ RA×K

+ . Similarly, an affine routing is
completely described by fixing the vectors f 0 ∈ RA×K and y ∈
RA×K×K . Extending the previous definitions, any routing template
y ∈ RA×K

+ is said to serve D if it yields a (static) routing f serving
D . Similarly, any pair of vectors f 0 ∈RA×K and y ∈RA×K×K that
satisfies (3) and (7) are said to serve D . Given a capacity alloca-
tion x∈RA

+, the pair (x,y) with y serving D , or the triplet (x, f 0,y)
with ( f 0,y) serving D are said to support D if the corresponding
routings satisfy (4).

The model (RND) contains an infinite number of inequalities. How-
ever, when D is convex, we can replace D by the set of its extreme
points, which is finite whenever D is a polytope.

Lemma 1. Let D ⊂ RK be a bounded set and x be a capacity
allocation x ∈ RA.

(a) x supports D if and only if x supports conv(D).

(b) (x,y) supports D if and only if (x,y) supports conv(D).

(c) (x, f 0,y) supports D if and only if (x, f 0,y) supports conv(D).

Hence (RND) can be discretized by restricting the model to the
extreme demand scenarios that correspond to vertices of D (for all
three routing schemes).

3. AFFINE ROUTINGS

In this section, we study properties and consequences of the affine
routing principle. Using (7) and substituting the flow variables in
the balance constraints (3) it can be seen that affine routing has a
nice interpretation as paths and cycles:

Lemma 2. Let D be a demand polytope and let ( f 0,y) ∈RA×K×
RA×K×K be an affine routing serving D . If D is full-dimensional,
then ykk ∈ RA is a routing template for k ∈ K and f 0k ∈ RA,ykh ∈
RA are circulations for every k,h ∈ K with k 6= h.

Just like in the static case, the flow for commodity k changes lin-
early with dk on the paths described by the template ykk

a . However,
the flow for commodity k may change also if the demand for h 6= k
changes which is described by circulations ykh. In addition there
is a constant circulation shift described by variables f 0k.

As already mentioned, a dynamic routing for commodity k could
also be described by one (representative) routing and circulations
depending on the demand fluctuations. In the dynamic case how-
ever, the circulations can be chosen arbitrarily while in the affine
case the actual flow changes according to (7). We illustrate this
concept in Example 1 which shows that affine routing can be as
good as dynamic routing in terms of the cost for capacity alloca-
tion and that f 0 and ykh may not describe circulations when D is
not full-dimensional

Example 1. Consider the network design problem for the graph
depicted in Figure 1(a) with two commodities k1 : a→ b and k2 :
a→ c. The uncertainty set D is defined by the extreme points
d1 = (2,1),d2 = (1,2) and d3 = (1,1), and the capacity unitary
costs are the edge labels of Figure 1(a). Edge labels from Fig-
ure 1(b) and 1(c) represent optimal capacity allocations with static

ALIO-EURO 2011 – 199



Proc. of the VII ALIO–EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4–6, 2011

a

b
3

  2
2

c

(a) edge costs

a

b
2

2

c

(b) static

a

b
1
             

   1
2

c

(c) dynamic

a

b
1/3

2/3
2/3

  

c

(d) yk1k1

a

b
1/3

  1/3
1/3

  

c

(e) yk1k2

a

b

1

  

c

(f) yk2k2

Figure 1: Static, dynamic, and affine recourse.

and dynamic routing, respectively. They have costs of 10 and 9,
respectively. Then, Figure 1(d)-1(f) describes coefficients ykh for
an affine routing feasible for the capacity allocation 1(c). If we
remove d3 = (1,1) from the set of extreme points, the dimension
of the uncertainty set reduces to 1. The affine routing prescribed
by yk2k2

ac = 1, f 0k1
ab = 3 and yk1k2

ab = −1 serves all demands in the
convex hull of d1 = (2,1) and d2 = (1,2) but f 0k1 and yk1k2 do not
describe a circulation.

Compact reformulations In the following, we assume that D is
full-dimensional. If the number of vertices of D is polynomial in
the number of nodes, arcs, and commodities then model (RND)
can be written in a compact way for all three routing schemes, that
is, it can be written with a polynomial number of variables and
constraints. However, even if the number of vertices is exponential
there are compact reformulations for (RND) with static or affine
routing as long as D is compact. Reformulating by dualizing con-
straints is a standard technique in robust optimization resulting in
so-called robust counterparts, see for instance [12]. Applying this
technique to (RND) with affine routing yields the following result.

Proposition 3. Consider (RND) with affine routing for a full-
dimensional uncertainty polytope D . If D has polynomial many
vertices or can be described by a polynomial number of inequali-
ties then (RND) can be solved in polynomial time.

Proposition 3 implies that given a capacity allocation x, the exis-
tence of an affine routing can be answered in polynomial time as
long as D can be described in a compact way, which is also true in
the static case but is in contrast to the N P-complete results for
dynamic routing [3].

Domination of demands For static and dynamic routings, not
all extreme points of D have to be considered in a discretization
of D . For instance, if 0 ∈ D , it is an extreme point of D that any
capacity allocation using static (resp. dynamic) routing supports.
This intuitive idea has been formalized by Oriolo [13] introduc-
ing the concept of domination. Given two demands vectors d1 and
d2, we say that d1 dominates d2 if any capacity allocation x ∈ RA

+
supporting d1 also supports d2 (dynamic routing). Moreover, d1
totally dominates d2 if any pair (x,y) supporting d1 also supports
d2 (static routing). Thus, removing dominated (extreme) points
from D is not changing the problem in the static and the in dy-
namic case.

For general affine routings, however, there is no notion of domina-
tion of demands:

Proposition 4. Let d1,d2 ∈ RK
+, d1 6= d2. There exists (x, f 0,y)

that supports d1 but does not support d2.

Relation to static routing Notice that if a flow f k for k con-
tains a positive circulation, that is, there exists a positive circula-
tion g such that f k − g is a flow for k then f k can be reduced to
f k− g without changing the flow balance at s(k) and t(k). More-
over, the percental splitting among the used paths is unchanged.
In this spirit we call any routing f cycle-free if for all d ∈ D and
all commodities k ∈ K the commodity flows do not contain posi-
tive circulations. Of course every optimal capacity allocation has
a cycle-free (static, affine, or dynamic) routing.

Notice that if a flow f k for k contains a positive circulation, that is,
there exists a positive circulation g such that f k−g is a flow for k
then f k can be reduced to f k−g without changing the flow balance
at s(k) and t(k). Moreover, the percental splitting among the used
paths is unchanged. In this spirit we call any routing f cycle-free
if for all d ∈D and all commodities k ∈K the commodity flows do
not contain positive circulations. Of course every optimal capacity
allocation has a cycle-free (static, affine, or dynamic) routing.

Let ek be the k-th unit vector in RK
+ and Dk

0 be the set obtained from
D by removing d ∈D with dk > 0, that is, Dk

0 := {d ∈D : dk = 0}.
We can prove the following:

Proposition 5. Let D be a demand polytope. If 0 ∈ D and for
each k ∈ K there is εk > 0 such that εkek ∈ D , then all cycle-free
affine routings serving D are static.

Proposition 6. Let D be a demand polytope and let G be acyclic.
If dim(Dk

0 ) = |K|−1 for all k ∈ K, then all cycle-free affine rout-
ings serving D are static.

Theorem 7. Let D be a demand polytope. If all cycle-free affine
routings serving D are static then dim(Dk

0 ) = |K|−1 for all k ∈K.

Combining Proposition 6 with Theorem 7, we have complectly de-
scribed polytopes for which cycle-free affine routings and static
routings are equivalent, assuming that G is acyclic. However,
Proposition 6 is wrong for general graphs because f k(d) for d ∈
Dk

0 is not necessarily equal to 0, it can also be a positive circula-
tion. Then, one can check that, when G has the required structure,
a positive circulation can be decomposed into circulations that are
not positive, thus yielding a cycle-free affine routing and a counter-
example to Proposition 6.

Relation to dynamic routing Theorem 5 identifies demand poly-
topes for which affine routing is no better than static routing. How-
ever, we saw in Example 1 that affine routing may also perform as
well as dynamic routing does, yielding strictly cheaper capacity
allocations. For general robust optimization problems, [14] show
that affine recourse is equivalent to dynamic recourse when D is
a simplex. Here we show that in the context of robust network
design this condition is also necessary.

Theorem 8. Given a demand polytope D , all dynamic routings
serving D are affine routings if and only if D is a simplex.

Example 2 shows that when D is not a simplex and does not con-
tain the origin, capacity allocation costs required by static, affine,
and dynamic routings can be strictly different.

Example 2. Consider the network design problem from Exam-
ple 1 with the uncertainty set D defined by the extreme points
d1 = (3,0), d2 = (0,3), d3 = (2,2) and d4 = (0.5,0.5). The opti-
mal capacity allocation costs with static, affine, and dynamic rout-
ings are, respectively, 13+ 1

2 ,13+ 1
3 , and 13. Notice that moving

d4 along the segment (0,0)− (1,1) leaves static and dynamic op-
timal capacity allocations unchanged while the affine solution cost
moves between 13 and 13+ 1

2 . In particular, if d4 is set to (0,0),
the affine and static costs are the same, which we knew already
from Theorem 5. If d4 is in conv{d1,d2,d3,(1,1)}, the affine and
dynamic cots are the same.
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ABSTRACT

Hub-and-spoke (HS) network designs arise in transportation and
telecommunications systems, where one must flow commodities
among spatially separate points and where scale economies can be
attained through the shared use of high capacity links. As an alter-
native for the discrete approach of selecting as hubs a subset of the
existing nodes, this paper explores the possibility of a continuous
location for the hubs. Therefore, the problem is to find the least
expensive HS network, continuously locating hubs and assigning
traffic to them, given the demands between each origin-destination
pair and the respective transportation costs. The problem leads to a
min− sum−min formulation that is strongly non-differentiable.
The proposed method overcomes this difficulty with a smoothing
strategy that uses a special differentiable function. The approach
is a particular application of the hyperbolic smoothing technique,
which has been proven to be able to solve quite efficiently large
instances of clustering problems. The final solution is obtained
by solving a sequence of differentiable unconstrained optimization
subproblems which gradually approach the original problem. The
most important feature of the methodology is the low dimension
of the subproblems, dependent only on the number of hubs. The
efficiency of the method is shown through a set of computational
experiments with large continuous hub-and-spoke problems.

Keywords: Hub Location, Min-Sum-Min Problems, Global Op-
timization, Non-differentiable Programming, Hyperbolic Smooth-
ing

1. INTRODUCTION

The hierarchical organization of telecommunication and transpor-
tation systems can be found in several real world applications, such
as the location of switching centers or postal offices, and plays a
major role in operations research and management science models.
Cost minimization is the objective of most of these models and op-
timized levels of customer concentrations enables the economies
of scale of aggregating the flows in the related networks. The main
differences among the models concern the hierarchical level of net-
work design, typically backbone versus local access network, and
how the relevant aspects of connectivity, capacity, reliability, de-
mand patterns, routing, pricing, performance and quality of ser-
vice are considered for such networks[1, 2, 3]. Depending on the
context or application, hub nodes are called switches, warehou-
ses, facilities, concentrators or access points. Likewise, backbones
may be referred to as hub-level networks and local access networks
may be called tributary networks or many other names. Normally,
backbone links carry larger volumes of traffic than tributary links.

Traffic originating at a specific customer location can pass through
a local access network to get to one or more hub nodes, depending
on whether single or multiple assignmenst are considered to link
the backbone to the remote locations. After passing through the
backbone network, the traffic again uses a local access network to
travel from a hub to its final destination at another location.

2. THE CONTINUOUS HUB-AND-SPOKE PROBLEM
SPECIFICATION

The continuous hub-and-spoke problem consists of locating a set
of q centers or hubs in order to minimize a particular trans- por-
tation cost function. To formulate this problem, we proceed as
follows. Let S = {s1, . . . ,sm} denote a given set of m cities or
points in a planar region. Let d jl be the flow between two points
j and l. Let xi, i = 1, . . . ,q where each xi ∈ R2, be the set
of variables of the problem: the hubs or centers location. The set
of these hubs are represented by X ∈ R2q, and the assumption is
that each pair of hubs is directly connected by the shortest distance
route between them.

Concerning the hub-and-spoke problem under consideration, the
connections between each pair of points j and l, have always
three parts: from the origin point j to a first hub center i1, from
i1 to a second hub center i2 and from i2 to destination point l.
There are no network structure constraining connections, the only
constraint being that connections between cities must be done th-
rough hubs. However, the first and the second hubs can be coinci-
dent (i.e., i1 = i2 ), meaning that a unique hub is used to connect
the origin point j and the destination point l. Multiple allocation is
permitted, meaning that any given point can be served by one or
more hubs.

The unitary flow cost associated to a general connection ( j, i1, i2, l)
is equal to a weighted distance obtained by the sum of three Euclid-
ian distances, with a reduction factor for the second part between
hubs:

z ji1i2l = ‖s j− xi1‖2 + α ‖xi1 − xi2‖2 + ‖xi2 − sl‖2, (1)

where α is the reduction factor: 0≤ α < 1.

The unitary flow cost from the origin point j to the destination
point l is taken as the minimum value of all connections:

z jl = min
i1,i2=1,...,q

z ji1i2l , (2)

or

z jl = min
i1,i2=1,...,q

‖s j− xi1‖2 + α ‖xi1 − xi2‖2 + ‖xi2 − sl‖2. (3)
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3. SMOOTHING THE CONTINUOUS HUB-AND-SPOKE
PROBLEM

The continuous hub-and-spoke problem consists of minimizing the
total flow cost between all pairs of cities taking the unitary cost
value, given by (2), for all connections:

min
m

∑
j=1

m

∑
l=1

d jlz jl (4)

subject to z jl = min
i1,i2=1,...,q

z ji1i2l , j, l = 1, . . . ,m.

So, this hub-and-spoke problem has a structure named min−
sum−min, with nondifferentiable and nonconvex characteris-
tics, having a myriad of local minimizers. A series of transfor-
mations will be performed in order to obtain a continuous formu-
lation. First, considering its definition, each z jl must necessarily
satisfy the following set of inequalities:

z jl − z ji1i2l ≤ 0, i1, i2 = 1, . . . ,q. (5)

Substituting these inequalities for the equality constraints of prob-
lem (4), the relaxed problem becomes

min
m

∑
j=1

m

∑
l=1

d jlz jl (6)

subject to z jl − z ji1i2l ≤ 0,
i1, i2 = 1, . . . ,q; j, l = 1, . . . ,m.

Since the variables z jl are not bound from below, in order to ob-
tain the desired equivalence, we must modify problem (6). We do
so by first letting ϕ(y) denote max{0,y} and then observing
that, from the set of inequalities in (6), it follows that

q

∑
i1=1

q

∑
i2=1

ϕ(z jl − z ji1i2l ) = 0, j, l = 1, . . . ,m. (7)

Using (7) in place of the set of inequality constraints in (6), we
would obtain an equivalent problem maintaining the undesirable
property that z jl , j, l = 1, . . . ,m still has no lower bound. Con-
sidering, however, that the objective function of problem (6) will
force each z jl , j , l = 1, . . . ,m, downward, we can think of bound-
ing the latter variables from below by including an ε perturbation
in (7). So, the following modified problem is obtained:

min
m

∑
j=1

m

∑
l=1

d jlz jl (8)

subject to
q

∑
i1=1

q

∑
i2=1

ϕ(z jl − z ji1i2l ) ≥ ε , j, l = 1, . . . ,m,

for ε > 0. Since the feasible set of problem (4) is the limit of that
of (8) when ε→ 0+, we can then consider solving (4) by solving a
sequence of problems like (8) for a sequence of decreasing values
for ε that approaches 0.

Analyzing problem (8), the definition of function ϕ endows it
with an extremely rigid nondifferentiable structure, which makes
its computational solution very hard. In view of this, the numer-
ical method we adopt for solving problem (1), takes a smoothing
approach. From this perspective, let us define the function:

φ(y,τ) =
(

y+
√

y2 + τ2
)
/2 (9)

for y ∈ R and τ > 0.

Function φ has the following properties:

(a) φ(y,τ) > ϕ(y), ∀τ > 0;

(b) lim
τ→0

φ(y,τ) = ϕ(y);

(c) φ(.,τ) is an increasing convex C∞ function in variable y.

Therefore, function φ constitutes an approximation of function
ϕ . By using function φ in the place of function ϕ, in (8), the
problem

min
m

∑
j=1

m

∑
l=1

d jlz jl (10)

subject to
q

∑
i1=1

q

∑
i2=1

φ(z jl − z ji1i2l ,τ)≥ ε, j, l = 1, . . . ,m,

is produced.

To obtain a differentiable problem, it is necessary further to smooth
the balanced distances z ji1i2l . For this purpose, let us define the
function

θ(v , w , γ ) =
√

(w1− v1)2 + (w2− v2)2 + γ2 (11)

where v,w ∈ R2 and γ > 0.

Function θ has the following properties:

(a) lim
γ→0

θ(v , w , γ ) = ‖w− v‖2 ;

(b) θ is a C∞ function.

By using function θ in place of the Euclidian distances, the com-
pletely differentiable problem

min
m

∑
j=1

m

∑
l=1

d jlz jl (12)

subject to
q

∑
i1=1

q

∑
i2=1

φ(z jl − (θ(s j,xi1 ,γ) +

α θ(xi1 ,xi2 ,γ) + θ(xi2 ,sl ,γ)),τ)≥ ε, j, l = 1, . . . ,m,

is now obtained.

So, the properties of functions φ and θ allow us to seek a solution
to problem (8) by solving a sequence of subproblems like problem
(12), produced by decreasing the parameters γ→ 0 , τ→ 0, and
ε → 0.

Since z jl ≥ 0, j, l = 1, . . . ,m, the objective function minimization
process will work towards reducing these values to the utmost. On
the other hand, given any set of hubs xi, i = 1, . . . ,q, due to prop-
erty (c) of the hyperbolic smoothing function φ , the constraints
of problem (12) are a monotonically crescent function in z jl . So,
these constraints will certainly be active and problem (12) will ul-
timately be equivalent to the problem:
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min
m

∑
j=1

m

∑
l=1

d jlz jl (13)

subject to h jl(z jl ,x) =
q

∑
i1=1

q

∑
i2=1

φ(z jl − (θ(s j,xi1 ,γ) +

α θ(xi1 ,xi2 ,γ) + θ(xi2 ,sl ,γ)),τ) − ε = 0, j, l = 1, . . . ,m.

The dimension of the variable domain space of problem (13) is
(2q+m2).

Since, in general, the value of the parameter m, the cardinality of
the set S of the consumer points s j, is large, problem (13) has a
large number of variables. However, it has a separable structure,
because each variable z jl appears only in one equality constraint.
Therefore, as the partial derivative of h jl(z jl ,x) with respect to
z jl , j, l = 1, . . . ,m is not equal to zero, it is possible to use the
Implicit Function Theorem to calculate each component z jl , j, l =
1, . . . ,m as a function of the hub location variables xi, i= 1, . . . ,q.
In this way, the unconstrained problem

min f (x) =
m

∑
j=1

m

∑
l=1

d jlz jl(x) (14)

is obtained, where each z jl(x) results from the calculation of a
zero of each equation

h jl(z jl ,x) =
q

∑
i1=1

q

∑
i2=1

φ(z jl − (θ(s j,xi1 ,γ) +

α θ(xi1 ,xi2 ,γ) + θ(xi2 ,sl ,γ)),τ) − ε = 0, j, l = 1, . . . ,m. (15)

Due to property (c) of the hyperbolic smoothing function, each
term φ above is strictly increasing with variable z jl and there-
fore the equation has a single zero. Again, due to the Implicit
Function Theorem, the functions z jl(x) have all derivatives with
respect to the variables xi, i = 1, . . . ,q, , and therefore it is pos-
sible to calculate exactly the gradient of the objective function of
problem (14),

In this way, it is easy to solve problem (14) by making use of any
method based on first order derivative information. Finally, it must
be emphasized that problem (14) is defined on a (2q)−dimensional
space, so it is a small problem, since the number of hubs, q, is, in
general, small for real world applications.

The solution of the original hub-and-spoke problems can thus be
obtained by using the Hyperbolic Smoothing Hub-and-Spoke Al-
gorithm, described below in a simplified form.

Simplified HSHS Algorithm

Initialization Step: Choose initial values: x0, γ1 , τ1 , ε1.

Choose values 0 < ρ1 < 1, 0 < ρ2 < 1, 0 < ρ3 < 1; let
k = 1.

Main Step: Repeat until a stopping rule is attained

Solve problem (14) with γ = γk, τ = τk and ε = εk,
starting at the initial point xk−1 and let xk be the solution ob-
tained.

Let γk+1 = ρ1 γk , τk+1 = ρ2 τk , εk+1 = ρ3 εk ,
k := k+1.

Just as in other smoothing methods, the solution to the hub-and-
spoke problem is obtained, in theory, by solving an infinite se-
quence of optimization problems. In the HSHS algorithm, each
problem that is minimized is unconstrained and of low dimension.

Notice that the algorithm causes τ and γ to approach 0, so
the constraints of the subproblems it solves, given as in (12), tend
to those of (8). In addition, the algorithm causes ε to approach
0, so, in a simultaneous movement, the problem (8) gradually ap-
proaches problem (4).

4. COMPUTATIONAL RESULTS

The computational results presented below were obtained from
a preliminary implementation. The numerical experiments have
been carried out on a PC Intel Celeron with a 2.7GHz CPU and
512MB RAM. The programs were coded with Compac Visual
FORTRAN, Version 6.1. The unconstrained minimization tasks
were carried out by means of a Quasi-Newton algorithm, employ-
ing the BFGS updating formula from the Harwell Library. The
initial starting hubs x0

i , i = 1, · · · ,q are taken around the center of
gravity of the set of points, by making random perturbations pro-
portional to the standard deviation of this set. The value of τ1 was
taken as 1/100 of this standard deviation. The following choices
were made for the other parameters: ε1 = 4τ1, γ1 = τ1/100,
ρ1 = 1/4, ρ2 = 1/4 and ρ3 = 1/4.

In order to show the performance of the proposed algorithm, re-
sults obtained by using the German Towns instane, which uses the
two Cartesian coordinates of 59 towns, originally presented by [4].
The instance reported here presents a symmetric demand matrix,
with a required flow of one unit between all pairs of origin and
destination cities: d jl = dl j = 1, j, l = 1, · · · ,m. So, problem (14)
assumed the following formulation, further simplified:

minimize f (x) =
m−1

∑
j=1

m

∑
l= j+1

z jl(x). (16)

Table 1 presents the obtained computational results. Ten different
randomly chosen starting points were used for each instance. The
discount parameter has been fixed in α = 0,5 The first column
presents the specified number of hubs (q). The second column
presents the best objective function value ( fHSHS) produced by
the HSHS algorithm. The next three columns present the number
of occurrences of the best solution (Occ.), the average percent-
age error of the 10 solutions (EMean) in relation to the best solu-
tion obtained ( fHSHS) and the CPU mean time given in seconds
(TMean). By defining f r as the value of the objective function
obtained at the starting point r, the percentage error is calculated
by the expression:

EMean = 10
10

∑
r=1

( f r− fHSHS)/ fHSHS. (17)

q fHSHS Occur. EMean TMean
2 0.171285E6 10 0.00 0.53
3 0.154629E6 6 0.01 2.48
4 0.139158E6 9 0.75 8.47
5 0.131453E6 4 2.03 18.23
6 0.126496E6 1 0.68 39.30
7 0.122636E6 2 0.73 76.28
8 0.119239E6 1 0.81 149.52
9 0.116583E6 1 1.25 246.99
10 0.113962E6 1 1.39 383.56

Table 1: Results for the German Towns Instance ( α = 0.5)
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5. CONCLUSIONS

This paper shows how a preliminary implementation of the pro-
posed algorithm is able to efficiently produce reliable and deep
local minima. The motivation to solve large scale versions of
continuous hub-and-spoke problems stems from, among other real
world applications, aerial transportation and oil and gas off-shore
exploration. We believe that this article’s methodology is adequate
enough for the requirements of such relevant applications.
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ABSTRACT

The present work aims to support tactical and operational deci-
sions in recyclable waste collection systems, focusing on the de-
limitation of service areas in systems with more than one depot,
and on vehicle routes definition. The problem is modelled as a
multi-product, multi-depot vehicle routing problem. Due to prob-
lem solution complexity, a hybrid method based on two mathe-
matical formulations and one heuristic procedure is developed as a
solution method. The method proposed is applied to a large scale
problem based on a real case study of a recyclable waste collec-
tion system, where three types of recyclable materials have to be
collected.

Keywords: Multi-depot, Vehicle routing, Hybrid method, Recy-
clable waste collection system

1. INTRODUCTION

The present work aims to support tactical and operational deci-
sions in recyclable waste collection systems with more than one
depot, helping the decision making on the system delimitation of
service areas and on the vehicle routes definition. When charac-
terizing the recyclable waste collection system in study it can be
said that this is responsible to collect, within a certain geographic
area and in a regular basis, three types of recyclable materials used
in packaging (paper, glass and plastic/metal) dropped by the final
consumer into special containers. When these systems have more
than one depot, in addition to the definition of the vehicle routes,
it is also necessary to decide from which depot the collection is
to be performed. This problem is modelled as a multi-product,
multi-depot vehicle routing problem. A hybrid method is devel-
oped where a MIP solver is embedded in a heuristic framework.
The hybrid method is applied to a large scale problem based on a
real recyclable waste collection system.

2. LITERATURE REVIEW

MDVRP consists on defining a set of vehicle routes in such a way
that: (1) each route starts and ends at the same depot, (2) each cus-
tomer is visited exactly once by a vehicle, (3) the total demand of

each route does not exceed the vehicle capacity, (4) the total du-
ration of each route (including travel and service times) does not
exceed a preset limit and (5) the total routing cost is minimized.
For the MDVRP, there are several models developed (exact and ap-
proximate approaches). Due to its NP-hard combinatorial factor,
the models presented in the literature are mostly heuristics-based
and few exact algorithms cab be found in the literature. Laporte
et al. [1], as well as Laporte et al. [2], developed exact branch
and bound algorithms for solving the symmetric and asymmet-
ric version of the MDVRP, respectively. Recently, Baldacci and
Mingozzi [3] developed an exact method for solving the Hetero-
geneous Vehicle Routing Problem (HVRP) that is also capable to
solve, among other problems, the MDVRP. This algorithm is based
on the set partitioning formulation, where a procedure is applied to
generate routes. Three bounding procedures are used to reduce the
number of formulation variables. As for the approximate meth-
ods there are several heuristic algorithms developed for the MD-
VRP (Tillman and Cain [4], Golden, Magnanti and Nguyen [5],
Renaud et al.[6], Salhi and Sari [7], Lim and Wang [8], Crevier
et al. [9], among others). Based on the literature review, we can
conclude that few exact models for the multi-depot problems ex-
ist, while several heuristic procedures have been developed for the
same problem. The combination of these two methods is also not
well explored. Therefore, this work studies this opportunity and
proposes a hybrid method which combines an exact formulation
with heuristic procedures to solve the multi-product, multi-depot
vehicle routing problem.

3. HYBRID METHOD

In Figure 1 a schematic diagram of the hybrid method proposed is
shown. This involves three main steps.

The first step involves the relaxation of the Multi-Product, Multi-
Depot VRP (with more than one product and vehicle routes re-
stricted to start and finish at the same depot) into the Single-Product,
Multi-Depot VRP with Multi-Depot Routes (with just one product
and multi-depot routes allowed). By solving this model, we ob-
tain some collection sites that belongs to feasible routes for the
Single-Product, Multi-Depot VRP, meaning that they belong to a
route that starts and finishes at the same depot; and some other
collection sites whose route starts and finishes at different depots.
For the "feasible" collection sites, we fix their assignment to the
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Single-Product, MDVRP  
with Multi-Depot Routes allowed

(Without Duration Constraints, Collection Frequencies, Planning Horizon)• Distance Matrix
• Weight to collect at each
collection site (of one
recyclable material )
• Vehicle Capacity

INPUT

• Collection Sites assigned to
depots (and its corresponding
vehicle routes)
• Collection Sites not assigned
(that belonging to a multi-depot
routes)

OUTPUT

Heuristic Procedure                                         
to complete service areas

• Collection Sites assigned
• Collection Sites not assigned
• Distance Matrix

INPUT

• Service Areas Complete for each 
depot

OUTPUT

Vehicle Routing Problem 
(With Duration Constraints, Collection Frequencies, Planning Horizon)

• Collection Sites assigned
• Distance Matrix
• Wheight to collect
• Number of containers
• Time required to collect each collection site
• Road velocity
• Collection frequency
• Vehicle capacity
• Maximum time allowed for a route
• Vehicle unload duration
• Number of hours available in the planning horizon

INPUT

• Vehicle Routes

OUTPUT

For each depot and 
each recyclable 

material

Figure 1: Structure of the proposed hybrid method.

depot (not to a particular route or vehicle, the assignment is done
just to the depot) and then the a heuristic procedure at step two the
procedure is run. This assigns the remaining collection sites and
therefore completes the service areas by depot.

After the service areas being defined, an exact formulation is run to
solve the Vehicle Routing Problem for each depot and for each re-
cyclable material (third step). The relaxed constraints ,on the first
step, are here considered: namely, the duration, the recyclable ma-
terials collection frequencies and the planning horizon constraints.

In the hybrid method, the service areas are established by the re-
sults obtained for one single recyclable material, at the first mod-
ule. This module is also run for the other two recyclable materials
to assess which one produces the best solution regarding the min-
imum total distance travelled. In order to provide further insights
into the above steps, these will next be described with greater de-
tailed and with supporting references.

1. Single-Product, MDVRP with Multi-Depot Routes
In Multi-Depot VRP, vehicles are restricted to start and fin-
ish at the same depot. This can be relaxed and multi-depot
routes are allowed, while minimizing the total distance trav-
elled. The Multi-Depot Vehicle Routing Problem with Multi-
Depot Routes has not received much attention from
researchers. A similar problem is presented by Crevier et
al. [9], entitled Multi-Depot Vehicle Routing Problem with
Inter-Depot Routes, where inter-depot routes, that connect
two different depots, are allowed. In this case, depots can
act as intermediate replenishment facilities along the route
of a vehicle, but the rotation of a vehicle always starts and
ends at the same depot (the authors called "rotation" to the
set of all routes assigned to a vehicle). In the Multi-Depot
Vehicle Routing Problem with Multi-Depot Routes, the ro-
tation concept doesnŽt exist since the vehicles donŽt have
to return to their starting depot. The vehicle routes can then
be Hamiltonian cycles or just paths between two depots.

Our proposed formulation for the Multi-Depot VRP with
Multi-Depot Routes is based on the two-commodity flow

formulation for the CVRP, introduced by Baldacci et al.
[10]. This formulation considers one real depot and one
copy depot, and all vehicle fleet has to be used. In the pro-
posed formulation instead of one real and one copy depot,
we have a set of real depots and a set of copy depots, and
we do not impose that all vehicles are to be used.

Since this formulation intends to be a simplification of the
master problem, multi-depot routes are allowed and time
constraints are not taken into account. We, therefore, re-
lax the maximum time allowed for a route and the maxi-
mum time available over the timeframe. As input data, this
module requires the distance between each node (collection
sites and depots), the weight to be collected at each collec-
tion site (considering only one recyclable material) and the
vehicle fleet capacity. The output will be a set of collec-
tion routes, where some routes start and end at the same
depot (feasible routes) and some start and end at different
depots (infeasible routes). This module is run for each recy-
clable material, in order to find the best solution regarding
the minimum total distance travelled.

2. Heuristic Procedure to Complete Service Areas
As mentioned above, the first module generates uncom-
pleted service areas by depot. The aim of this second mod-
ule is to complete those service areas by assigning to depots
the collection sites that, in the previous module, were asso-
ciated to infeasible routes. The assignment is done through
a greedy heuristic rule where the collection site is assigned
to the nearest service area.

3. Vehicle Routing Problem
After phase two, service areas by depot are already defined.
It is now necessary to solve a vehicle routing problem for
each depot to accomplish the multi-depot vehicle routing
problem. The mathematical formulation used to solve the
VRP is based on the two-commodity flow formulation [10],
taking into account the collection frequencies of the recy-
clable materials, the route duration limit and the number of
hours available in the planning horizon.
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4. APPLICATION TO A LARGE SCALE PROBLEM

The procedure developed is applied to a large scale problem, ex-
tracted from a real case study. This instance problem has 100 col-
lection sites and 3 depots. We considered that each depot has one
vehicle that could make several trips over the timeframe. The time-
frame has four weeks and the collection frequencies considered for
each recyclable material are once a month for glass, twice a month
for plastic and once a week for paper. We do not set a limit to
the number of trips that a vehicle can do over the timeframe, but
the number of hours that a vehicle can work over the timeframe is
limited to 160 hours (4 weeks × 5 days per week × 8 hours per
day).

The first and third modules of the hybrid method are solved us-
ing the branch-and-bound method implemented in the solver of
the CPLEX Optimizer 12.1.0. The branch-and-bound computation
time is arbitrarily limited to 2 hours. The second module, with the
heuristic procedure, was written in MATLAB. An Intel(R) Core
(TM) i7 CPU 930 @ 2.80 GHz is used.

The model will produce three solutions regarding service areas by
depot: the first one considers glass results from the first and second
module; the second one considers paper results and the third one
considers plastic/metal results. The solution that minimizes the
total distance travelled is the one developed for the plastic/metal
material (Figure 2).

5. CONCLUSIONS

This work studies the multi-product, multi-depot vehicle routing
problem and proposes a hybrid method based on two mathemat-
ical formulations and one heuristic procedure. This is justified
by the high complexity associated to this kind of problems. The
method proposed is applied to a large scale problem based on a real
case study where a recyclable waste collection system that collects
three types of recyclable materials is considered. The existence of
multiple depots in such problems requires a service area definition
by depot. Each depot is responsible to collect a set of collection
sites (which have the three recyclable materials to be collected) and
to define the collection routes by recyclable material. To accom-
plish the service areas by depot, the hybrid method produces three
solutions considering independently paper, glass and plastic/metal
results. Service areas based on plastic/metal results revealed to
produce the minimum total distance to be travelled.

As future work, the heuristic procedure will be improved and the
hybrid method will be applied to the real case study with 212 col-
lection sites and 5 depots.
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Figure 2: Results obtained for each module of the hybrid method, considering plastic/metal results to define service areas.
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ABSTRACT

Markets increasing competition, coupled with a growing concern
with the environment has created a need to increase supply chains’
sustainability. To achieve this, the supply chain should integrate
reverse logistics activities. In this paper, a mixed integer linear
programming formulation is developed for the design and plan-
ning of supply chains while considering simultaneously produc-
tion and reverse logistics activities with the goal of maximizing
the net present value. The model is applied to a case study where
forward and reverse activities are considered. A sensitivity anal-
ysis is performed in order to assess the resulting changes on the
optimal solution.

Keywords: Reverse Logistics, Optimisation, Design, Planning

1. INTRODUCTION

Markets increasing competition, coupled with a growing concern
with the environment, has created a new way of thinking when
designing and planning supply chains. A need to increase sup-
ply chains’ sustainability is emerging. To achive this, companies
must invest in the design and operation of these systems in or-
der to reduce their ecological footprint [1]. Therefore, the supply
chain should be now seen as a close loop system [2] where reverse
logistics activities are included encompassing the transportation
and reprocessing of collected products. Investing in reverse lo-
gistics allows the achievement of cost savings in the procurement,
disposal and transportation [3]. However, the establishment of a
reverse network that is independent of the forward can increase
infrastructure costs and can reduce the potential profit associated
with remanufacturing [4]. So, for a better network design and plan-
ning it is necessary to consider simultaneously the forward and re-
verse flows. Several studies were published in this area, such as
[5] who analyzed reverse logistics concluding that the research on
this subject focuses only on separate aspects and there is no holis-
tic analysis of the supply chain. As stated by [6] very few mod-
els combine, within a single formulation both forward and reverse
flows and much less works consider the integration of the reverse
chain as identified by [7] and [8]. Corroborating such conclusions,
[9] mention that the number of published works where both for-
ward and reverse flows are taken into account simultaneously is
less than the ones that treat them separately. These authors present
a generic model for the design and planning of supply chains and
state that there are several research opportunities in this area. Thus,
it is possible to conclude about the importance of the development
of a model that deals with both flows at the same time in a realistic
way.

Figure 1: Network representation.

2. METHODOLOGY

In this paper, it is proposed an optimization model for the simul-
taneous design and planning of supply chains with forward and
reverse flows, given a certain time horizon. The model representa-
tion uses Mixed-Integer Linear Programming (MILP) formulation
and was developed based on the work by [10]. These authors stud-
ied the design and planning of supply chains, taking into account
economical and environmental aspects. However, they only con-
sider a three echelon supply chain and did not incorporate reverse
logistics. Such model is generalized in the current work.

The problem addressed in this work has the objective to determine
the configuration of the network along with planning decisions that
maximize the net present value. The forward supply chain in study
is formed by four echelons: plants with a set of available processes
to be installed; warehouses where final products are assembled and
stored; and retailers which are responsible to deliver the final prod-
ucts to markets, final level of the forward supply chain. It is also
considered that factories can exchange all type of products amog
them, including raw materials or intermediate products. In the re-
verse flow, products are sent from clients to retailers and then are
sorted. Products that are too damaged are sent to disposal while
products in their end of life are sent to factories to be disassem-
bled to be reprocessed and non-conforming products are sent to
warehouses to be repacked. In figure 1, it is possible to see a rep-
resentation of the considered network.

The model determines the number, location and capacity of the
processes that have to be installed in each plant, warehouses and
retailers in order to maximize the net present value of the sup-
ply chain. It also allows to define the best production rates at the
plants, forward and reverse flows between all nodes of the network,
establishment of transportation links between all entities, inven-
tory levels at warehouses and retailers. At the same time, it has
to respect some constraints, namely mass balances at each node
of the network, the material flows between each pair of entities
have to be within the allowed boundaries, the capacity of each in-
frastructure cannot be exceeded and the products’ bill of materials
must be complied.

The model is applied to one example to show its applicability. This
example is run for two different cases. The first case includes only
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the forward flow while the second case analyses a supply chain
where reverse logistics activities are included. For these exam-
ples the number of variables varies from 18119 for the first case
to 163463 for the second. Although, and as expected, it was ob-
served an increase in the problem complexity when introducing
the reverse flow. Nevertheless, this fact did not resulted into diffi-
culties at the solution level, the solution gap obtained was zero in
both cases and the computational time was less than two seconds.

Since some assumptions on the example parameters were consid-
ered, a sensitivity analysis on the most critical parameters was
performed. This allow us to assess the resulting changes on the
optimal solution, infrastructures capacities and on other planning
decisions.

3. FINDINGS

The MILP is developed for the design and planning of supply
chains while considering simultaneously production and reverse
logistics activities. The final results present details on the produc-
tion levels, forward and reverse flow of products, inventory levels,
establishment of transportation links and infrastructures capacities.
The results obtained for the two situations analyzed are compared
and it is possible to conclude that the inclusion of the reverse flows
with the associated reverse logistics activities in the supply chain
allows the achievement of a better net present value.

Furthermore, in terms of the supply chain robustness the structure
designed appear quite robust since following a sensitivity analy-
sis performed on the two most critical parameters, the minimum
percentage of collection of end of life products and the percent-
age of demand satisfaction, no significant changes in the network
structure were observed.

The MILP model was implemented in GAMS language, version
22.8, and solved using an IBM-ILOG’s CPLEX branch and bound
algorithm, version 11.0, in an Intel(R) Core(TM) i7 CPU 2.80 GHz
computer with 6 GB RAM.

4. CONCLUSION

In this work it is proposed an optimization model for the design
and planning of a four echelon supply chain with forward and re-
verse flows allowing for the simultaneous incorporation of both
production and delivery of products as well as reverse logistics ac-
tivities dealing with the recovery of non conforming products as
well as of products in its end of life time. The model application
shows that reverse logistics incorporation may result in an incre-
ment of economical benefits associated with environmental con-
cerns, fact that can be seen as a business opportunity. As future

work, it is intended to incorporate risk and environmental issues
in the model with the goal of maximizing the NPV and simultane-
ously minimizing risk and environmental impacts. In addition, we
also aim to apply the developed model to different types of supply
chains so as to demonstrate its applicability to real case studies.
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ABSTRACT

This paper applies MILP methods to improve the network design
of reverse logistics for household plastic waste based on the case of
Netherlands. The purpose is to provide decision support for var-
ious stakeholders in choosing the most suitable recycling collec-
tion methods with an optimized network design that both balances
their interests and improves the recycling efficiency. Separation
method determines whether the quality and quantity of the plas-
tics material is high enough to be economically efficient and envi-
ronmentally effective. Currently, source separation (separation at
households) is dominating as suggested by legislation. However,
since the overall collection rate is not satisfying, municipalities are
trying different ways to deal with plastic waste. There is a need to
adopt the system according to the characteristics of the municipali-
ties. This research follows the approach of scenario study. We start
with the simulation of the current situation followed by investigat-
ing the impacts of various changes in the collection system. For
each scenario, we suggest improvement in the network by reposi-
tioning the locations for separation, sorting and reprocessing sites.

Keywords: Reverse logistics, Network design, Mixed integer lin-
ear programming, Plastic recycling

1. INTRODUCTION

1.1. Purpose

This paper applies operations research methods to improve the net-
work design of reverse logistics for household plastic waste based
on the case of the Netherlands. The purpose is to provide decision
support for various stakeholders in choosing the most suitable re-
cycling collection methods with an optimized network design that
both balances their interests and improves the recycling efficiency.

1.2. Problem and Research Question

Due to a higher volume to weight ratio in comparison to other
recyclables, plastics have a larger number of kilometers traveled
per tonne, meaning more emissions and less efficiency in trans-
portation (Craighill and Powell, 1996)[1]. That is why only a few
recycling and collection facilities exist compared to other types
of recyclable packaging waste such as glass and paper (Waste on-
line, 2010). However, the rising oil price and the cost reduction
by using recycled plastics instead of virgin polymer-based plastics
lead to a high demand for plastic recycling. As a result, there is
a need to build an efficient network that improves the recycling
system. Figure 1 illustrates the current flow of plastics recycling.
Plastics recycling network in the Netherlands is characterized by
various collection, separation and treatment systems. The first step
of the processing system, separating plastics from other waste, can
occur at households (source separation) or in separation centers

(post-separation), making a difference in infrastructure, collection
frequency, vehicle types, etc. Decisions on the choice of the sys-
tem depend on issues like the type of municipality described by
population density, geographical location, householders’ behavior
as well as the availability of resources. The separation method,
together with the corresponding collection system and frequency,
determine whether the quality and quantity of the plastics material
is high enough to be economically efficient and environmentally
effective.

Figure 1: Flow chart of reverse network for plastics waste

A special characteristic of the Dutch network is that although the
land area is not large, there are 441 different municipalities varying
a lot in population density and housing types (Central Bureau of
Statistics in Netherlands, 2009). For many municipalities, there is
a mixture of different household types (apartments, houses, farms)
within the municipality which results in not only population den-
sity difference but also diversity in plastic waste components. Not
all the processing work is done inside the country, for instance,
sorting facilities in Germany and reprocessing companies from all
over the Europe are involved in the network as well. Currently,
source separation is dominating. More than 90% of the municipal-
ities are doing source separation as suggested by legislation. Since
the overall collection rate is not satisfying, municipalities are try-
ing different ways to deal with plastic waste. Households in urban
municipalities have limited space at home for doing source sepa-
ration. Therefore there is a need to adopt the system according to
the characteristics of the municipalities.

The research question in this paper is

• What is the best reverse network design for plastic recycling
in Netherlands that is both efficient and sustainable?

This includes the decision support for making the choice of source
separation or post-separation in order to balance the interests and
achieve the lowest overall transport cost from the point of collec-
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tion to the final processing facility.

On contrary to normal distribution networks in which products as-
semble at the source or sometimes during the flow, plastic waste
disassembles along distribution from the sources to the end pro-
cessors. Many plastic fractions are collected together at the source
mixed with dirt and moisture and even other municipal solid waste,
depending on the collection method. Along the flow, separation
and sorting are going on. In the end, different plastic fractions will
be distributed to separated processors. The useless part out of each
step of separation/sorting will be disposed through other channels,
therefore quantity of plastics also reduces during distribution. Ad-
ditionally, PET bottles are a special category of plastic waste. It
has a special channel of recycling in the network other than the
normal plastic waste. The network design should fit these special
features.

1.3. Literature Review

The origin of research on reverse logistics can be dated back to
1995. Ever after that, there has been growing interest in research
of this filed. Compared with forward logistics, Fleischmann et.al
(1997) [2] identified a specialty of reverse distribution network,
that is, it is not necessarily a symmetric picture of forward dis-
tribution. Most of them has a "many to few" network structure.
In the case of plastic recycling network, the many municipalities
as suppliers and the few sorting plants and reprocessors as cus-
tomers form such a "many to few" structure. Rubio et.al(2006)[3]
reviewed the characteristics of the research on reverse logistics
during the period of 1995-2005 and pointed out that the majority
of research focuses on the study of tactical and operational aspects
like production planning and inventory management. Research on
reverse logistics could be directed to the analysis on strategic as-
pects. Another trend in this research field is that environmental
issues are becoming an important parameter in logistics network
design. Srivastava (2007)[4] reviewed green supply chain man-
agement taking a reverse logistics angle. The new concept of green
supply chain leads to a shift from minimizing cost to a balance be-
tween cost and environmental impact. In line with these research
directions, this paper deals with the interaction between available
technology(separation and sorting) and possible collection meth-
ods. Through network planning and scenario study, the purpose is
to provide decision support for stakeholders in choosing the most
suitable and sustainable recycling strategy.

1.4. Methodology

Mixed integer linear programming (MILP) models are used in this
network design. To achieve the objective, the research follows the
approach of scenario study by forming a list of scenarios first,
then comparing the network modeling result of these scenarios.
The modeling is conducted by using a graphical optimization tool
IBM Logic Net Plus. Unlike the usual forward supply chain net-
work model, we have all the plastic fractions together with dirt and
moisture as various "products" in the model. Municipalities are the
supplier of these "products". The distinctive "many to few" struc-
ture is built in and the special feature of product disassembling as
waste disposal during the flow is simulated. The objective of the
MILP model is to minimize the overall transportation cost of the
four levels of Figure 1. In each scenario, different network layout,
assumptions on the choice of collection channels and the charac-
teristics of municipalities define the quantity of the products, their
flow and the availability of facilities in the network which are con-
straints for the model. In this scenario study, we start with the
simulation of the current situation based on source separation with
separate PET bottle collection. Then we investigate the impacts of

• shifting to 100% post-separation;

• adopting PET collection system from other countries;

• choosing a collection method according to the population
density of the municipality.

Modeling results are compared and discussed to answer the above
mentioned research question. For each scenario, we suggest im-
provements in the network by repositioning the locations for sort-
ing, separation and reprocessing sites.

1.5. Data and Data Sources

Main data used for building up the models and the data sources are
as follows:

• Municipalities (population, quantity of plastic waste, loca-
tion)
Statistics can be collected through the annual reports of
CBS (Central Bureau of Statistics in Netherlands)

• Processing facilities (function, location, capacity)
Nedvang (Dutch packaging waste recycling association),
has relevant information on the processing facilities in Nether-
lands. Another project partner Aachen University has more
expertise on the system of Germany facilities.

• Plastic waste (components, quality, separation technology)
Data is provided by one of the research anchors of the Ken-
niscentrum Nascheiding (KCN), an Expertise Center located
at Wageningen University that investigates the technologi-
cal and economical feasibility, as well as the environmental
impact, of new technologies for the treatment of plastics
(packaging waste) found in household waste.

2. FINDINGS

The modeling results are expected to give the following findings

• The logistics bottleneck of applying source separation/post-
separation in a country

• The impact of choosing separation systems that fit the char-
acteristics of municipalities

• For a chosen combination of source separation and post-
separation, the location allocation of the separation and pro-
cessing facilities

• The influence on transportation efficiency of separately col-
lecting the PET bottles.

Current preliminary results show that in general, having a separate
channel for PET bottles collection reduces the over all transporta-
tion cost. Among all the tested scenarios, doing source separation
in rural ones and post-separation in urban areas while keeping the
separate PET bottle refund system performs best in saving trans-
portation cost.

3. RELEVANCE / CONTRIBUTION

This paper focuses on a niche scope of reverse logistics by apply-
ing operations research modeling techniques in reverse logistics on
plastic recycling problem in specific with multiple objectives, mul-
tiple layers and multiple stakeholders. Traditional network design
models are modified and extended to fit in the specific network
features and to solve the applied problem.
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ABSTRACT

Nowadays companies are facing an important challenge in their
distribution, as frequent deliveries and small order sizes are the
common rule today. For this type of distribution, cross-docking is
a logistics activity that generates several advantages like reduction
in lead times and manipulation costs. In addition, Reverse Logis-
tics (RL) has achieved more importance in recent years within the
business world. In particular companies with fashion products are
introducing RL activities to recover and, in most cases, resale the
products through the same or through different channels of distri-
bution like outlets, secondary markets, or internet, with the pur-
pose to recapture value. Despite of the success of cross-docking
in distribution, the concept has not been applied for the reverse
flow so far. In this paper we propose a linear programming model
that allows the use of cross-docking in a Reverse Logistics con-
text, where returned products can be redirected to the outlets chain
without storage.

Keywords: Reverse Logistics, Cross-docking

1. INTRODUCTION

With improvements in logistics operations, nowadays companies
are facing a change in the way they are doing their distribution.
Today it is very common to find frequent shipments with small
order sizes. In such situations, cross-docking is a logistical ac-
tivity that generates several advantages [1]in areas like inventory
management, order picking, and transportation [2]. Products arriv-
ing to the cross dock are unloaded from inbound trailers, possibly
reconsolidated with other products arriving from different destina-
tions, and loaded into outbound trailers within less than 24 hours
[3]. In practice, cross-docking is possible because the suppliers
receive high quality information and organize the orders by final
destination. At the moment goods arrive at the distribution center,
it is then just necessary to translate them into a predefined position
for the final client.

Reverse Logistics (RL), the second theoretical concept we refer to
in this paper, has received more importance in recent years around
the world. The implementation of environmental laws, an increas-
ing customer awareness related to environmental issues, the re-
duction of the product life cycles and the creation of new business
models based on returned products, are some of the drivers for
the introduction of RL operations in supply chains [4]. As a con-
sequence, many of the theories and practices developed in direct
logistics have been adjusted properply to an environment that in-
cludes the returned products at the end of its life cycle [5]. As
reverse flows of products are characterzed by high uncertainty in
quantity and quality, those flows are like a “black box” until they

arrive to the distribution center. Therefore the application of cross
docking in the reverse logistics context is not prevalent so far. But
in the special case of fashion retail companies, who have their own
network of outlet stores, it seems to be possible to introduce cross
docking in the reverse flow since product assortments can be cre-
ated based on the available products which were unsold during the
sales period. Although an "ideal" product assortment is planned
for each outlet store, this is not unchangeable and allows compa-
nies to modify it with a certain degree of flexibility.

In this paper we propose a model designed for retail chains that
have their own outlet stores to commercialize the returned prod-
ucts being called the “Reverse Cross-docking Model”. The next
section treats a literature review related to this topic, followed by
the explanation of the model in section 3, the mathematical formu-
lation in section 4, and a conclusion as well as a research outlook
in section 5.

2. LITERATURE REVIEW

Reverse Logistics (RL) has been defined as the process of plan-
ning, implementing and monitoring the effective and efficient flow
of raw materials, in-process inventory, finished goods and all re-
lated information from the point of consumption to the point of
origin with the purpose of recapturing value or arrange it prop-
erly [6]. In recent years, RL has gained more importance both in
business and research. This growth is particularly significant in
sectors with high rates of returns and high standards of customer
service. Additionally, the growing concern about climate change
and environmental impact of business activities, joint with the leg-
islation changes towards a cleaner manufacturing environment, has
enhanced companies to introduce different practices of product re-
covery. 1

Cross-docking systems have been implemented since many years
in the business world, being defined as a warehousing strategy that
involves movement of material directly from the receiving dock to
the shipping dock with a minimum time in between [7]. In other
words, it is a practice of moving goods through distribution cen-
ters without storing it, increasingly used by enterprises for com-
prehensive management of its operations in the supply chain. One
example for its application is Wal-Mart, who introduces the cross-
docking system early in the ’90s. A big part of the competitive
advantage and growth of Wal-Mart in the U.S., was due to the use
of this strategy in its operations [8].

To the best of the authors knowledge no model was presented to
deal with the implementation of cross-docking in RL so far. Due
to the RL characteristics, mainly related to variety and uncertainty

1(see www.greenbiz.com)
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of returned products, it can be assumed that it is difficult to apply
cross-docking in the RL field. This paper contributes to the liter-
ature of RL with the creation of the first model dealing with the
implementation of cross-docking in a RL context.

3. PROBLEM DESCRIPTION

Despite the general benefits derived from cross-docking in direct
logistics, this use in RL is difficult due to the characteristics of the
Reverse Supply Chain: outlet stores receive the products without
having ordered them explicitely as their product offering depends
on the return flow of the stores and the destination of the goods
is not defined in advance, because the quality and the quantity are
unknown in most cases. Sometimes it is not even know when the
product arrives; normally, there are no orders from the "clients"
of the chain, i.e. secondary markets where the commodity is sold.
Even in the case that a company has control on the secondary mar-
kets, it is difficult to achieve a fit between these orders and the
products that are returned from the main channel of sale.

In a situation where companies control both, the direct store chain
and the outlet store chain, there is a way of benefiting from cross-
docking practices in the returns flow. Fashion companies fit well
with the described profile, since their product is affected by sea-
sonal demands (autumn-winter and spring-summer), and its mer-
chandise must rotate during each season. At the end of the season
all merchandise that has not been sold is taken out of the shops and
sent back to the distribution center. From this moment the prod-
ucts are no longer managed by the main distribution channel as a
result of the intended variation of product assortments from season
to season.

Traditionally, a returned box from a store follows several processes
in order to be prepared for the distribution to the outlet stores.
Main processes are: opening the boxes, sorting the products, or-
ganizing them by reference, size, color and other predefined fea-
tures, storage them in the warehouse, and finally use them to fulfill
the orders generated by the outlets. While this system works rel-
atively well, it is quite costly, mainly due to the storage costs and
time required to have a product ready to be sent to the outlet stores.

Usually, fashion companies create a desirable product assortment
list for the outlet stores combining a product offer that is supposed
to satisfy the final customer. To create this product assortment
list, companies consider past sales and customers profiles for each
outlet.

Cross docking can help to minimize operational costs, mainly of
storage, retrieval and picking. In order to operate with cross-docking
in the reverse channel it is necessary to have the critical informa-
tion available (i.e. desired product assortment from each outlet and
product sent per box from the direct stores). With this information
at hand, it is possible to create a matching lists in which the com-
pany can see if there is a box that coincides with the desired prod-
ucts of an outlet. As it is difficult to find a box that fits 100% with
the order of an outlet store, we assume that the company has some
flexibility to change the desirable products of a given outlet store.
But this flexibility is limited as the outlet stores do not intend to
have an excess of unwanted products. In other words, this leads to
the question: How many unwanted products is the company able
to send to the outlet stores?

If the company sends many undesired products to the outlets, those
products will be returned with a certain probability after passing a
period of time in the outlet stores, causing corresponding costs. If
the company does not have a certain degree of flexibility, just a
few boxes can be sent through the reverse cross docking operation
making it finally inefficient. To deal with this situation, we created
an optimization model where an optimal percentage of matching
is established. This Matching Percentage is computed for every

box-outlet pair. Afterwards, the optimization model searches for
the Global Percentage of Acceptance (GPA) that a box needs to
achieve in order to be sent to an outlet store. Figure (1) shows how
the system works.

Figure 1: Sistem Operation

If a given box has a Matching Percentage which is above the GPA
then the box is marked as candidate to be assigned to the corre-
sponding outlet. The optimization model also considers the maxi-
mization of the sum of all the matching percentages, assuring that
boxes will be sent to the outlets which fit better with its content. If
the GPA is too low, then the estimated costs of taking back prod-
ucts from the outlets at the end of the season increase. If the GPA
is too high, then only a few boxes are sent through reverse cross-
docking, and traditional storage and picking must be performed
which consequently increases the costs.

The objective function of the model minimizes the total costs and
maximizes the sum of all matching percentages (1). Constraints
of the model are: computation of products from a box (Cai) which
are in excess in comparison to the outlet order (Oai)or number
of products of a given reference which are not enough to fulfill
the outlet requirements (2); computation of the Matching Percent-
age (MPi j) (3); Comparison between the Matching Percentage of
a given pair box-outlet and the Global Percentage of Acceptance
(GPA) (4);a box i is potentially assigned to an outlet j (PAi j) if
its matching percentage is greater than GPA (5); a box can be as-
signed to the traditional method (BTi) only if it is not assigned
for cross docking to any of the outlets (6) ; as a percentage, GPA
and MPi j must be less than or equal to 1 (7) and (8);computation
of the cost of returned products at the end of the season. This
takes into account an historical probability of returning a product
a from the outlet j based on historical data (PRa j). This is a pa-
rameter of the model. The estimation of products returned is the
first integer number greater than the value obtained (R̂Pa j) (9); bi-
nary, non-negativity and integer constraints (10),(11) and(12). The
model was solved using the Lingo Software and results show that
the costs of the total system can be reduced when the reverse cross
docking practices are implemented.

Minz
A

∑
a=1

Cai ·BTi ·UPCa+
J

∑
j=1

R̂Pa j ·RLCa+(M−
I

∑
i=1

J

∑
j=1

MPi j ·PAi j)

(1)
A

∑
a=1

(Cai−Oai) ·Yai = SPi j−LPi j∀i, j (2)

MPi j = 1−
(

SPi j

∑A
a=1 Cai

)
∀i, j (3)

MPi j−GPA =CDi j−CTi j∀i, j (4)
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PAi j ≥MPi j−GPA∀i, j (5)

BTi ≤
J

∑
j=1

PAi j∀i (6)

GPA≤ 1 (7)
MPi j ≤ 1 (8)

I

∑
i=1

(PAi j ·LPi j ·Cai) ·PRa j ≤ ˆRPa j∀a, j (9)

BTi,PAi j ∈ {0,1} (10)
SPi j,LPi j,MPi j,CDi j,CTi j,GPA≥ 0 (11)

R̂Pi j ∈ {integer} (12)

Where:

a = {1..A} Set of articles

i = {1..I} Set of boxes

j = {1..J} Set of outlet stores

M =a big number greater than the maximum possible value of the
sum of all matching percentages joint together

UPCa =Processing cost per unit a in the distribution center.

MPi j = Matching Percentage: Is the percentage in which box i,
fulfill the order from outlet j.

SPi j = Number of products in box i which are sent in excess to the
outlet j.

LPi j = Number of products in box i which are lacking to fulfill the
order of outlet j.

CDi j =Positive difference between the percentage of matching and
the GPA.

CTi j =Negative difference between the percentage of matching
and the GPA.

4. CONCLUSIONS AND FUTURE RESEARCH

Cross-docking is a common strategy that have shown its benefits
in reducing operational costs and time in business. In this paper
we presented a model in which this practice can be used in a Re-
verse Logistics context. This model was applied to an environment
where companies own their direct and outlet store channels. Pre-
requisit for the model application are two characteristics: avail-
ability of information about the desirable assortment of products

from the outlet stores, and information about the products returned
from the direct stores at box level. The model proposed estab-
lished the optimum global percentage of acceptance in order to
maximize the benefits for the company. The results obtained fur-
thermore show that companies can obtain important reductions in
operational costs from the application of this reverse cross docking
model.

For future research, the consideration of a dynamic allocation of
inventory could provide additional insights and probably lead to
an improvement of the initial solution presented in this paper.
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ABSTRACT

The integrated vehicle-crew-roster problem aims to simultaneously
determine minimum cost vehicle and daily crew schedules that
cover all timetabled trips and a minimum cost roster covering all
daily crew duties according to a pre-defined days-off pattern. This
problem is solved by a heuristic approach based on Benders de-
composition that iterates between the solution of an integrated vehi-
cle-crew scheduling problem and the solution of a rostering prob-
lem. Computational experience with data from two bus compa-
nies in Portugal is used to compare two rostering patterns within
vehicle-crew-roster solutions.

Keywords: Rostering, vehicle-scheduling, crew-scheduling, Ben-
ders decomposition

1. INTRODUCTION

The integrated vehicle-crew-roster problem aims to simultaneously
assign drivers of a company to vehicles and vehicles to a set of pre-
defined timetabled trips that cover passenger transport demand in a
specific area, during a planning horizon. Due to the complexity of
the corresponding combinatorial optimization problem, it is usu-
ally tackled on a sequential basis beginning with vehicle schedul-
ing, followed by crew scheduling and, lastly, driver rostering. Ve-
hicle scheduling produces daily schedules for the vehicles that per-
form all trips. The crew scheduling defines daily crew duties that
cover the respective vehicle schedules. Finally, for the planning
horizon, crew duties are assigned to the drivers of the company
leading to a roster that must comply with labor and institutional
norms. However, there is a high dependency among these three
problems and despite its computational burden, some work has
been reported on the integration of all or some of these problems,
expecting to outperform the corresponding sequential approaches.
Among other authors, [1], [2] and [3] have developed efficient al-
gorithms for the integrated vehicle-crew problem. Crew-rostering
integration has been devised by [4], [5] and by [6] albeit within
other transport contexts (railway, airline and airport staff).

Following the idea that staff costs constitute more than 50% of op-
erating costs, one wants to compare two different roster patterns
in what concerns the resulting integrated vehicle-crew-roster solu-
tions. A heuristic approach for an integrated vehicle-crew-roster
problem with days-off pattern (VCRPat) is presented. The ap-
proach combines column generation and branch-and-bound tech-
niques within a Benders decomposition and iterates between the

solution of an integrated vehicle-crew scheduling problem and the
solution of a rostering problem. A preliminary insight on this de-
composition approach was already presented by the authors in [7].
Benders decomposition methods have been proposed by [8], [9],
[10] and [11], although for airline operations problems. This pa-
per is organized as follows: Section 2 introduces the VCRPat along
with the two days-off patterns; Section 3 describes the mathemat-
ical model; Section 4 presents the decomposition algorithm and
Section 5 gives some conclusions from preliminary tests.

2. PROBLEM DEFINITION

During a planning horizon H, partitioned into 49 days, a set M of
drivers must be assigned to a fleet of vehicles housed at a depot d
in order to perform a set of timetabled trips (trips for short). The
location and the number of vehicles available at the depot as well
as the set of trips to be performed on each day h are known. For
each trip the starting and ending times and locations are given.
Trips i and j are compatible if the same vehicle can perform both
trips in sequence. Between compatible trips i and j a deadhead
trip may occur where the vehicle runs without passengers. There
are three types of deadhead trips: those between the end location
of a trip and the start location of a compatible trip, those from the
depot to the start location of a trip (pull-out) and those from an end
location of a trip to the depot (pull-in). The set of timetabled trips
and deadhead trips performed by a vehicle on day h ∈ H defines
a vehicle schedule. Each vehicle schedule starts and ends at the
depot and is subdivided into points, called relief points, where a
change of driver may occur. Two consecutive relief points define
a task, that is, the smallest amount of work to be assigned to the
same vehicle and crew.

A crew duty is a daily combination of tasks that respects labor law,
union contracts and internal rules of the company. These rules de-
pend on the particular situation under study and usually constrain
the maximum and minimum spread (time elapsed between the be-
ginning and end of a crew duty), the maximum working time with-
out a break, the break duration, etc. Crew duties are assigned to
the drivers to form their work schedules - the roster. This is usually
done on a cyclic basis so as all workers have the same type of work
and rest periods. In this paper, we deal with a group of drivers with
more flexibility on the rosters. These drivers work according to a
pre-defined cyclic days-off pattern where all drivers share the same
type of rest periods, but not necessarily the same crew duties. For
a time horizon of 7 weeks (49 days), this days-off pattern, PatI,
includes 4 rest periods of 2 consecutive days-off and 2 rest periods
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of 3 consecutive days-off. These 2 rest periods contain a Saturday
and occur in sequence with 5 workdays in between. The remaining
work periods have 6 consecutive workdays.

Table 1 displays PatI through a 0− 1 matrix, where 0 stands for
day-off and 1 for workday. Each row of the matrix corresponds to
a weekday. Seven consecutive columns correspond to the 7 weeks
of the time horizon, being the last day in column i (i = 1, ...,6)
followed by the first day in column i+1 and the last day in column
7 followed by the first day of column 1. Since a 49 days schedule
may begin in row 1 of any column, this days-off pattern leads to
a set S of 7 schedules si, i = 1, ...,7. That is, for example, a driver
assigned to schedule s4 ∈ S works according to columns 4, 5, 6, 7,
1, 2, and 3, during weeks, 1, 2, 3, 4, 5, 6, and 7, respectively.

1 2 3 4 5 6 7
Mon 0 1 1 1 1 1 0
Tue 0 0 1 1 1 1 1
Wed 1 0 0 1 1 1 1
Thu 1 1 0 0 1 1 1
Fri 1 1 1 0 0 1 1
Sat 1 1 1 1 0 0 1
Sun 1 1 1 1 0 0 1

Table 1: Cyclic days-off pattern (PatI).

Usually, in public transit companies the workforce demand is con-
stant from Monday to Friday but it decreases during the weekend.
But, for the cyclic days-off pattern displayed in Table 1, in each
weekday, there are always 2 schedules covering drivers days-off
and 5 schedules covering drivers workdays. In order to minimize
the number of drivers assigned to work we propose an additional
schedule, s8, with 7 rest periods of 2 consecutive days-off that al-
ways occur on Saturday and Sunday. During the planning horizon
H, drivers assigned to s8 work Monday through Friday and rest
Saturday and Sunday. The 7 schedules in PatI plus schedule s8
define the set S of schedules in pattern PatII, displayed in Table 2.

1 2 3 4 5 6 7 8
Mon 0 1 1 1 1 1 0 1
Tue 0 0 1 1 1 1 1 1
Wed 1 0 0 1 1 1 1 1
Thu 1 1 0 0 1 1 1 1
Fri 1 1 1 0 0 1 1 1
Sat 1 1 1 1 0 0 1 0
Sun 1 1 1 1 0 0 1 0

Table 2: Cyclic/non cyclic days-off pattern - PatII.

PatII tends to counterbalance the lower demand during weekend.
From Monday to Friday, the covering of drivers days-off and work-
days is equal in PatI and PatII. However, on Saturday and Sunday
PatII has 3 schedules covering drivers days-off.

A roster is an assignment of drivers to schedules in S covering all
the crew duties defined for the planning horizon while satisfying
labor and internal rules of the company. Any number of drivers
may be assigned to each schedule.

Note that, both PatI and PatII satisfies a minimum number of days-
off per week (1 day), the minimum number of consecutive days-
off (2 days), a minimum number of Sundays/weekends off in the
planning period (2 days) and a maximum of consecutive workdays
(6 days). Besides these constraints, drivers must rest a minimum
number of hours between two consecutive crew duties and, con-
sequently, a crew duty starting in the morning cannot be assigned
to a driver that had worked on a crew duty starting in the evening
of the previous day. To avoid infeasible sequences of crew duties,
for each day h, the set of crew duties, Lh, is partitioned into early

crew duties, Lh
E , starting before 3:30 p.m. and late crew duties, Lh

A,
starting after 3:30 p.m.

Moreover, for a roster to be well accepted in the company it should
attain balanced workload. To balance workload, the set Lh is also
partitioned into short duties, Lh

T , which have a maximum spread of
5 hours (without a break), normal duties, Lh

N , with spread ∈ [5,9]
hours, and long duties, Lh

O, with spread ∈ [9,10.75] hours (with
overtime).

The VCRPat aims to simultaneously determine a minimum cost set
of vehicle schedules that daily covers all timetabled trips, a mini-
mum cost set of crew duties that daily covers all vehicle schedules
and a minimum cost balanced roster for the time horizon.

3. MATHEMATICAL MODEL

For each day h, we define the vehicle scheduling network Gh =
(V h,Ah). The node set V h =Nh∪{ds,dt} includes Nh correspond-
ing to the timetabled trips to be performed on day h and {ds,dt}
corresponding to the depot d. The arc set Ah = Ih ∪ (ds×Nh)∪
(Nh×dt) contains Ih, the set of arcs representing the pairs of com-
patible timetabled trips, and the sets of arcs related with pull-out
and pull-in trips. Each path on graph Gh, starting in ds and ending
in dt , defines a vehicle schedule for a specific vehicle on day h. A
set of paths from ds to dt disjoint on Nh, covering all nodes from
Nh, defines a vehicle scheduling for day h. Decision variables zh

i j
indicate whether a vehicle performs trips i and j in sequence on
day h, or not. In particular, zh

ds j and zh
idt

represent, respectively,
a pull-out from the depot to trip j and a pull-in from i to the de-
pot. Vehicle costs ci j, related with fuel consumption and/or vehicle
maintenance, are associated to the corresponding arcs in Gh.

Daily vehicle schedules must be covered with daily crew duties.
Since the depot as well as the end location of timetabled trips are
potential relief points, we assume that task (i, j) corresponds ei-
ther to the deadhead from trip i to trip j followed by trip j or to the
deadhead from trip i to trip j followed by trip j and a pull-in. Let
Lh

i j ⊆ Lh be the set of crew duties covering task (i, j), on day h. Let
variables wh

` indicate whether crew duty ` is selected on day h, or
not. A cost e` is assigned to each crew duty `. Cost e` usually in-
cludes a fixed cost (for example, a driver’s salary) and operational
costs related to overtime, evening periods, etc.

Each anonymous crew duty in the solution has to be assigned to
a specific driver which works according to one of the pre-defined
days-off schedules. Let xm

s = 1 if driver m is assigned to schedule
s, or 0 otherwise. Let ymh

` = 1 if driver m performs crew duty ` on
day h, or 0 otherwise.

The objective function includes different measures. Management
often wishes to know the minimum workforce required to operate
the fleet of vehicles, so as to transfer drivers to other departments
of the company or to replace those absent. Such policy results in
minimizing crew duty costs e` associated to variables wh

` = 1 and
costs rm associated to xm

s = 1. To balance workload, penalties λT
and λO are associated with variables ηT and ηO that represent,
respectively, the maximum number of short and long crew duties
assigned to a driver during H. The integer linear programming
formulation follows:

min ∑
h∈H

( ∑
(i, j)∈Ah

ci jzh
i j + ∑

`∈Lh

e`w
h
` )+ ∑

m∈M
∑
s∈S

rmxm
s +λT ηT +λOηO

(1)
∑

i:(i, j)∈Ah

zh
i j = 1, j ∈ Nh,h ∈ H (2)

∑
j:(i, j)∈Ah

zh
i j = 1, i ∈ Nh,h ∈ H (3)
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∑
i∈Nh

zh
dsi ≤ ν , h ∈ H (4)

∑
`∈Lh

i j

wh
` − zh

i j ≥ 0, (i, j) ∈ Ah,h ∈ H (5)

∑
m∈M

ymh
` −wh

` = 0, ` ∈ Lh,h ∈ H (6)

∑
s∈S

xm
s ≤ 1, m ∈M (7)

∑
`∈Lh

ymh
` −∑

s∈S
ah

s xm
s ≤ 0, m ∈M,h ∈ H (8)

∑
`∈Lh

A

ymh
` + ∑

`∈L(h−1)
E

ym(h−1)
` ≤ 1, m ∈M,h ∈ H−{1}, (9)

∑
`∈Lh

E

ymh
` + ∑

`∈L(h−1)
A

ym(h−1)
` ≤ 1, m ∈M,h ∈ H−{1}, (10)

∑
h∈H

∑
`∈Lh

t

ymh
` −ηt ≤ 0, m ∈M, t ∈ {T,O} (11)

zh
i j ∈ {0,1}, (i, j) ∈ Ah,h ∈ H (12)

wh
` ∈ {0,1}, ` ∈ Lh,h ∈ H (13)

ymh
` ∈ {0,1}, ` ∈ Lh,m ∈M,h ∈ H (14)

xm
s ∈ {0,1}, s ∈ S,m ∈M (15)

ηT ,ηO ≥ 0 and integer. (16)

Constraints (2), (3) and (4) describe the scheduling of vehicles en-
suring that each timetabled trip is performed exactly once by a ve-
hicle. These constraints ensure that, for each day h ∈ H, graph Gh

is partitioned into a set of disjoint paths, vehicle schedules, cov-
ering all vertex in Nh. Constraints (4), where ν is the number of
vehicles available at the depot, are related with the depot capac-
ity. Constraints (5) link vehicle and crew duty variables ensuring
that each task in a vehicle schedule is covered by one daily crew
duty. Equalities (6) impose that each crew duty, in a solution, must
be assigned to one driver. Constraints (7) state that each driver is
assigned to one of the seven days-off schedules or is available for
other service in the company. Constraints (8), where parameter
ah

s = 1 if h is a workday on schedule s, impose coherence between
the assignment of a crew duty to a driver and the schedule assigned
to this driver. Inequalities (9) forbid the sequence late/early du-
ties to ensure that drivers rest a given minimum number of hours
between consecutive duties. Furthermore, (9) and (10) impose a
day-off period between changes of duty types. Inequalities (11)
determine the maximum number of short/long duties per driver.
Note that, these constraints along with the two last terms of the
objective function ensure the integrality of variables ηT and ηO.

To deal with the VCRPat, a decomposition approach is suggested
by three combinatorial structures included in this mathematical
formulation. A network flow problem is related with the daily
scheduling of vehicles. A set covering structure defines the set
of crew duties that daily cover the vehicle schedules and a mixed
covering-assignment problem with additional constraints defines
the roster, for the planning horizon H, that covers all daily crew
duties.

4. DECOMPOSITION ALGORITHM

Different temporal scheduling problems may be identified in the
above mathematical formulation: |H| daily integrated vehicle-crew
scheduling problems, with variables z and w for the vehicle sched-
ules and for the crew duties, respectively; and a rostering problem
for the whole planning horizon, with variables y, x and η . These
temporal scheduling problems share a set of variables in constraint
set (6). To handle these linking constraints, we propose a heuristic

approach based on Benders decomposition. The decomposition
heuristic alternates between the solution of a master problem in-
volving the z, w variables, a vehicle-crew scheduling problem for
each day of H, and the solution of the corresponding subproblem
involving the y,x,η variables, a rostering problem for H.

Concerning the master problem, a non-exact approach is proposed
where, in each iteration, the Benders cuts are relaxed into the mas-
ter objective function, associated with non-negative multipliers.
An adequate choice for these multiplier values leads to a relaxed
master problem that can be partitioned into |H| independent in-
tegrated vehicle-crew scheduling problems, one for each day of
the planning horizon H. In each iteration, crew duty costs are up-
dated with information given by the rostering suproblem variables
and the resulting integrated vehicle-crew scheduling problems are
solved by an algorithm which combines a heuristic column gener-
ation procedure with a branch-and-bound scheme.

As for the subproblem, fixing the values of the z and w variables
in VCRPat at values z and w, given by the optimal solution of
the master problem, one obtains a rostering problem. Exact stan-
dard algorithms are used to solve the linear relaxation of the ros-
tering subproblem. Whenever the resulting solution is not inte-
ger, branch-and-bound techniques are applied to obtain a feasi-
ble roster. Integer solutions for the roster subproblem involve a
large number of binary variables and a great amount of resources
is needed to obtain these solutions. To overcome such drawback,
different strategies have been incorporated into the branching pro-
cess, yielding in most cases, to a "good" feasible roster in short
computing time.

A computational experiment was performed using two real-world
data set instances. In each iteration, the master problem vehicle-
crew solution and the subproblem rostering solution, in case of
being integer, are both included in a pool of feasible solutions for
VCRPat for further analyses from different points of view.

Preliminary computational results concerning pattern PatI show
that the decomposition algorithm adjust crew duties in the master
problem, thus inducing better subproblem solutions in what con-
cerns the number of drivers and/or the number of short and long
crew duties assigned to a driver. Such improvement on the first
iteration solution quality may be seen through the replacement of
long and short crew duties by normal crew duties originating a
fairer distribution of work among the drivers. Note that, the first
iteration solution corresponds to the sequential solution.

5. CONCLUSIONS

This paper proposes a Benders decomposition based algorithm that
generates a pool of feasible solutions for a single depot vehicle-
crew-roster problem. The approach outperforms the traditional se-
quential scheme. The feedback given by Benders cuts guided the
building of the daily vehicle-crew schedules thus leading to bal-
anced workload rosters with fewer drivers.

Due to the weight of driver costs in the VCRPat overall cost, the
methodology is now being used to analyze the influence of differ-
ent roster patterns into the VCRPat final solutions.
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ABSTRACT

The purpose of this paper is to present some findings on the ros-
tering problem resolution through the analysis of a real case study.
The problem is initially formulated as a mixed integer problem
(MIP) and solved with CPLEX, using the ILOG OPL Studio en-
vironment. The achieved findings and results are the basis for the
development of a constructive heuristic that consistently reaches
a feasible solution, which is the optimal solution in this particular
case, in a shorter period of time than the MIP model.

Keywords: Rostering, Staff scheduling

1. INTRODUCTION

Human resource management is one of the most concerning is-
sues for any organization due not only to its significant impact in
the total expenditure but also because it is highly constrained by
human behavior aspects seeing that it deals with human beings.
Having the right people doing the right task, at the right time, in
the right place, at the minimum cost is typically the aim of staff
scheduling or rostering problems. These problems are restricted by
several constraints such as demand requirements, task skills spec-
ifications, legal or contractual obligations, employees preferences,
among others. A detailed description can be found in [1] and [2].

2. CASE STUDY

2.1. Problem description

The present work addresses the rostering problem of an organiza-
tion, leader in its market segment, that works continuously, around
the clock, 365 days per year. The workforce is divided in teams
which must be assigned to three eight-hour shifts: morning, af-
ternoon and night. The workload shall be uniformly distributed
among teams, no distinction is made concerning skills of the em-
ployees or shift types. The problem consists in determining which
team will work on each shift in each of the planning horizon days
and how the rest or break days shall be interposed between work-
days.

2.2. Developed MIP model

We developed a mixed-integer formulation for this problem, where
the objective function is to minimize the maximum number of the
days that a team works in each shift. The decision variables as-
sume binary values indicating when a team is assigned to a shift
on a specific day. This objective function levels the working days
of each team, leading to a solution in which each team works the
same number of days in each shift.

The constraints to this problem guarantee that:

1. each day, every team has exactly one shift assigned, either
a work shift or a break shift.

2. each day, every working shift has exactly one team assigned.
3. no team works more than a maximum number of consecu-

tive days.
4. each team works at least a minimum number of consecutive

working days.
5. the required shift sequence is followed.
6. all teams have the same schedule, but with an offset be-

tween them.

2.3. Findings

We ran this model in the ILOG OPL Studio v6.3 and, although
it led to some feasible solutions, it revealed the difficulty in find-
ing the right combination of input parameters: given a number of
teams and a number of shifts, which is the appropriate planning
horizon? And what shall the offset between teams be?

In fact, the parameters of this problem are connected in such a
way that make it very tight and inflexible to allow large parameters
variations. Based on the tests results, we realized, for instance,
that in order to get a feasible solution, the number of days in the
planning horizon must be a multiple of the number of teams and
that an offset between teams equal to the ratio between the number
of days and the number of teams usually leads to a good result.
We detected that a key issue, to which the model proved to be
very sensitive, is the number of available break days. This value
can be exactly determined for a given number of teams, number
of shifts and number of days in the planning horizon. Considering
constraints (1) and (2), we know that the number of breaks in each
day is given by the difference between the number of teams and
the number of shifts. The total number of breaks can be obtained
by multiplying this figure by the number of days in the planning
horizon. The number of available break days for each team is then
achieved by dividing the total number of breaks by the number of
teams.

We verified the existence of two important conditions:

1. considering the scenario of having working-day blocks with
the minimum possible length (equal to the minimum num-
ber of consecutive working days), if the minimum number
of required break-days is equal or less than the number of
available breaks, the problem has a feasible solution. Other-
wise, it may have or not a feasible solution. This condition
is thus sufficient but not necessary.

2. considering the scenario of having working-day blocks with
the maximum possible length, if the minimum number of
required break-days is greater than the number of available
breaks, the problem has no feasible solution. This is a nec-
essary condition but not sufficient.
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2.4. Developed constructive heuristic

When the first condition is met we propose a constructive heuristic
to build a feasible solution, consisting of only blocks of minimum
consecutive days length or a combination of these with minimum
length + 1 day blocks. The first step is thus to check whether it
is possible to use only minimum length blocks or if there is the
need to use a combination of minimum length blocks and mini-
mum length plus 1 day blocks. Then, we assign the first blocks
of the first shift to all the teams, assuming an offset equal to mini-
mum consecutive days or equal to the ratio of number of days and
the number of teams. If we use minimum length blocks, we assign
one break after each block. If we use minimum length and mini-
mum length + 1 day blocks we assign two breaks after each of the
former blocks and one break after the latter. After assigning the
other shifts working blocks, we insert the required breaks at the
end of the last shift block to wait until the first shift is available
again. This closes the first sub-cycle. The procedure is concluded
with the replication of the first sub-cycle as many times as needed
in order to fulfill the planning horizon for all the teams.

This heuristic was manually tested with several input parameters
combinations, which fulfilled the initial assumptions: number of
days multiple of the number of teams and an offset equal to the
number of minimum consecutive days or to the ratio between the
number of days and the number of teams, and met the condition
(1), leading always to a feasible solution. The development of this

constructive procedure aimed to define a consistent and reliable
process for reaching a feasible solution. The results achieved so far
show, yet, that when a feasible solution is found, it is the optimal
solution.

3. FUTURE WORK

Future work involves the software code development in order to
massively test the heuristic, making it possible to consolidate and
generalize the achieved results. We are confident that this work
will provide an important contribution to the research in staff schedul-
ing and rostering problems.
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ABSTRACT

This extended abstract outlines four hybrid heuristics to gener-
ate initial solutions to the University course timetabling problem.
These hybrid approaches combine graph colouring heuristics and
local search in different ways. Results of experiments using two
benchmark datasets from the literature are presented. All the four
hybrid initialisation heuristics described here are capable of gener-
ating feasible initial timetables for all the test problems considered
in these experiments.
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1. INTRODUCTION

We refer to the University course timetabling problem as described
by Socha et al. [1] with: n events E = {e1,e2, . . . ,en}, k timeslots
T = {t1, t2, . . . , tk}, m rooms R = {r1,r2, . . . ,rm} and a set S of
students. Each room has a limited capacity and some additional
features. Each event requires a room with certain features. Each
student attends a number of events which is a subset of E. The
problem is to assign the n events to the k timeslots and m rooms in
such a way that all hard constraints are satisfied and the violation
of soft constraints is minimised.

The hard constraints that must be satisfied for a timetable to be
feasible are as follows. HC1: a student cannot attend two events si-
multaneously, i.e. events with students in common must be
timetabled in different timeslots. HC2: only one event may be as-
signed per timeslot in each room. HC3: the room capacity must be
equal to or greater than the number of students attending the event
in each timeslot. HC4: the room assigned to an event must satisfy
the features required by the event. The soft constraints that are de-
sirable to satisfy in order to assess the quality of a timetable are as
follows. SC1: students should not have only one event timetabled
on a day. SC2: students should not attend more that two consecu-
tive events on a day. SC3: students should not attend an event in
the last timeslot of a day.

It has been shown in the literature that a sequential heuristic method
can be very efficient for generating initial solutions [2, 3]. A
sequential heuristic assigns events one by one, starting from the
event which is considered the most difficult to timetable in some
sense. The ‘difficulty’ of scheduling an event can be measured by
different criteria (i.e. the number of other conflicting events or the
number of students attending the event). However, a sequential
heuristic alone does not guarantee that feasible solutions will be
found even with the combination of more than one heuristic. For

example, Abdullah et al. [4] proposed a method, based on a se-
quential heuristic, to construct initial timetables. However, their
method failed to generate a feasible solution for the large instance
of the Socha et al. problem instances [1].

We propose hybrid heuristics to create initial feasible timetables
for the University course timetabling problem described above.
We combine traditional graph colouring heuristics with various lo-
cal search methods including a simple tabu search. In the exper-
iments of this work we use the 11 benchmark data sets proposed
by Socha et al. [1] and also the set of problem instances from the
International Timetabling Competition (ITC) 2002 [5]. The pro-
posed heuristics generate feasible timetables for all the instances
in our experiments. However, these methods do not tackle the sat-
isfaction of soft constraints. Then, we obtain feasible solutions
that might still have relatively high number of soft constraint vi-
olations. The rationale for this is to allow flexibility for another
algorithm, that seeks to improve the satisfaction of constraints, to
start the search from the feasible timetables. This has proven to be
beneficial in our related work helping the improving algorithm to
achieve extremely good results [6, 7]. It is difficult to compare the
results in this paper with the literature because most other works
(e.g. [3]) incorporate the construction of initial timetables within
the overall method to solve the problem, i.e. constructing initial so-
lutions and improving them are combined into a single approach.
The next section describes the proposed hybrid heuristics.

2. GENERATING INITIAL TIMETABLES

In order to develop effective algorithms for tackling hard con-
straints in the subject problem, we combine techniques such as
graph colouring, local search and tabu search. We found that the
search components incorporated in the hybrid methods are inter-
dependent on their ability to produce a feasible timetable. In other
words, when one of these components is disabled or removed, the
remaining components are not able to produce feasible solutions
in particular for medium and large instances. Therefore, the hy-
brids described next are effective tailored mechanisms to generate
feasible timetables for the subject problem.

2.1. Largest Degree, Local Search and Tabu Search (IH1)

We adopted the heuristic proposed by Chiarandini et al. [8] and
added the Largest Degree heuristic to Step one as described next.
Largest Degree refers to the event with the largest number of con-
flicting events (events that have at least one student in common).

Step one - Largest Degree Heuristic. In each iteration, the un-
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scheduled event with the Largest Degree is assigned to a timeslot
selected at random without respecting conflicts between events.
Once all events have been assigned into a timeslot, the maximum
matching algorithm for bipartite graph is used to assign each event
to a room. At the end of this step, there is no guarantee for the
timetable to be feasible. Then, steps one and two below are exe-
cuted iteratively until a feasible solution is constructed.

Step two - Local Search. We employ two neighbourhood moves
in this step. Move one (M1) selects one event at random and as-
signs it to a feasible pair timeslot-room also chosen at random.
Move two (M2) selects two events at random and swaps their
timeslots and rooms while ensuring feasibility is maintained. That
is, neighbourhood moves M1 and M2 seek to improve the timetable
generated in Step one. A move is only accepted if it improves the
satisfaction of hard constraints (because the moves seek feasibil-
ity). This step terminates if no move produces a better (closer to
feasibility) solution for 10 iterations.

Step three - Tabu Search. We apply a simple tabu search using a
slight variation of move M1 above. Here, M1 only selects an event
that violates hard constraints. The motivation is that the algorithm
should now only target events that violate hard constraints instead
of randomly rescheduling other events like in Step two. The tabu
list contains events that were assigned less than tl iterations before
calculated as tl = rand(10)+ δ × nc, where 0 ≤ rand(10) ≤ 10,
nc is the number of events involved in hard constraint violations in
the current timetable, and δ = 0.6. The usual aspiration criterion
is applied to override tabu status, i.e. accept the move when a best
known solution is found. This step terminates if no move produces
a better (closer to feasibility) solution for ts iterations.

2.2. Saturation Degree, Local Search and Tabu Search (IH2)

This heuristic uses Saturation Degree, which refers to the number
of resources (timeslots and rooms) still available to timetable a
given event without conflicts in the current partial solution. In
the previous heuristic IH1 the assignment of events in Step one is
done without checking conflicts. The difference in heuristic IH2
is that we first check conflicts between the unassigned event and
those events already assigned to the selected timeslot. If there are
timeslots with no-conflicting events already assigned (saturation
degree of the event to assign is greater than zero), the event is
assigned to a feasible timeslot selected at random. If there are no
such timeslots (saturation degree of the event to assign is zero),
the events already assigned to the timeslot are ejected and put in
a list of events to re-schedule. The heuristic then attempts to re-
assign these ejected events into conflict free timeslots if possible.
Otherwise, these ejected events are put into random timeslot-room,
even if conflicts arise, then later the local and tabu search of Step
two and Step three as described above, will deal with these ejected
events and the remaining conflicting assignments. In essence, in
addition to using Saturation Degree instead of Largest Degree, this
second heuristic IH2 tries to fix some conflicts in the timetable
before starting Steps two and three.

2.3. Largest Degree, Saturation Degree, Local Search and Tabu
Search (IH3)

This heuristic incorporates both Largest Degree and Saturation De-
gree. The difference with heuristic IH2 is that in Step one, events
are first sorted based on Largest Degree. After that, we choose the
unassigned event with the Largest Degree and calculate its Satura-
tion Degree. Then, Step one of this heuristic IH3 proceeds as in
heuristic IH2, but when attempting to re-assign the ejected events,
only those ejected events with Saturation Degree greater than zero
(still available timeslots and room) are assigned to any feasible
timeslot-room. All ejected events with Saturation Degree zero are

moved from the re-schedule list to the list of unscheduled events.
After each re-assigning, we re-calculate the Saturation Degree for
all ejected events in the re-schedule list. This process in Step one
continues and if after some given computation time there are still
events in the unscheduled list, these events are then assigned to
random timeslot-room without respecting conflicts. Steps one and
two as described above follow implementing the local and tabu
search respectively. In essence, compared to heuristic IH2, this
heuristic IH3 combines Saturation Degree and Largest Degree in
Step one trying to re-scheduled ejected events with less resources
first. Algorithm 1 shows the pseudo-code for the hybrid heuristic
IH3, which in a sense, is the most elaborate one among methods
IH1, IH2 and IH3.

2.4. Constraint Relaxation Approach (IH4)

In this fourth heuristic approach, we introduce extra dummy times-
lots to place events with zero Saturation Degree and in this way
enforce the no-conflicts constraint by relaxing the availability of
timeslots. The number of extra dummy timeslots needed is deter-
mined by the size of the problem instance. This heuristic works as
follows. First, we sort the events using Largest Degree. The event
with the Largest Degree is chosen to be scheduled first. If the
event has zero Saturation Degree, the event is assigned randomly
to one of the extra dummy timeslots. Once the algorithm assigns
all events in the valid timeslots plus the extra dummy timeslots
without conflicts, we then perform great deluge search [6] using
moves M1 and M2 to reduce the number of timeslots down to 45
valid timeslots if necessary. In this local search, only the 45 valid
timeslots are considered, so no events are allowed to move into
any of the extra dummy timeslots. This hybrid heuristic is much
slower that the other three methods above, mainly due to the great
deluge search. Algorithm 2 shows the pseudo-code for the hybrid
heuristic IH4, which in a sense, is the most different among all
methods described here.

3. RESULTS AND DISCUSSION

The proposed hybrid heuristic initialisation methods were applied
to the Socha et al. [1] instances and also to the ITC 2002 in-
stances [5]. We did not impose time limit as a stopping condition,
each algorithm stops when it finds a feasible solution.

All methods successfully generate initial solution for small in-
stances in just few seconds. The medium and large Socha et al. in-
stances are more difficult as well as all ITC 2002 instances. How-
ever, the proposed methods generated feasible solutions for all in-
stances demonstrating that the hybridisation compensates weak-
ness in one component with strengths in another one in order to
produce feasible solutions in reasonable computation times.

Table 1 and Table 2 compare the performance of each method on
the Socha et al. and the ITC 2002 instances respectively. The first
column in each table indicates the problem instance. The next four
columns give the best objective function value (soft constraints vi-
olation) obtained by each heuristic. The last column in each table
indicates the best computation time in seconds and the correspond-
ing heuristic.

The results show that none of the heuristics clearly outperforms
the others in terms of the objective function value (soft constraints
violation) obtained. Each of the four heuristics outperforms the
other three in some of the problem instances. With respect to com-
putation time we can see in Table 1 that for the Socha et al. prob-
lems, the heuristic that achieved the best objective value was al-
most never the fastest one (except in problem instance M2). How-
ever, for the ITC 2002 problems, we see in Table 2 that in several
cases the heuristic producing the best objective value was also the
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Algorithm 1: Initialisation Heuristic 3 (IH3)

1 Input: List of Unscheduled events E;
2 Sort E by non-increasing Largest Degree (LD);
3 while (E is not empty) do
4 Choose event e from E with LD (random tie-break);
5 Calculate SD for event e;
6 if (SD = 0) then
7 Select a timeslot t at random;
8 Move events scheduled (if any) in timeslot t that

conflict with event e (if any) to the Reschedule list;
9 Assign event e to timeslot t;

10 for (each event in Reschedule list with SD > 0) do
11 Select feasible timeslot t for event e at

random;
12 Re-calculate SD for all events in Reschedule

list;
13 end
14 Move all events with SD = 0 that remain in

Re-schedule list to the Unscheduled list E;
15 end
16 else
17 Select a feasible timeslot t at random for event e;
18 end
19 if (Unscheduled list E is not empty and time has

elapsed) then
20 One by one, place events from the Unscheduled

list into any random selected timeslot without
respecting the conflict between the events;

21 end
22 end
23 S = current solution;
24 loop = 0;
25 while (S not feasible ) do
26 if (loop < 10) then
27 if ( coin f lip()) then
28 S∗ = M1(S); // apply M1 to S
29 end
30 else
31 S∗ = M2(S); // apply M2 to S
32 end
33 if ( f (S∗)≤ f (s)) then
34 S← S∗ // accept new solution;
35 end
36 end
37 else
38 EHC = set of events that violate hard constraints;
39 e = randomly selected from EHC;
40 S∗ = M1(S, e); // perform one Tabu Search

iteration with move M1 using event e;
41 if ( f (S∗)< f (S) then
42 S← S∗; // accept new solution
43 end
44 if (loop >= ts ) then
45 loop = 0;
46 end
47 end
48 loop++;
49 end
50 Output: S feasible solution (timetable);

Algorithm 2: Initialisation Heuristic 4 (IH4)

1 Input: List of Unscheduled events E;
2 Generate dummy timeslots according to problem instance;

Sort events in E by non-increasing Largest Degree (LD);
3 while (Unscheduled list E is not empty) do
4 Choose event e from E with the LD (random tie-break);
5 Calculate SD for event e;
6 if (SD = 0) then
7 Select dummy timeslot at random for event e;
8 end
9 else

10 Chose any feasible timeslot for event e;
11 Update the new solution;
12 end
13 end
14 S = current solution;
15 Calculate initial cost function f (S);
16 Initial water level B = f (S);
17 ∆B = 0.01;
18 while (dummy timeslots are not empty) do
19 if ( coin f lip()) then
20 S∗ = M1(S); // apply M1 to S
21 end
22 else
23 S∗ = M2(S); // apply M2 to S
24 end
25 if ( f (s∗)≤ f (s)) or ( f (s∗)(≤ B)) then
26 S← S∗; // accept new solution
27 end
28 B = B−∆B; // lower the water level
29 if (B - f(S) ≤ 1) then
30 B = B+5; // increase the water level
31 end
32 end
33 Output: S feasible solution (timetable);

fastest. As indicated above, the hybrid initialisation heuristic (IH4)
that uses dummy timeslots to deal with conflicts and then great del-
uge as the local search to bring the solution to feasibility, is never
the fastest approach. However, this heuristic IH4 was capable of
producing the best solutions for two of the Socha et al. instances
and six of the ITC 2002 instances.

In our preliminary experiments, we implemented a sequential heuris-
tic (see [2, 3]) but were able to generate feasible timetables only
for the small instances of the Socha et al. dataset (in fact, these
small instances are considered to be easy). Even after consider-
ably extending the computation time, the sequential heuristic was
not able to generate feasible solutions for the medium and large
Socha et al. instances or the ITC 2002 datasets.

4. CONCLUSIONS

Many approaches have been proposed in the literature to tackle
the University course timetabling problem. In this extended ab-
stract we have outlined four variants of hybrid heuristics designed
to generate initial feasible solutions to this problem. These hy-
brid approaches combine traditional graph colouring heuristics,
like Largest Degree and Saturation Degree, with different types
of local search. The four hybrid variants were tested using two
sets of benchmark problem instances, the Socha et al. [1] and the
International Timetabling Competition 2002 [5] datasets.

All the hybrid initialisation heuristics described here were capa-
ble of producing feasible timetables for all the problem instances.
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Problem IH1 IH2 IH3 IH4 Min Time
S1 173 198 207 200 0.077 (IH2)
S2 211 217 189 208 0.078 (IH2)
S3 176 190 188 209 0.062 (IH2)
S4 250 174 203 192 0.047 (IH1)
S5 229 238 226 217 0.078 (IH2)
M1 817 772 802 774 5.531 (IH3)
M2 793 782 784 802 6.342 (IH2)
M3 795 867 828 817 6.64 (IH3)
M4 735 785 811 795 5.828 (IH2)
M5 773 771 784 769 16.670 (IH1)
L 1340 1345 1686 1670 300.0 (IH1)

Table 1: Results obtained with each hybrid initialisation heuristic
(IH1 to IH4) on the 11 Socha et al. problem instances, best results
indicated in bold.

Problem IH1 IH2 IH3 IH4 Min Time
Com01 805 786 805 805 1.93 (IH3)
Com02 731 776 731 778 1.36 (IH3)
Com03 760 812 760 777 1.14 (IH2)
Com04 1201 1178 1201 1236 4.46 (IH2)
Com05 1246 1243 1246 1135 2.11 (IH3)
Com06 1206 1219 1206 1133 1.33 (IH3)
Com07 1391 1388 1391 1265 2.10 (IH3)
Com08 1001 968 1001 1006 1.81 (IH2)
Com09 841 859 841 843 1.46 (IH1)
Com10 786 816 786 799 4.64 (IH3)
Com11 852 877 852 839 1.05 (IH1)
Com12 814 831 814 788 2.21 (IH2)
Com13 1008 1010 1008 1009 2.26 (IH1)
Com14 1040 1032 1040 1355 3.71 (IH2)
Com15 1165 1162 1165 1161 1.56 (IH3)
Com16 887 911 887 888 1.09 (IH3)
Com17 1227 1032 1227 1199 1.13 (IH2)
Com18 793 724 793 763 1.29 (IH3)
Com19 1184 1212 1184 1209 3.22 (IH3)
Com20 1137 1161 1137 1205 0.08 (IH3)

Table 2: Results obtained with each hybrid initialisation heuristic
(IH1 to IH4) on the 20 ITC 2002 problem instances, best results
indicated in bold.

None of the approaches showed to be clearly better that the others.
For a given instance, the heuristic producing the best quality ini-
tial timetable is often not the fastest among the four approaches.
However, for all the problem instances there is at least one hybrid
heuristic capable of generating a feasible timetable in very short
time, from less than a second to few seconds depending of the
problem instance. The exception is the largest Socha et al. in-

stance which is still regarded in the literature as a very challenging
problem. Having some methods capable of generating feasible so-
lutions for the University course timetabling problem is important
because the effort of more elaborate methods can then be focused
on tackling the violation of soft constraints in order to improve the
timetable quality.

In a following more detailed description on this research, we in-
tend to present a statistical comparison between the proposed ini-
tialisation heuristics, compare these approaches against other pro-
cedures to generate feasible solutions to the University course
timetabling problem and analyse the effect of each component in
the four hybrid heuristics.
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ABSTRACT

We give procedures to derive lower and upper bounds for the op-
timal diversity management problem, especially conceived to deal
with real instances that occur in the production of wire harness for
the automotive industry. We report computational results to assess
the quality of these bounds.

Keywords: Integer programming, Duality, Heuristics, P-median

1. INTRODUCTION

In the production of wire harness for the automotive industry de-
cisions have to be made on the configurations that should be man-
ufactured in order to satisfy, within reasonable production costs,
a possible large variety of customers’ requests. Specifically, cars
are assembled with the necessary wire connections to activate the
set of requested options such as airbags, air conditioned, etc. A
configuration is the aggregate of minimum connections allowing
to activate a given group of options. The set of requested options
vary greatly depending on client’s preferences. In theory, there
can be millions of different combinations of options. Since wire
harness is mainly manually assembled, in practice only a small
number p of different configurations is settled and customers are
often supplied with cars having wire harness including unneces-
sary wire connections. Clearly, this gives rise to production extra
costs (associated with copper wires waste) making the selection of
the p configurations to produce an important issue.

This problem, called the Optimal Diversity Management Problem
(ODMP), is a special case of the well known p-median problem.
The p-median problem [1, 2] seeks to select p vertices (the medi-
ans) of a digraph with weights on the arcs, in order to minimize
the sum of the weights of the arcs linking each non-median vertex
to one of the selected medians.

The ODMP, that was shown to be NP-hard [3, 4], is the p-median
for transitive digraphs. This is the case of the graph resulting from
the wire harness application above, which, in addition, usually
consists of several connected components.

An extensive study on the ODMP is developed in the PhD thesis of
Briant [3], which is the first substantial work on this problem. Bri-
ant [3] pointed out that the large size of instances of real problems
is a serious barrier to the efficiency of the algorithms. Dealing
with the huge size instances that appear in real problems is the
main concern in studies on the ODMP [5, 6, 7, 4].

In this study we give ways to obtain lower and upper bounds on

the values of optimal ODMP solutions, specifically meant to deal
with the huge graphs arising from the wire harness application,
and exploiting the fact that these graphs have several components.
Computational results are reported to assess the quality of these
bounds on real instances.

2. FORMULATION

To formulate the ODMP consider a weighted transitive digraph
G = (V,A,c), where the vertices of V = {1, . . . ,n} represent the
configurations, and (u,v) is an arc of A if and only if every option
that configuration u allows to activate could also be activated by v.
We say that v covers u (or that u is covered by v). Each configu-
ration v can be interpreted as the subset of options that v activates.
Each arc a = (u,v) of G has a cost ca, which is the cost of using
configuration v to substitute u.

An important property of real ODMP instances is that graph G has
several connected components. We denote by K = {1, . . . ,m} the
set of indices of the connected components, and by Gk = (Vk,Ak)
the subgraph induced by component k, with k ∈ K.

Let, for v ∈ V , yv be a 0-1 variable indicating whether vertex v is
selected (yv = 1) or not (yv = 0) to be a median. Let, for (u,v)∈ A,
xuv be a 0-1 variable indicating whether configuration represented
by vertex v will replace (xuv = 1) or not (xuv = 0) the configuration
represented by u. Consider, in addition, for k ∈ K, a positive inte-
ger variable pk, that indicates the number of medians in component
k. With these variables the ODMP can be modeled as follows.

min ∑
v∈V

∑
u∈δ+(v)

cvuxvu

subject to

(1)

∑
u∈δ+(v)

xvu + yv = 1 v ∈V (2)

∑
v∈Vk

yv = pk k ∈ K (3)

∑
k∈K

pk = p (4)

xvu ≤ yu v ∈V,u ∈ δ+(v) (5)
yv ∈ {0,1} v ∈V (6)

xvu ∈ {0,1} v ∈V,u ∈ δ+(v) (7)
pk ∈ N k ∈ K (8)

where δ+(v) = {u ∈V : (v,u) ∈ A}.
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Equations (2) state that either v is a median or v must be linked
to some vertex. Equations (3) and (4) guarantee that the medians
in the m connected components sums p. Inequalities (5) express
that if a node is not a median, its indegree is equal to zero. Finally
(6)-(8) define the range of the variables

Note that if the values of pk, say p∗k , of an optimal ODMP solution
were known, an optimal ODMP solution would result from the
union of optimal p∗k-medians of each component k.

Finding p∗1, p∗2, . . . , p∗m, with p∗1 + p∗2 + . . .+ p∗m = p, and such that
the union of optimal p∗k-medians is ODMP optimal, is the decom-
position problem for the ODMP [6].

The decomposition problem can be modeled as a particular case of
the multiple choice knapsack problem ([8, 9]), and can be solved
efficiently ([9, 10]). Hence, the ODMP problem can be decom-
posed in smaller similar subproblems. However, since p∗k is not
known in advance, each subproblem k has to be solved, in princi-
pal, with a number of medians equal to 1, . . . , p−m+1.

3. LOWER BOUNDS

Lower bounds for the ODMP are usually obtained by Lagrangean
relaxation techniques [5, 11]. We use a heuristic for the dual of the
linear relaxation of formulation (1) - (8), which is similar to the
procedure proposed in [12] to solve the dual of a linear relaxation
of the p-median problem.

Let λv, with v ∈ V , be the dual variables associated with equa-
tions (2); sk, with k ∈ K, dual variables associated to (3); γ associ-
ated to (4) and tvu, with (v,u) ∈ A, the non-negative dual variables
corresponding to inequalities (5).

The dual of the linear programming relaxation of formulation (1)
- (8) is as follows

max ∑
v∈V

λv− pγ

subject to

(9)

λv− sk + ∑
(u,v)∈A

tuv ≤ 0 v ∈Vk,k ∈ K (10)

λv− cvu ≤ tvu v ∈V,u ∈ δ+(v) (11)
sk ≤ γ k ∈ K (12)

tvu ≥ 0 v ∈V,u ∈ δ+(v) (13)

The dual variables skand tvucan be removed from the model, yield-
ing

max ∑
v∈V

λv− pγ

subject to

(14)

γ ≥ λv + ∑
(u,v)∈A

(λu− cuv) v ∈V (15)

The heuristic solution is defined assigning to γ the value of the
r.h.s. of (15), with λv := minu∈δ+(v) cvu.

4. UPPER BOUNDS

The greedy algorithm has been used to solve large size instances
of the ODMP, and studies refer that the resulting solutions are nor-
mally quite good [3, 6, 4].

It is worth mention that in [9] it is shown that the following proce-
dure:
Step 1: run the greedy algorithm for each connected component

and for all the possible choices of medians;
Step 2: solve the decomposition problem using the values of greedy
solutions obtained on each component,
provides the same objective function value than running the greedy
algorithm over the entire graph.

We consider running a genetic algorithm for the ODMP in each
connected component k of graph G, for different number of medi-
ans pk, and use the approach in [10] to solve the resulting restricted
decomposition problem to obtain a final ODMP solution.

Instead of considering all possible number of medians for compo-
nent k, we restrict pk to vary in the interval defined by the mini-
mum and maximum number of medians that the greedy has deter-
mined for component k when solving the ODMP with p, p−1 and
p+1 medians.

In order to take advantage from the knowledge of the greedy solu-
tion, in the implementation of the genetic algorithm, we included
in the initial population (i.e., a collection of random selected pk
medians) for component k, what we call the modified k component
greedy solution.

The modified k component greedy solution is a set of pk medians
on the connected component k resulting from adding (or deleting)
uniformly selected vertices of component k to (from) the set of
medians defined by the greedy for that component.

5. COMPUTATIONAL RESULTS

Here we report some computational experience carried out to eval-
uate the quality of the proposed lower and upper bounds on the
optimal ODMP values.

All the computational tests were performed on a PC running on
an Intel(R) Core(TM)2 Duo CPU 2.00 GHz processor and 1.99Gb
of RAM. We used real data instances from the Yazaki Saltano de
Portugal, a branch of Yazaki, the world’s largest producer of wire
harness, consisting of graphs with 3072, 10848, 15360, 22080,
and 51840 vertices and, for each one, we tested p ∈ {50, 100, 150,
200}.
In order to obtain the optimal values we use the optimization soft-
ware Xpress 7.1 with a limit for the computations on each instance
equal to three CPU hours.

Table 1 reports the main computational results. The first two columns
indicate the number of vertices (n) and the number of connected
components of the graph (m). The third column specifies the num-
ber of medians (p). The remaining columns indicate the values
found for the lower bounds (LB), the optimal solutions (OPT)
when they were found, the greedy solutions (Greedy) and the up-
per bounds corresponding to the values of the solutions produced
by the genetic algorithm (UB-Genetic). The values in brackets re-
fer to the computational times, in CPU seconds, to determine the
corresponding values.

It can be concluded from Table 1 that both greedy and dual solu-
tions provide tight bounds for the real instances considered. The
genetic algorithm was capable in most cases to slightly improve
the greedy solutions.

It should be mentioned that the inclusion of the (modified) greedy
solution in the initial population proved to be essential to obtain
good solutions. Computational tests showed that the genetic algo-
rithm working on an initial randomized population not including
the greedy solution provides, in general, poor solutions when com-
pared with the greedy solutions, and with a larger computational
effort.

It is also worth noting that, when the greedy solution is compared
with the optimal solution (for those instances it was obtained), in
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n m p LB OPT Greedy UB-Genetic
3072 8 50 141 088 (1) 143 800 (24) 144 698 (1) 144 209 (40)
3072 8 100 79 838 (2) 82 035 (73) 82 365 (1) 82 074 (61)
3072 8 150 54 963 (1) 55 472 (69) 56 022 (1) 55 682 (85)
3072 8 200 40 155 (1) 40 829 (72) 41 066 (1) 40 908 (147)
10848 46 50 10 520 027 ( 6) 10 528 136 (41) 10 528 136 (1) 10 528 136 (1)
10848 46 100 3 216 662 (16) 3 389 989 (647) 3 508 534 (1) 3 431 425 (44)
10848 46 150 2 032 277 (16) 2 158 828 (2085) 2 253 169 (1) 2 203 339 (89)
10848 46 200 1 469 477 (19) 1 576 485 (3184) 1 657 811 (1) 1 617 045 (113)
15360 14 50 2 933 (626) - 3 239 ( 8) 3 197 (5694)
15360 14 100 1 653 (688) - 1 874 (17) 1 847 (406)
15360 14 150 1 174 (543) - 1 314 (27) 1 298 (3442)
15360 14 200 925 (639) - 1 013 (37) 1 000 (1047)
22080 16 50 2 099 492 ( 6374) - 2 279 053 ( 63) 2 241 344 (1421)
22080 16 100 1 101 529 ( 3945) - 1 248 647 (143) 1 212 547 (3199)
22080 16 150 752 955 ( 4020) - 863 155 (202) 845 006 (1943)
22080 16 200 584 859 (12013) - 662 480 (300) 653 190 (10295)
51840 60 100 2 354 812 ( 824) - 2 396 102 (33) 2 358 739 (1049)
51840 60 150 1 364 717 ( 950) - 1 432 499 (51) 1 401 920 (334)
51840 60 200 824 682 (1938) - 1 043 544 (74) 1 018 434 (497)

Table 1: Computational results.

most cases, the numbers of medians per connected component co-
incide, and for most of the remaining cases, the differences do not
exceed one. This means that greedy solutions give reliable esti-
mative for the number of medians in each component of optimal
solutions. Thus, solving the decomposition problem only consid-
ering a few number of medians close to the number of medians
determined by the greedy solution on each connected component,
is likely to be a good strategy for solving the ODMP.

6. CONCLUSION

The ODMP is a combinatorial optimization problem arising in
the production industry of wire harness for the automotive. With
special attention to the fact that the graphs arising from this ap-
plication are very large and have several connected components,
we proposed ways of obtaining lower and upper bounds. Lower
bounds were obtained through a heuristic for the dual of the lin-
ear relaxation of a model for the ODMP. Upper bounds were ob-
tained through a genetic algorithm running in each component of
the graph, and benefiting from the knowledge of a greedy solution
to combine the partial solutions into a feasible ODMP result. We
intend to extend this approach further, exploiting a specific behav-
ior of the ODMP objective function with respect to the number of
medians, to determine a narrow range for the number of medians
in the sub-problems that include an optimal decomposition.
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ABSTRACT

Heuristic algorithms based in ant colonies (named ant system –
AS for short) were developed by Marco Dorigo to solve combi-
natorial optimization problems as the traveling salesman problem.
This class of algorithms was also adapted by Seid H. Pourtakdoust
and Hadi Nobahari for continuous optimization problems (Contin-
uous Ant Colony Optimization Systems – CACS). In this work, an
implementation of CACS was used for nonlinear continuous op-
timization problems with coefficients represented by fuzzy num-
bers. The fuzzy numbers are modelled through symmetric triangu-
lar membership functions, Possibility Measure — based on Didier
Dubois and Henri Prade’s work for comparison of functions with
fuzzy values — and centroid defuzzification methods to obtain the
ordinary value from function values in the pheromone evaluation
step. Experiments with nine benchmark functions show a good
agreement — considering the imprecise nature of the problem —
between the fuzzy optima and their real counterparts.

Keywords: Ant Colony System, Optimization, Fuzzy Theory, Pos-
sibility Theory

1. INTRODUCTION

Ant Colony System was developed based in the Traveling Sales-
man Problem. The ideas behind the system make it suitable for
high complexity combinatorial optimization problems demanding
discrete solutions. The heuristic algorithm inspired in ant colonies
was developed by M. Dorigo and coleagues as we can see in [1],
[2], for example.

An extension of this algorithm for continuous function optimiza-
tion was proposed by several authors, as in [9], [12] and [13],
among others. The work of S.H. Pourtakdoust and H. Nobahari as
in [8] and [7] is an example of such an extension, with the added
bonus of a simpler structure for the application of fuzzy parameters
on its formulation.

The purpose of this work is the introduction of fuzzy parameters
into an Ant Colony System heuristic applied to Fuzzy Mathemati-
cal Programming. The fuzzy parameters are treated as fuzzy num-
bers (see [6]) with a double intent here: (i) to model the fuzzy pa-
rameters and (ii) make the fuzzy algebrical operations. Of course
other changes are required in order to accomodate the fuzzy num-
bers, namely a convenient comparison operation between fuzzy
quantities, an approach to evaluate the fuzzy function through rank-
ing presented in [3] and [4], and finally a defuzzification process,
as in [11].

The results are satisfactory, showing that Continuous Ant Colony

Systems can be a valid alternative to treat Fuzzy Mathematical Pro-
gramming problems.

2. PRELIMINARIES

In this section, we explain some topics of Fuzzy Theory used in
this work.

Definition A fuzzy set C̃ on R is a fuzzy number, if its membership
function is defined as follows:

µ
(C̃)

(x) =





0 if x≥ c
x−c
c−c if x ∈ [c,c]

c−x
c−c if x ∈ [c,c]

0 if x≥ c

(1)

where µ
(C̃)

(x) : R→ [0,1], c is the modal value, i. e., µ
(C̃)

(c) = 1,
c and c are the inferior and superior limits, respectively.

We suppose that f L
c̃ : [c,c]→ [0,1] and f R

c̃ : [c,c]→ [0,1] are two
continuous mappings from the real line R to the closed interval
[0,1]. The former is a strictly increasing function and the later
is a monotonically decreasing function. In this case, we assume
that de fuzzy number is represented by a triangular function, i. e.,
C̃ = (c,c,c).

In order to facilitate the operations with fuzzy numbers, we assume
that an exact membership function can be approximated by using
piecewise linear functions based on α-level sets.

Definition [11] Let C̃ be a fuzzy number. Its α-level sets C̃α or
α-cuts are defined as

C̃α = {x ∈ R |µC̃(x)≥ α}
= [min{x ∈ R |µC̃(x)≥ α}, max{x ∈ R |µC̃(x)≥ α}]
= [(x)L

α ,(x)
U
α ] 0 < α ≤ 1

(2)

Acording to Zadeh’s extension principle [4], the fuzzy number C̃
can also be expressed as

C̃ =
⋃

α
α ·C̃α , 0 < α ≤ 1. (3)

The α-levels representation is used to operate with fuzzy numbers,
as shown in [6]; all other operations follow the structure presented
in this reference. They are also useful in the estimation of a rep-
resentative ordinary number — a process known as defuzzifica-
tion. In this particular setting we used the centroid defuzzification
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method, as in [11]. This method defines the centroid of C̃ as the
x-axis value of the centroid as its defuzzification value, which can
be expressed as:

D(C̃) =

∫ c
c xµC̃(x)dx
∫ c

c µC̃(x)dx
(4)

where

∫ c
c µC̃(x)dx =

1
2n

[
(
(x)Uα0

− (x)L
α0

)
+2

n−1

∑
i=1

(
(x)Uαi

− (x)L
αi

)]
,

∫ c
c xµC̃(x)dx =

1
6n

[
(
(x)2U

α0
− (x)2L

α0

)
+2

n−1

∑
i=1

(
(x)2U

αi
− (x)2L

αi

)

+
n−1

∑
i=1

(
(x)Uαi

· (x)Uαi+1
− (x)L

αi
· (x)L

αi+1

)]
.

(5)

In order to compare (or rank) fuzzy numbers, C̃1 and C̃2 for in-
stance, we can apply a comparison measure built upon the Possi-
bility Measure, as presented in [3] and [4]. In this context, if we
want to decide wether C̃1 > C̃2 or not, we use the following mesure
(remembering that C̃1 = (c1,c1,c1) and C̃2 = (c1,c2,c2)):

Pos(C̃1 ≥ C̃2) = max
(

0,min
(

1,1+ (c1−c2)
c1+c2

))
(PSE)

Pos(C̃1 > C̃2) = max
(

0,min
(

1, c1−c2+c1
c1+c2

))
(PS)

(6)
where PSE stands for exceedance possibility and PS for strict ex-
ceedance possibility. Acording to [3], these formulas hold except
when the sums of the spreads in the denominators are zero, which
occurs when C̃1 and C̃2 are ordinary numbers.

So we assume that C̃1 > C̃2 when:

Pos(C̃1 ≥ C̃2)≥ α, α ∈ (0,1] (7)

and
min

[
Pos(C̃1 > C̃2), Pos(C̃2 > C̃1)

]
< 1 (8)

Condition (8) guarantees that C̃1 6= C̃2.

The topics presented in this section were directly used in the com-
putational implementation, so their descriptions are brief and with-
out details about the theorethical foundations.

3. THE PROBLEM

As described in [5], a fuzzy function is used when some data about
the problem is not precisely known. Here a function with fuzzy
parameters can be denoted by:

min f (c̃,x)
xi ∈ [ai,bi] i = 1 : n

x ∈ Rn
(9)

where x ∈ R and c̃ is a vector whose entries are fuzzy numbers,
such that c̃∈ F(R), F(R) is a fuzzy set over R and f (c̃,x) : [F(R)×
Rn]→ F(R). The interval [a,b] is the region which the minimum
value of the function, namely x, occurs.

Even though problem (9) is an irrestrict on, we determine a search
region for vector x where the nonlinear function is evaluated.

4. CONTINUOUS ANT COLONY SYSTEM (CACS) WITH
FUZZY PARAMETERS

The heuristic method developed by [8] is a modification over the
heuristic Ant Colony System — ACS, preserving all of its major
characteristics. Some important aspects are related here.

4.1. Continuous Pheromone Model

As reported in [8] and [7], the pheromone deposition occurs over
a continuous space. For fuzzy problem (9), this step involve only
ordinary numbers, because it concerns only information about the
vector x.

Consider a food source surrounded by several ants. The ant’s ag-
gregation around the food source causes the highest pheromone
intensity to occur at the food source position. Then, increasing the
distance of a sample point from the food source will decrease its
pheromone concentration. This model uses a Probability Distribu-
tion Function (PDF), which determines the probability of choosing
each point x within the interval [a,b].

The normal PDF can be used at the state transition rule since the
center of which is the last best global solution and its variance de-
pends on the aggregation of the promising areas around the best
one, so it contains exploitation behavior. In the other hand, a nor-
mal PDF permits all points of the search space to be chosen, either
close to or far from the current solution, so it also contains explo-
ration behavior.

4.2. Pheromone Update

At the start of the algorithm, there is no information available
about the minimum point and the ants chose their destination only
by exploration.

During each iteration, pheromone distribution over the search space
will be updated using the acquired knowledge of the evaluated
points by the ants. This process gradually increases the exploita-
tion behavior of the algorithm, while its exploration behavior will
decrease, i. e, the value of objective function is evaluated for the
new selected points by the ants. Then, the best point found from
the beginning of the trial is assigned to xmin. Also the value of
σ is update based on the evaluated points during the last iteration
and the aggregation of those points around xmin. Then a concept
of weighted variance is defined as follows:

σ2 =
∑k

j=1

(
1

D( f j)−D( fmin)

(
x j− xmin

))

∑k
j=1

(
1

D( f j)−D( fmin)

) , (10)

for all j in which D( f j) 6= D( fmin), D(·) meaning the defuzzifica-
tion presented in equation (4) and k is the number of ants. This
strategy means that the center of the region discovered during the
subsequent iterations is the last best point and the narrowness of
its width is dependent on the aggregation of the other competitors
around the best one. The closer the better solutions go to the best
one, the smaller σ is assigned to the next iteration.

4.3. Algorithm

The algorithm description, based in [7], is shown below, including
the modification for the fuzzy problem (9).

Step 1 choose randomly the initially guessed minimum point xmin
over the space and calculate the value of the function f (c̃,x)=
fmin, calcule D( fmin) using (4). For each xi use a uniform
PDF over the interval [ai,bi].

Step 2 Set the inicial value of weighted variance for each pheromone
intensity distribution function: σi = 3(bi−ai), i = 1 : n. It
will be large enough to approximately generate uniformly
distributed initial values of xi within the interval [ai,bi].

Step 3 Send ants to points (x1,x2, . . . ,xn) j, j = 1 : k. To generate
these random locations, a random generator with normal
PDF is utilized for each xi, where its mean and variance are
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(x j)min and σi respectively. If xi is outside the given interval
[ai,bi], it is discarded and a new xi is generated again.

Step 4 Evaluate f , at each discovered point, namely f1, f2, . . . , fk.
Determine the minimum fm and compare these value using
(7) and (8) with the current minimum value fmin and deter-
mine the updated fmin and its associated (x1,x2, . . . ,xn)min.

Step 5 If a stopping criterion is satisfied (usually the number of
iterations) then stop, else update the weighted variance pa-
rameter σi for each variable xi using (10); go back to step 3).

5. EXPERIMENTS

The following experiments employ test functions from [8] and one
function from [10]. Also, each function will be presented on its
own table, together the original result from their respective refer-
ences.

All fuzzy numbers have 10% of uncertainty. They are represented
as [c,c−c,c+c], where c is the modal value of the number (µc̃(x)=
1), c−c and c+c are the inferior and superior values for the num-
ber µc̃(x) = 0, respectively.

Each table is composed by four columns, with the first one be-
ing the number of ants, followed by the best crisp result obtained
on the cited reference, then the fuzzy objective function value and
finally, on the last column, the defuzzified objective function num-
ber. The table was constructed upon an implementation using
Scilab (www.scilab.org) version 5.3.0.

5.1. Function 1

f1(c̃,x) = ˜3905.93− 1̃0(x2
1− x2)

2− (1− x1)
2, −2.048 ≤ x1,x2 ≤

2.048.

k [10] f1 D( f1)
100 −3905.93 [−3905.93,−3944.99,−3866,87] −3905.93
200 [−3905.93,−3944.99,−3866,87] −3905.93
500 [−3905.93,−3944.99,−3866,87] −3905.93

Table 1: Results for function f1.

Note that, in [10] don’t have information about the number of ants
used in the tests, only the optimum value.

5.2. Function 2

f2(c̃,x) = 1̃00(x2
1− x2)

2 +(1− x1)
2 and −2.05≤ x1,x2 ≤ 2.05.

k [8] f2 D( f2)
100 1.6e−33 [1.9036e−19,−0.01,0.01] 0
200 3.2e−22 [2.743e−21,−0.01,0.01] 0
500 1.7e−12 [2.299e−20,−0.01,0.01] 0

Table 2: Results for function f2.

5.3. Function 3

f3(c̃,x) = 1̃x2
1 + 1̃x2

2 + 1̃x2
3, −5.12≤ x1,x2,x3 ≤ 5.12.

k [8] f3 D( f3)
100 3.6e−37 [1.394e−34,1.255e−34,1.534e−34] 1.394D−34
200 1.5e−20 [9.094D−36,8.184e−36,1.000−35] 9.094e−36
500 3.0e−09 [3.761e−35,3.385e−35,4.137e−35] 3.761e−35

Table 3: Results for function f3.

5.4. Function 4

f4(c̃,x) = 0̃.5+ sin2(x2
1+x2

2)
1/2

1̃+0̃.001(x2
1+x2

2)
, −100≤ x1,x2 ≤ 100.

k [8] f4 D( f4)
100 7.8e−3 [0,−0.1611111,0.1409091] −0.0050564
200 7.7e−3 [0,−0.1611111,0.1409091] −0.0050564
500 1.4e−2 [0,−0.1611111,0.1409091] −0.0050564

Table 4: Results for function f4.

5.5. Function 5

f5(c̃,x) = 5̃0+∑5
i=1

(
x2

i − 1̃0cos(2̃π̃xi)
)

, −5.12≤ xi ≤ 5.12.

k [8] f5 D( f5)
100 4.9 [0,−10,10] 1.108e−14
200 7.1 [0,−10,10] 1.108e−14
500 9.4 [0,−10,10] 1.108e−14

Table 5: Results for function f5.

5.6. Function 6

f6(c̃,x) = 1̃+∑2
i=1

x2
i

4̃000
−∏2

i=1 cos
(

xi√
i

)
, −5.12≤ xi ≤ 5.12.

The number 4̃000 has only 1% of fuzzy uncertainty.

k [8] f6 D( f6)
100 4.1e−3 [−9.375e−8,−0.1000001,0.0999999] −9.376e−8
200 2.7e−3 [−9.375e−8,−0.1000001,0.0999999] −9.376e−8
500 1.1e−3 [−9.375e−8,−0.1000001,0.0999999] −9.376e−8

Table 6: Results for function f6.

5.7. Function 7

f7(c̃,x) = 1̃+∑5
i=1

x2
i

4̃000
−∏5

i=1 cos
(

xi√
i

)
, −5.12≤ xi ≤ 5.12.

The number 4̃000 has only 1% of fuzzy uncertainty.

k [8] f7 D( f7)
100 7.8e−3 [−9.375e−8,−0.1000001,0.0999999] −9.376e−8
200 7.7e−3 [−9.375e−8,−0.1000001,0.0999999] −9.376e−8
500 1.4e−2 [−9.375e−8,−0.1000001,0.0999999] −9.376e−8

Table 7: Results for function f7.

5.8. Function 8

f8(c̃,x) = (x2
1 + x2

2)
0.25
(

1̃+ sin2
(

5̃0(x2
1 + x2

2)
0.1
))

, −100≤ xi ≤
100.

k [8] f8 D( f8)
100 2.5e−3 [2.176e−02,1.935e−02,2.176e−02] 0.0176
200 5.9e−2 [3.509e−03,1.815e−03,2.219e−03] 0.00202
500 3.8e−1 [4.228e−02,1.945e−02,2.377e−02] 0.02168

Table 8: Results for function f8.

5.9. Function 9

f9(c̃,x)=−2̃0exp
(
−0̃.2

√
1
n ∑30

i=1 x2
i

)
−exp

(
1
n ∑30

i=1 cos(2̃π̃xi)
)
+

2̃0+ ẽ, −32≤ xi ≤ 32.

k f9 D( f9)
100 [1.421e−14,−4.27,4.27] 5.547e−17
200 [1.421e−14,−4.27,4.27] 5.547e−17
500 [1.421e−14,−4.27,4.27] 5.547e−17

Table 9: Results for function f9. Optimum crisp solution f9(0) = 0
.
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6. CONCLUSIONS

Fuzzy theory was proposed by L. A. Zadeh in 1965, as a tool
to help the quantification of inherent imprecisions on the subject
being studied. This theory quickly spreaded to several different
fields, ranging from Engineering, Informatics and Mathematics to
medical diagnosis, plague control e so on.

Mathematical Programming is by itself a very important decision
tool in several application areas. Aggregation of Fuzzy character-
istics to it allows the modelling of uncertainties when the avali-
able data is not exactly know or has inherent inaccuracies, making
Mathematical Programming an even more powerful resource.

In this sense, the quest for optimization methods that succesfully
embraces Fuzzy Theory has been the focus of this work. Here,
we have introduced uncertainty in the coefficients of the objective
function. These uncertainties were modelled by fuzzy numbers.
Its application on the Continuous Ant Colony System heuristics
required some adaptations, as outlined here.

We tested 9 functions from the literature, with 77% of them giving
equivalent or better results when compared with their crisp coun-
terparts. Even the 23% of the test cases that performed worse, were
kept inside de viable solution space and also relatively close to the
crisp solution.

So, despite the fact that this implementation still needs some im-
provements — for instance, incorporating different ant colony heuris-
tics, as proposed in [9] and [12] — its results are compatible with
the ordinary ones, allowing a flexibilization in the modelling of
real case, where crisp Mathematical Programming is not directly
applicable.
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ABSTRACT

In the literature, the most referenced approaches for forest har-
vesting scheduling problems addressing environmental protection
issues have focused mainly on including constraints on clearcut
area. Nevertheless, these restrictions may not be sufficient to pre-
vent the loss of habitat availability that endangers the survival of
many wild species. This work presents a tree search procedure
for finding good feasible solutions, in reasonable time, to forest
harvest scheduling problems with constraints on clearcut area and
habitat availability. We use two measures for habitat availability:
the area of all habitats and the connectivity between them. For
solving the problem, we use a tree search procedure: a process
inspired in branch-and-bound, specifically designed for this prob-
lem. In each branch, a partial solution leads to two children nodes,
corresponding to harvesting or not a given stand in a given period.
Pruning is based on constraint violations or on unreachable objec-
tive values. Preliminary computational results are reported.

Keywords: Forest management, Harvest scheduling, Habitat avail-
ability, Tree search

1. INTRODUCTION

Forest management problems for timber production have been ad-
dressing concerns with resources other than timber, such as wildlife,
soil, water and aesthetics values. Modeling approaches to confront
these concerns have mainly involved the use of restrictions on the
maximum clearcut area. However, the solution generated by these
approaches typically has a dispersion of smaller clearcuts across
the forest; it is known that forest fragmentation may have signif-
icant negative impacts on some wildlife species. Indeed, forest
fragmentation generally implies a reduction of habitat availability
that is, the total area of habitats (mature patches meeting a mini-
mum target area or with an usable interior or core space with mini-
mum area requirements) and the connections between them [1, 2].
Core area of a mature patch is determined by its size and shape and
immediate surrounding conditions. Some animal species are more
dependent on core area than total area of mature patches [3]. Con-
nectivity between habitats enables wildlife movement through the

forest, thus enhancing the probability of survival. It is considered a
key issue for the biodiversity conservation and for the maintenance
of natural ecosystems stability and integrity [4].

There are several works in forest planning that include mature
patch size requirements, using exact integer programming
approaches [5, 6, 7, 8, 9, 10, 11] or heuristic methods [12, 13, 14,
15, 16, 17, 18, 19, 20, 21]. To date, as far as we know, no method
for forest harvest scheduling problems explicitly addressing the
inter-habitat connectivity issue has been reported.

When full search is possible in reasonable time exact solution take
advantage over heuristics, as they determine proved optimal solu-
tions. When the problems are too large to be solved exactly, ex-
act methods may be interrupted in the middle of the search. Tree
search can used as an exact method, especially to solve academic
problems [22, 23], but it also can be used as a heuristic [24].

This work presents a tree search approach for finding good fea-
sible solutions, in reasonable time, to forest harvest scheduling
problems with constraints on clearcut area and habitat availability.
Every mature patch meeting a minimum target area is considered
a habitat (i.e. core area is not considered). Several connectivity
indices have been proposed for landscape conservation planning;
we use the probability of connectivity index proposed by [25].

We report computational tests involving both real forests and gen-
erated benchmark instances.

2. PROBLEM

Basic forest harvest scheduling problems generally encompass the
maximization of the net present value of timber harvested within a
temporal horizon, subject to several non-spatial constraints. In this
work, we consider lower and upper bounds on the volume of tim-
ber harvested in each period (constraints Rl

1 and Ru
1, respectively)

and a minimum average age for the forest at the end of the planning
horizon (constraints R2). Constraints on clearcut area and habitat
availability are considered. Constraints R3 impose a maximum
in the area of each clearcut; constraints R4 concern the minimum
number of periods in which stands adjacent to a clearcut can not
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be harvested, the so-called greenup restrictions. Constraints on
habitat availability impose, in each period, a minimum in the to-
tal area of habitats (constraints R5) and a minimum value for the
probability of connectivity (constraints R6). It is assumed that a
stand may be harvested only once, and that a harvested stand may
become mature within the time horizon.

To identify clearcuts or mature patches (maximal groups of con-
tiguous stands) it is necessary to define adjacency between stands.
For clearcuts, we consider that two stands are adjacent if they share
a boundary that is not a discrete set of points (strong adjacency).
For mature patches, we consider that it is sufficient to share at least
a single point (weak adjacency).

Many indices have been used for connectivity analysis [26, 27, 28,
29, 30, 25]. The authors in [25] encourage the use of the prob-
ability of connectivity, an index that is based on the availability
concept, dispersal probabilities between habitats and graph struc-
tures. This index uses an indicator phr of the possibility of a direct
movement occurrence (without passing by any other intermediate
habitat) between habitats h and r, obtained by a negative exponen-
tial function:

phr = e−Cdhr ,

where C is a constant greater than zero called the coefficient of dis-
persion (species dependent), and dhr is the edge-to-edge distance
between h and r (in km). This indicator expresses the possibility of
an animal to disperse among habitats. The closer the indicator is to
1, the smaller is the inter-habitat distance, and the more favorable
is the occurrence of a movement. In this work, the distance be-
tween two stands (represented as polygons) is simply computed as
the minimum Euclidean distance between their vertices; the edge-
to-edge distance between two mature habitats is approximated by
the minimum distance between their stands.

A path between two habitats h and r, h 6= r, is made up of a se-
quence of direct movements from h to r in which no habitat is
visited more than once. The connectivity of a path is given by the
product of the indicators of direct movements that form the path.
The largest connectivity among all paths between h to r is denoted
by ghr, and indicates the path with greatest chance of dispersion.

Let Ht be the set of all habitats in period t, sh be the area of habitat
h,∀h ∈ Ht and Ht be the total habitat area. The probability of
connectivity for period t is given by:

It =
∑

h∈Ht

∑
r∈Ht

shsrghr

H2
t

. (1)

It expresses the possibility of two animal randomly placed into two
habitats to fall into interconnected habitats. It ranges from 0 to 1,
and increases with improving connectivity. It is equal to 1 when
the forest is composed by a single habitat, and is equal to zero
when there are no habitats, or all habitats are completely isolated
(by being too distant).

3. TREE SEARCH

The tree search proposed in this work is inspired in a branch-and-
bound designed specifically for this problem. The procedure con-
sists of successive branching on partial solutions; more specifi-
cally, in each branch a partial solution can lead to two children so-
lutions, corresponding to the decision of harvesting or not a stand
in a given period.

Let T be the number of periods within the time horizon and n be
the number of stands. The first step is to initialize a queue Q with
the tree’s root node, defined by the following elements:

• S0, the set of all pairs (stand i,period t) such that i is avail-
able to be harvested in t, sorted by descending order of the
net present value corresponding to i and t;

• a solution x0 where no decision is taken (xi = T +1 for all
stands i);

• the net present value of x0, f npv(x0) = 0;
• an upper bound ub0 to the net present value of an optimal

solution to the problem.

The maximum cardinality of S0 is n×T , which happens when all
stands are old enough to be harvested in any period.

At each tree node k, the first element (ik, tk) of Sk is selected. The
partial solution xk leads to two new partial solutions, correspond-
ing to the decision of harvesting or not harvesting stand ik in period
tk (left and right branches, respectively):

• xk+1, where we fix xk+1
ik = tk and xk+1

i = xk
i , for all i 6= ik;

• xk+2, with xk+2
i = xk

i for all i.

The sets corresponding to the two new branches are Sk+1 and
Sk+2, initialized by removing (ik, tk) from Sk. The set Sk+1 is
updated by removing any pair (i, t) such that harvesting stand i in
period t violates the following restrictions: Ru

1; R2; R3 and R4 if
stands i and ik are adjacent.

At any node k′, restrictions Rl
1 can only be fully checked when Sk′

is empty (all the decisions were taken). In this case, if the corre-
sponding solution xk′ does not satisfy constraints Rl

1, k′ is infeasi-
ble, otherwise k′ is feasible. However, when Sk′ is not empty, we
check for period tk′ , and the next green-up periods, whether har-
vesting all stands still available gives a volume of timber greater
or equal than the lower bound (infeasibility test). If not, node k′ is
infeasible, as can not lead to solutions meeting Rl

1. Otherwise, no
conclusion is drawn about the infeasibility of k′.

We check nodes k+ 1 and k+ 2 with the infeasibilty test. If we
do not conclude that node k + 1 is infeasible, more updates are
made: f npv(xk+1) is equal to f npv(xk) plus the net present value
of stand ik in period tk, and the upper-bound ubk+1 is calculated. If
no conclusion is drawn about the infeasibility of k+2, the upper-
bound ubk+2 is calculated. Any upper bound is on the optimal net
present value of the forest harvest scheduling problem addressing
aspects of habitat availability where the decisions already taken are
incorporated.

Any node k′ can be pruned by one of the following three reasons:

• k′ is infeasible (either Sk′ is empty or not);

• Sk′ is empty and xk′ is feasible;
• the upper-bound ubk′ at node k′ is not greater than the best

net present value found so far.

The new (non-pruned) nodes are inserted into queue Q and the
process continues from these elements. Tree search ends when Q
is empty, or a certain CPU time limit is reached.

In this work, several types of upper-bounds are tested.

The method can be represented by a tree, as shown in figure 1. The
tree has a maximum height of n×T + 1 and a maximum number
of nodes of 2(n×T+1)−1.

4. TREE SEARCH IMPLEMENTATION

Three strategies to guide the search on the tree were implemented:
depth-first, best-first and beam search.

In depth-first search (DFS), the search descends on the tree un-
til a leaf (pruned node) is reached. This is implemented though a
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Figure 1: Tree Search.

last-in-first-out (LIFO) process on the queue Q. The right branch
solution is inserted into Q first, followed by the left branch solu-
tion.

In best-first search (BFS), branch is made on the Q element that
has the highest upper-bound.

In breadth-first search, all the solutions at the same level are searched
before exploring the next level. In beam search (BS), breadth-first
search is parameterized, by limiting the number of solutions to
branch per level. At each level, the generated partial solutions are
sorted by ascending order of the upper-bound, and the β last so-
lutions are branched; the other solutions are pruned. This strategy
reduces the memory requirements of breadth-first search.

On the first two strategies, when Q is empty the whole tree has
been explored; in these cases, the best feasible solution is an opti-
mal solution. Tree search is used as a heuristic when only a part of
the tree is explored.

5. PRELIMINARY RESULTS

We report results for WLC and El Dorado instances (also avail-
able at the web site www.unbf.ca/fmos/), with 73 and 1363 stands,
respectively. The El Dorado forest in the U.S.A. El Dorado is re-
ferred to in [31]. The test problem runs were made on a desktop
computer with an Intel Core 2 - 2 GHz processor and 2 GB RAM.
Tree search was implemented with Python language.

Different values are used for the minimum value of the probability
of connectivity. The DFS and BFS strategies were allowed to run
for two hours at most. The results show that the strategies with the
different types of upper bounds were able to give feasible solutions
for the instances. BS largely depends on the value of the parameter
β .
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ABSTRACT

The automatic configuration of algorithms is a hot research topic
nowadays, and it is rapidly having an increasing impact on the
way algorithms are designed and evaluated. The main focus of
automatic configuration tools has been so far the configuration of
single-objective algorithms. However, these tools may be applied
to the automatic configuration of multi-objective algorithms for
Pareto-optimization by means of unary quality measures such as
the hypervolume. This study shows that such an approach is able
to outperform state-of-the-art multi-objective optimizers that were
manually configured. The results presented here on five variants
of multi-objective flow-shop problems show that the automatically
configured algorithm reaches at least the same and often better fi-
nal quality than the current state-of-the-art algorithm.

Keywords: Automatic configuration, Multi-objective, Flow-shop
scheduling

1. INTRODUCTION

This paper presents a study of automatic algorithm configuration
tools for improving the performance of multi-objective algorithms.
Very recently, López-Ibáñez and Stützle [1] applied automatic con-
figuration techniques to the configuration of multi-objective al-
gorithms. In particular, they automatically configured a multi-
objective ant colony optimization (MACO) framework, leading
to new MOACO algorithms that outperform previously proposed
MOACO algorithms for the bi-objective traveling salesman prob-
lem (bTSP). Despite the inherent interest for the research on MO-
ACO algorithms, the results obtained by the new MOACO algo-
rithms are still behind state-of-the-art algorithms for the bTSP. In
this study, our aim is to configure in an automatic fashion a new
state-of-the-art multi-objective optimizer for an N P-hard prob-
lem. In particular, we tackle five bi-objective variants of the multi-
objective flow-shop problem. The current state-of-the-art algo-
rithm for these five bi-objective permutation flow-shop problems
(bPFSPs) was already shown to outperform by a substantial mar-
gin all previously available algorithms for these problems [2] and,
hence, we expected little room for improvement. Nonetheless, the
results reported here show that automatic configuration leads to
a significant improvement over the current state-of-the-art algo-
rithm.

The current state-of-the-art algorithm for these five bPFSPs is a hy-
brid algorithm combining the two-phase local search (TPLS) [3]
and the Pareto local search (PLS) frameworks [4]. TPLS tack-
les multi-objective problems by using efficient single-objective al-
gorithms to solve a sequence of scalarizations (weighted sum ag-
gregations) of the multi-objective problem. PLS is a local search
method for multi-objective problems that uses the Pareto domi-
nance criterion as an acceptance criterion in the local search. From

these two frameworks, we have build a hybrid TP+PLS software
framework.

The flow-shop scheduling problem (FSP) [5] is one of the most
widely studied scheduling problems. In this work we study the bi-
objective variants that arise from the minimisation of the following
objectives: the makespan (Cmax, that is, the completion time of the
last job), sum of flowtimes (SFT, that is the sum of the comple-
tion times of all jobs), weighted tardiness (WT, that is, the sum of
the amount of time a job is late weighted by each job’s priority)
and the total tardiness (TT, that is the same as WT but all priorities
are equal). We tackle the bi-objective PFSPs that result from five
possible pairings of objectives (we do not consider the combina-
tion of the total and weighted tardiness): (Cmax, SFT), (Cmax, TT),
(Cmax, WT), (SFT, TT) and (SFT, WT). These bi-objective prob-
lems have been the focus of intensive research, which is sum-
marised in a recent review [6].

In bi-objective combinatorial optimization problems, candidate so-
lutions are evaluated according to an objective function vector ~f =
( f1, f2). Given two vectors ~u,~v ∈ R2, we say that ~u dominates ~v
(~u ≺~v) iff ~u 6=~v and ui ≤ vi, i = 1,2. Without preference infor-
mation about the objectives, the aim is, without loss of generality,
to minimize the objective functions in terms of Pareto-optimality,
that is, to find the set of solutions that are not dominated by any
other feasible solution. This set is called the Pareto set, and its
image in the objective space is called the Pareto front. Since this
goal is in many cases intractable, the goal becomes to find a set of
non-dominated solutions that approximates well the Pareto front.

The assessment of the relative quality of different Pareto front ap-
proximations is a difficult problem, since they are often incompa-
rable in the Pareto sense. For this purpose, several unary quality
indicators have been proposed that try to summarise the quality
of a Pareto front approximation into a single scalar value. In this
paper, we use one of the most widely used indicators, the hyper-
volume [7, 8]. In two dimensions, the hypervolume of a Pareto
front approximation is the area dominated by at least one of its so-
lutions, and bounded by a point that is larger in all objectives than
all points in the Pareto front.

In what follows, we first describe the outline of the hybrid algo-
rithm that we use, and we explain how we automatically configure
it. We perform an experimental analysis that shows that the auto-
matically configured versions reach state-of-the-art performance.

2. ALGORITHM DESIGN

The TP+PLS framework consists of the sequential execution of the
TPLS and PLS algorithms. TPLS uses effective single-objective
algorithms to solve a sequence of scalarized problems, that is,
weighted sum aggregations of the multiple objective functions. We
use a recent version called Adaptive Anytime Two-Phase Local
Search (AA-TPLS) [9]. Contrary to TPLS, PLS does not rely on
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weights, but is a local search method purely based on Pareto dom-
inance. We briefly describe these two algorithms, and how we
combine them into a final hybrid algorithm.

Adaptive Anytime Two-Phase Local Search TPLS in its orig-
inal version [3] consists of two main phases. In the first phase, a
high-quality solution is generated for one objective using an effec-
tive single-objective algorithm. This high-quality solution is the
seed that initializes the second phase. During this second phase,
a sequence of scalarizations are tackled. A scalarized single-obje-
ctive problem is defined from the bi-objective one as follows: a
normalized weight vector ~λ = (λ ,1− λ ), λ ∈ [0,1] ⊂ R is used
to compute the scalar value of a solution s with objective func-
tion vector ~f (s) = ( f1(s), f2(s)) as fλ (s) = λ · f1(s) + (1− λ ) ·
f2(s). The single-objective algorithm that tackles these scalariza-
tions uses as a seed the best solution found for a previous scalariza-
tion. In this way, TPLS can take advantage of any known effective
algorithm for each single objective.

In a recent work [9], we have shown that TPLS can be effective
but that it has few drawbacks. First, the computation time must
be known in advance in order to distribute the computational ef-
fort equally in all directions; otherwise, if stopped earlier, the ap-
proximation to the Pareto front will be very poor in some regions.
Second, it cannot adapt the computational effort to different Pareto
front shapes. We proposed AA-TPLS [9] as an improved version
of TPLS that has the anytime property, that is, it aims at producing
an as high as possible performance at any moment of its execution;
moreover, this improved version adapts to the shape of the Pareto
front, focusing the search on those regions that would improve the
overall quality of the Pareto front approximation. Here, we use
this new AA-TPLS as a component of the TP+PLS algorithm.

We use an iterated greedy (IG) as the underlying algorithm of AA-
TPLS. IG is a stochastic local search method, originally proposed
for permutation flow-shop scheduling problems to minimize the
makespan, for which it is state-of-the-art [10]. In recent work [11],
we adapted IG to minimize other objectives, that is, total tardi-
ness (weighted or not), sum of flowtimes, and scalarized problems
arising from all possible pairwise combinations of these three ob-
jectives. Automatic configuration tools were used to find efficient
parameter settings of IG for each problem. We use these settings
here for IG, to focus on the automatic configuration of six parame-
ters that control the behavior of our AA-TPLS framework, that is,
the multi-objective part of the combination AA-TPLS &IG.

Pareto Local Search Pareto Local Search (PLS) can be seen as
the extension of iterative improvement algorithms from the single
to the multi-objective case [12]. In PLS, an acceptance criterion
based on Pareto dominance replaces the usual single-objective ac-
ceptance criterion.

Given an initial archive of non-dominated solutions, which are ini-
tially marked as unvisited, PLS iteratively applies the following
steps. A solution s is randomly chosen among the ones in the
archive that are still unvisited. Then, the neighborhood of s is
fully explored and all neighbors that are not weakly dominated
by s or by any solution in the archive are added to the archive.
Solutions in the archive dominated by the newly added solutions
are removed in order to keep only non-dominated solutions in the
archive. Once the neighborhood of s has been fully explored, s
is marked as visited. When all solutions in the archive have been
visited, the algorithm stops. Despite its relative simplicity, PLS is
an important component of state-of-the-art algorithms for the bi-
objective traveling salesman problem (bTSP) [13] and bi-objective
permutation flow-shop scheduling problems (bPFSP) [11, 2]. As
the neighborhood operator of PLS, in [2] we reported experiments
using three different operators: two being based on either inser-

tion or exchange moves, and the third being a combination of both
(thus considering more solutions but requiring more time to do it).
In this work we automatically configure the choice of this operator.
The computation time required by PLS is unpredictable, and may
depend on the instance and even on the order unvisited solutions in
the archive are chosen. The version of PLS used in the final hybrid
algorihm is time bounded, that is, it simply stops if the time limit
is reached.

Hybrid TP+PLS Algorithm Our framework for the hybrid al-
gorithm in this work is based on the two algorithmic schemes in-
troduced above and it is the same as the one proposed in [2].

First single-objective algorithms (in our case, IG algorithms) find a
high-quality initial solution for each single objective. Then we use
AA-TPLS to perform a series of scalarizations that produces a set
of high-quality, non-dominated solutions. This set is then further
improved by a time-bounded PLS that uses appropriate neighbor-
hood operators; in the specific case of the problems tackled in this
paper, these are an insertion, an exchange operator, or a combina-
tion of both. The result is a hybrid TP+PLS algorithm. Through
the particular choices of the underlying single-objective algorithms
and the neighborhoods of PLS, we can instantiate the framework
of the hybrid algorithm for virtually any bi-objective optimization
problem. Here, these problems are five bi-objective PFSPs.

The seven parameters (six for AA-TPLS and one for PLS) of the
TP+PLS framework are those that define the specific settings used
by TPLS and PLS, that is, the multi-objective part of the final al-
gorithm, and the relative duration of these phases. For more details
on these parameters we refer to [2].

Automated Hybrid Configuration The automatic configuration
tool that we use is I/F-Race [14]. More specifically, we use a new,
improved implementation provided by the irace software [15].
This tool handles several parameter types: continuous, integer, cat-
egorical, and ordered. Continuous and integer parameters take val-
ues within a range specified by the user. Categorical parameters
can take any value among a set of possibles ones explicitly given
by the user, while an ordered parameter is similar to a categorical
parameter with a pre-defined strict order of its possible values.

As proposed by López-Ibáñez and Stützle [1], I/F-Race may be
used to automatically configure multi-objective algorithms by in-
tegrating the hypervolume indicator as the evaluation criterion.

For the automatic configuration process, we generated 500 train-
ing instances of each size, 50 jobs and 20 machines (50x20) and
100 jobs and 20 machines (100x20). These instances were pro-
duced following the same procedure described in [6]. I/F-Race is
stopped after 5000 runs of TP+PLS, and each run is given a time
limit proportional to the instance size of 0.1 · n ·m seconds, that
is, 100 seconds for instances of size 50x20 and 200 seconds for
instances of size 100x20.

We compare the configuration of TP+PLS found by I/F-Race with
the configuration reported in the original publication, that are based
on a careful experimental analysis to find the best possible parametriza-
tion of the algorithm “by hand” [2], to understand the effect of each
algorithm component, and the best design choice for each of them.
We call these original configurations conf hand . In addition, we also
run I/F-Race adding conf hand to the initial set of candidate config-
urations. We call conf tun−rnd the best configuration obtained from
running I/F-Race without knowledge of the conf hand configura-
tion, and we call conf tun−ic the best configuration obtained from
running I/F-Race using conf hand as an initial configuration.
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3. EXPERIMENTAL ANALYSIS

We compare the original configurations proposed in [2] (conf hand),
where it is shown that the hybrid algorithm using this parametriza-
tion greatly improves upon previous state-of-the-art algorithms,
with the configurations obtained from the automatic configuration
process (conf tun−rnd and conf tun−ic).

For the experimental analysis of the configurations, we use 10 in-
stances produced in the same way as the training instances, of size
50x20 and 100x20. Each experiment is run until a time limit of
0.1 ·n ·m seconds to allow a computation time proportional to the
instance size, as suggested by Minella et al. [6]. We repeat each
experiment 10 times with different random seeds.

To normalize the hypervolume value across all instances, we first
normalize all non-dominated points to the range [1,2], and we
compute the hypervolume of the set of normalized points, using
as reference point (2.1,2.1).

Graphical analysis To explore graphically the performance of
each configuration, we examine their empirical attainment func-
tions (EAF). The EAF of an algorithm provides an estimation of
the probability for an arbitrary point in the objective space to be
attained by (that is, dominated by or equal to) a solution obtained
by a single run of the algorithm. Thus, examining the EAF al-
lows to know with which frequency a region of the objective space
is attained by a multi-objective algorithm. By examining the dif-
ferences between the EAFs of two algorithms, one can not only
identify regions of the objective space where one algorithm per-
forms better than another but also know by which magnitude. The
differences in favor of each algorithm can be plotted side-by-side
and the magnitude of the differences be encoded in gray levels (the
darker the color, the higher the difference). For more details, we
refer to López-Ibáñez et al. [16].

Figure 1 presents the differences of the EAFs for conf hand and
conf tun−rnd for 2 instances of size 50x20. Other instances and
objectives show the same trend: each algorithm performs better in
different regions, but one can hardly assess that conf hand or one
of the automatically derived configurations outperforms the other
across the whole non-dominated front.

Statistical analysis To assess whether the performance differ-
ences among the configurations are significant, we perform a sta-
tistical test on the overall results. Table 1 presents the mean and
standard deviation of the hypervolume for each problem and each
configuration, for instances of size 50x20. We perform a paired
t-test with the null hypothesis of equal performance and a confi-
dence level of 0.95, between the conf hand configuration and each
of the other two. A bold face indicates that the difference is sta-
tistically significant in favor of one of the automatically derived
configurations, and an italic face indicates that the difference is
statistically significant in favor of conf hand . The same test is per-
formed for instances of size 100x20, and results are reported in
Table 2.

In all cases except one (PFSP-(SFT, WT) on Table 2), conf hand
obtains the worst results of all the three configurations, the differ-
ence being often statistically significant. In particular, conf tun−ic
improves in nine out of the ten cases significantly over conf hand
(see Tables 1 and 2). Even if the absolute differences in hypervol-
ume are not very large, this is a noteworthy result given the ex-
cellent performance that the hybrid TPLS+PLS using the conf hand
configuration achieved when compared to previous state-of-the-art
algorithms [2].

Table 1: Mean and standard deviation of the normalized hypervol-
ume obtained by each configuration, evaluated over 10 runs and
10 instances of size 50x20. A bold face indicates that there is a
statistically significant difference (see text for details) in favor of
a given configuration versus conf hand , and an italic face that the
difference is in favor of conf hand .

conf hand conf tun−rnd conf tun−ic
mean sd mean sd mean sd

(Cmax, SFT) 0.974 0.036 0.982 0.038 0.984 0.034
(Cmax, TT) 0.999 0.039 1.005 0.038 1.002 0.035
(Cmax, WT) 1.037 0.026 1.045 0.024 1.045 0.023
(SFT, TT) 0.954 0.038 0.955 0.039 0.96 0.04
(SFT, WT) 1.022 0.028 1.024 0.03 1.029 0.026

Table 2: Mean and standard deviation of the normalized hypervol-
ume obtained for each configuration, evaluated over 10 runs and
10 instances of size 100x20. A bold face indicates that there is a
statistically significant difference (see text for details) in favor of
a given configuration versus conf hand , and an italic face that the
difference is in favor of conf hand .

conf hand conf tun−rnd conf tun−ic
mean sd mean sd mean sd

(Cmax, SFT) 0.943 0.058 0.968 0.056 0.971 0.058
(Cmax, TT) 1.005 0.043 1.008 0.045 1.012 0.038
(Cmax, WT) 1.013 0.043 1.028 0.039 1.025 0.04
(SFT, TT) 0.621 0.129 0.755 0.117 0.761 0.133
(SFT, WT) 0.951 0.037 0.922 0.051 0.962 0.048

4. CONCLUSION

In this work, we automatically configured a new state-of-the-art
algorithm for five bi-objective flow-shop problems. The hybrid
TP+PLS algorithm that we automatically configure is the same as
in [2]. In this previous study we proposed a new state-of-the-art
algorithm for bi-objective permutation flow-shop scheduling, to-
gether with a highly effective parametrization that should be used
for each instance size. In this work, we automatically configured
this hybrid algorithm and showed that the configuration we ob-
tained are as-good or even slightly better than the ones originally
proposed. The hybrid multi-objective framework that we config-
ure is generic and the same design procedure could be applied to
different bi-objective combinatorial problems, potentially improv-
ing over the current state-of-the-art for different problems.
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ABSTRACT

In this article, we describe an experimental analysis on a given
property of connectedness of optimal paths for the multicriteria
shortest path problem. Moreover, we propose a local search that
explores this property and compare its performance with an exact
algorithm in terms of running time and number of optimal paths
found.
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1. INTRODUCTION

Multicriteria shortest path problems arise in many applications.
For instance, GPS systems allow choosing different criteria such as
time or cost. However, there is no shortest path that optimizes all
criteria since the fastest path may not be the cheapest. For instance,
highways are fast but expensive since they are tolled, whereas na-
tional roads are free of charge but slow. Hence, one has to develop
algorithms that output a set of optimal paths representing the op-
timal trade-off between the several criteria, from which the user
chooses the most preferable.

This work describes a large experimental analysis to understand
the structure of the efficient paths that can be exploited from an
algorithmic point of view. In particular, we aim to know whether
those efficient paths are close to each other, according to a proper
definition of “closeness”. To know whether this holds for most of
the instances is highly relevant, since we could use this information
to develop even more effective algorithms [5]. Our experimental
results reported indicate that a large number of instances present
such property. Therefore, we propose a local search that explores
this property and compare it against an exact approach described
in the literature.

2. NOTATION AND DEFINITIONS

Let G be a network, G = (V,A) and w a mapping that defines each
arc’s weight, w : A 7→ ZQ. For the simplicity of notation, we will
say that a path is a sequence of arcs or nodes, depending of the
context. Let us also denote the set of feasible paths as P. The goal
of this problem is to find the efficient set of paths as follows

min
p∈P

f (p) :=

(
∑
a∈p

w1(a), . . . , ∑
a∈p

wQ(a)

)
(1)

D.J. Vaz acknowledges its grant BII-2009 from Fundação de Ciência
e Tecnologia.

The meaning of operator min is as follows: We say that a feasible
path p dominates another feasible path p′ if and only if f j(p) ≤
f j(p′) for j = 1, . . . ,Q, with at least one strict inequality. If there is
no feasible path that dominates p, then we say that p is an efficient
path. The set of all efficient paths is denoted by N E . The image
of the feasible set P forms a set of distinct points in the criterion
space. We say that a vector z is non-dominated if it is the image of
some efficient path p ∈N E . The set of all non-dominated vectors
is called the non-dominated set. In Eq. (1), operator min finds the
nondominated set.

A label correcting algorithm to solve this problem (or to find the
efficient set) is given by Paixão and Santos [4], which consists of
an adaptation of the algorithm given by Vincke [7]. Although this
algorithm finds the efficient set, it is too slow for large networks. In
this work, we propose a new local search algorithm that explores a
given property of the efficient paths that may improve the running
time. We say that two paths, p1 and p2, are adjacent if and only
if, after removing the arcs in common, we obtain a single cycle in
the resulting undirected graph [3]. Also, we define the adjacency
graph G′, such that G′ has a vertex for each efficient path p ∈N E

and an edge between two vertices if and only if the corresponding
paths are adjacent. The algorithm that is reported here explores the
connectedness of efficient paths, which is defined as the connect-
edness of G′. Although it is not necessarily true that the efficient
set for a given network is connected [3], a large fraction of net-
works may satisfy this condition. To the knowledge of the authors,
connectedness of the efficient set only holds for particular cases of
knapsack problems [1, 6].

3. CONNECTEDNESS ANALYSIS

In the experimental investigation mentioned above, we used bench-
mark instances described in the literature [4]. Those instances are
grouped in three categories according to their size: small, medium
and large. In each of the categories, there are 7 classes: RandomN:
Random network (randomly generated arc), with the number of
nodes varying, and having constant density and number of crite-
ria; RandomD: Random network with constant number of nodes
and number of criteria, but varying density; RandomK: Random
network with constant number of nodes and density, but varying
the number of criteria; CompleteN: Complete network with con-
stant number of criteria, but varying number of nodes; CompleteK:
Complete network with constant number of nodes, but varying
number of criteria; GridN: Grid (square mesh) with constant num-
ber of criteria, but varying number of nodes; GridK: Grid (square
mesh) with constant number of nodes, but varying number of cri-
teria. Each group corresponds to 50 distinct instances. For each
class, there are 15-20 groups of 50 instances each. There are 19950
instances, from which 6600 are small, 6550 are medium and 6800
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Algorithm 1: Local Search Algorithm
Input: Network G = (V,A), s, t ∈V .
Output: Set S.

T,S := /0
Let v : P 7→V
for each crit. q = 1, . . . ,Q do

a) Find Tq, the reversed shortest path tree with root t on
crit. q.
b) Let p ∈ Tq be path from s to t.
c) Flag p as not visited.
d) v(p) := s
e) S := S∪ p

end for
for each path p in S that is not visited do

a) Flag p as visited.
for each node i ∈ p from v(p) to t do

for each arc (i, j) ∈ A do
for each crit. q′ = 1, . . . ,Q do

a) Let p(s,i) be a path from node s to i and p(s,i) ⊆ p
b) Let r ∈ Tq′ be the path from node j to t in crit. q′

c) p′ := p(s,i)∪{(i, j)}∪ r
d) v(p′) := j
e) Flag p′ as not visited
f) S := Filter(S∪{p′})

end for
end for

end for
end for

are large. For each of those instances, the weight of each arc for
each criterion is generated randomly according to an uniform dis-
tribution in the range of [1,1000].

We developed an algorithm for detecting connectedness for a given
set of efficient paths. This algorithm outputs the number of con-
nected components of the adjacency graph. For detecting whether
a given instance is connected according to the notion of connected-
ness described in Section 2 we ran the algorithm for finding the set
of efficient paths as described by Paixão and Santos [4], and then
used this set as input to the algorithm described above to deter-
mine if the set of efficient paths was connected. All the small and
medium instances, along with some large instances that have been
tested, were found to have the set of efficient paths connected.

4. LOCAL SEARCH ALGORITHM

The local search algorithm presented in this section generates can-
didate efficient paths that are neighbors with respect to the defi-
nition of adjacency given in Section 2. Note that the number of
efficient and neighbor paths can be exponentially large [2]. There-
fore, we focus on a subset of neighbors whose size only depends
linearly on the number of criteria, number of nodes and/or arcs.

The local search works as follows. First, all the shortest paths
from every node to the target and for each criterion are generated
by using Dijkstra’s algorithm. Then, for each one of these shortest
paths, new paths are generated from a path p as follows: for each
node i of p from s to the target t, deviate from p at node i through
an arc (i, j) and then, for each criterion, follow the shortest path
that was previously computed from node j to the target. With this
procedure, further new candidates for efficient paths are generated.
The algorithm iterates over the procedure above for all paths that
are generated. To avoid generating repeated paths, at each new
path p′ generated from path p, the algorithm starts from the first
node in p′ where the detour occured. This node will be denoted
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Figure 1: Percentage of efficient solutions found (top) and ratio of
CPU-time between label correcting and local search (bottom). The
ratio is shown in logarithmic scale. The white and grey boxplots
represent small and medium instances, respectively.

by v(p) and for the shortest path initially determined, we define
v(p) = s. We also denote a path that follows path p from node s to
node i by p(s,i). The resulting algorithm is shown in Algorithm 1.
The procedure Filter(S) in the final step removes the dominated
paths from set S At each iteration of the second loop, the algorithm
uses a LIFO strategy to choose the next path from S. In order to
define a stopping criterion, we use the following technique [5]:
The algorithm flags each new path found as not visited; the path
becomes visited when it is chosen to generate new paths. This
algorithm stops when all paths in S are flagged as visited.

Figure 1 presents the experimental results obtained by using the lo-
cal search algorithm as compared to the label correcting approach.
The plot in the top gives a boxplot for the percentage of efficient
paths found by the local search algorithm for each instance type
and size. The plot in the bottom shows a boxplot for the ratio
of CPU-time between the label correcting approach and the local
search algorithm. The experimental results indicate that the local
search algorithm behaved well in Random and Complete instances,
where it finds over 80% of the efficient paths in RandomK and
RandomN instances and between 50% and 90% in the remaining.
For these classes of problems, the local search algorithm takes less
than one tenth of the run-time of the exact approach. Additionally,
in GridK instances, the local search finds more than 80% of the
efficient paths, but it is slower than the exact approach. Finally,
only a few portion of efficient paths was found by the local search
algorithm in GridN instances.

5. CONCLUDING REMARKS

In this article, we performed an experimental analysis of connect-
edness for the multicriteria shortest path problem. The positive
results obtained in this study suggest that local search algorithms
may be an effective approach. We propose a local search algorithm
that explores a stricter version of the neighborhood considered for
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connectedness. From our point of view, the results obtained by our
approach were quite positive for most of the instance types, both
in terms of number of efficient paths found and running time.

This approach can even be improved in terms of solution quality,
mainly for instances of type Grid with increasing size, by con-
sidering an extension of the neighborhood that is explored by our
approach. However, it is an open question whether it would still be
efficient in terms of running time as compared to exact algorithms
for this problem. As for instances of type Grid with increasing
number of objectives, a more efficient dominance check may im-
prove our approach. Finally, we remark that this local search ex-
ploration can be also applied for other problems defined over net-
works, such as the multicriteria minimum spanning tree problem.
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ABSTRACT

In this work, a hybrid metaheuristic for solving the biobjective
flowshop problem with makespan and tardiness objectives is pro-
posed. It is based on the well-known greedy randomized adap-
tive search procedure (GRASP) with path-relinking adapted to the
multiobjective case. The proposed approach is tested on several
flowshop instances and compared to existing results from litera-
ture with the hypervolume performance measures.

Keywords: Multiobjective, GRASP, Path-relinking, Scheduling,
Flowshop

1. INTRODUCTION

Traditionally, scheduling problems are solved with one objective
at a time. For instance, minimization of makespan or tardiness.
However, in reality several usually conflicting objectives need to
be optimized simultaneously. Solving multiobjective problems is
not easy, since there exists no single optimal schedule, and the
schedule which provides the minimal makespan has a larger tar-
diness when compared to the schedule with minimal tardiness but
larger makespan. The multiobjective nature of the problem leads
to the search of the Pareto set of nondominated solutions.

Optimizing any of these objectives is NP-hard [1] and exact meth-
ods are able to solve only small size problems. On the other hand,
metaheuristics are able to find approximate good quality solutions
within feasible computational time. In metaheuristics, the search
is directed towards good (at least near optimal) approximate solu-
tions by applying some exploitation (or intensification) techniques,
e.g. local search. At the same time, the search space is studied in
different directions. This is done by applying some exploration
(or diversification) techniques, e.g., multi-start with different ran-
dom initial points. Powerful metaheuristics are at the core of solv-
ing NP-hard multiobjective problems. However, there is a large
experience in the development of heuristics for single objective
scheduling problems. In this work, an attempt to benefit from
both of these approaches is made by developing a multiobjective
greedy randomized adaptive search procedure (GRASP) with path-
relinking for flowshop scheduling.

Typically, in multiobjective optimization instead of the one best
performing solution, a set of Pareto optimal solutions, relatively
good according to all objectives, is of interest. Similarly to Evo-

lutionary Algorithms and Scatter Search, GRASP can work with
a population of solutions initialized by randomized heuristic(s).
The quality of solutions constructed with some heuristic may still
be improved with local search techniques. On the other hand, in-
terlinking local optima with path-relinking contributes to the ex-
ploration of the search space between good solutions. The com-
bination of multi-start local search that performs exploitation of
the objective space with path-relinking that explores the objective
space results in a powerful multiobjective metaheuristic discussed
in this work.

2. BACKGROUND

2.1. Flowshop scheduling model

In a flowshop problem, n jobs have to be processed on m machines
with processing time pi j of each job j ∈ J on each machine i ∈
I. Then, the total number of all possible schedules is equal to
(n!)m. The goal is to find the schedule that is optimal according
to some objective function(s). Usually, it is supposed that each
machine can process only one job at a time without interruptions
and the order of jobs is the same on each machine. When the
order of jobs in permutation is known, only n! possible schedules
can be constructed. This problem is called permutation flowshop
scheduling problem (PFSP) and is the one considered in this paper.

In this work, the schedule is constructed such that it minimizes the
maximum makespan (completion time of the last job) Cmax and
minimizes the tardiness Tj, simultaneously (see [1] for examples
of other possible objectives). Processing of a job j on a machine
i can start only after processing the same job on a machine i− 1
is finished. Being C j the completion time of a job j on the last
machine, Ci j the completion time of a job j on a machine i, and
d j a due date of a job j, Ci j = max{Ci−1, j; Ci, j−1}+ pi j; Cmax =
max{C j}(∀ j), is the completion time of the last job on the last
machine; and Tj = max{C j−d j,0} is the tardiness of a job j.

2.2. Multiobjective optimization

At the outcome of multiobjective optimization there is a set of
non-dominated solutions. Each of such solutions is "optimal" in
the sense that improvements in one objective causes degradation
in some other one(s). The Pareto set of solutions can be found
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by evaluating all solution vectors in the objective space and find-
ing nondominated solutions based on the Pareto dominance rela-
tion. This relation states that solution xs is better than solution
xp (xs,xp ∈ Rd), if it is strictly better in at least one objective and
not worse on the rest of the objectives. Assuming minimization of
all objectives this can be written as follows: fk(xs) ≤ fk(xp)∀k ∈
{1, ...,o} and ∃l ∈ {1, ...,o} : fl(xs)< fl(xp), where fk(xs), fk(xp),
k ∈ {1, ...,o} are evaluations of xs, xp in the objective space Ro.

2.3. GRASP

The greedy randomized adaptive search procedure (GRASP) was
developed by Feo and Resende in 1989 [2]. It is a multi-start
heuristic that iteratively performs construction of solutions, e.g.,
with some heuristic(s), and makes a local search around solutions
provided by the construction phase. Restarting these two consecu-
tive phases with random initial solutions provides diversity of the
final results. On the other hand, local search insures exploitation of
neighbourhoods of the solutions found at the construction phase.
GRASP with path-relinking was successfully applied to a single
objective jobshop scheduling problems in [3], [4]. In this work,
GRASP with path-relinking is adapted to the multiobjective flow-
shop.

3. MULTIOBJECTIVE GRASP WITH PATH-RELINKING
FOR THE PFSP

Over the last decades, many multiobjective metaheuristics have
been developed, such as multiobjective tabu search, multiobjec-
tive simulated annealing, multiobjective genetic algorithms, etc.
Most of them have already been applied to flowshop scheduling
problems. For a recent and comprehensive survey on solving mul-
tiobjective PFSP the reader is referred to [5].

The successful application of GRASP with path-relinking to single
objective scheduling problems see e.g., [3], [4], has motivated the
extension of GRASP to multiobjective PFSP in this work. GRASP
has already been applied to the multiobjective PFSP in [6]. How-
ever, their approach is based on the aggregation of multiple ob-
jectives into a single one, and, finally, solving a single objective
GRASP. On contrary, the multiobjective GRASP with path-relinking
(moGRASP-PR) proposed in this work allows searching the Pareto
set of non-dominated solutions.

3.1. Construction phase

The original GRASP works with one solution at each iteration,
on contrary, here, a population of initial solution is constructed
according to some heuristics. The idea of using a population of
initial solutions is common to evolutionary algorithms and scatter
search, and assumes working in parallel with some set of diverse
solutions. Obtaining such solutions with heuristics guarantees that
initial solutions are feasible and good according to at least one of
the objectives.

In the scheduling literature, there is a long time tradition of devel-
oping efficient heuristics for different types of objectives based on
dispatching rules. For instance, for the makespan objective, the
shortest processing time (SPT) heuristic stands as the best per-
forming one, while for the tardiness objective, the earliest due
date (EDD) heuristics is reported to be the best [1]. On the other
hand, more complicated heuristics were developed for each type
of scheduling problems. For instance, for the flowshop, Nawaz,
Dudek and Ham (NEH) heuristic [7] is considered to be the most
efficient one [8].

In this work, several heuristics were selected for constructing an

initial population. For the makespan and tardiness objectives the
best solutions were obtained with the NEH heuristics with jobs
initially ordered according to the LPT and EDD rules respectively.
Then, to diversify the initial population, usually at the cost of qual-
ity of solutions, the rest of solutions is selected from two Restricted
Candidate Lists (RCLs), constructed for the makespan objective
according to the SPT rule and for tardiness with respect to the EDD
rule.

Assuming minimization of the maximum makespan C j = Cmax,
∀ j, only some jobs with the smallest makespan are selected into
the RCL. The α-part of the best jobs is defined between the jobs
with the minimal C j and maximal C j values of makespan. Conse-
quently, C j = min(C j| j ∈ Ja) and C j = max(C j| j ∈ Ja), where Ja

is the set of unscheduled jobs. Then, the RCL can be defined as
follows

RCL = { j ∈ Ja|C j ≤C j ≤C j +α(C j−C j)}, (1)

where the α parameter, such as 0 ≤ α ≤ 1 is selected depending
on the degree of randomness desired. Similarly, the RCL for EDD
is constructed.

Selection from the RCL of the job to be scheduled is random and
guarantees diversification of solutions selected in the initial popu-
lation from the same list. Half of the initial population is selected
from the RCL constructed based on SPT and the other half is taken
from the RCL constructed based on EDD. Such construction cre-
ates good solutions according to only one objective at a time, but
not with respect to both objectives simultaneously.

3.2. Local search phase

Construction with a greedy-randomized approach does not guar-
antee optimality of the solutions, that is why local search can still
improve the quality of solutions by exploring the neighbourhoods
of the best solutions obtained at the construction phase. A neigh-
bourhood N(x) of a solution x ∈ X is a set of solutions that are
obtained by slightly changing x (by an operation called move) in
some specific way for each particular type of problem. When com-
pared to single objective optimization, where either the first im-
proving solution better than the current one or the best among all
possible solutions in the whole neighbourhood is accepted, in the
multiobjective case, all non-dominated solutions with respect to
the neighbourhood are accepted.

Due to the importance of the order of jobs in the flowshop problem,
the most efficient neighbourhoods for it are those that destroy the
order of jobs as less as possible. In this sense, the less destructive
is the insertion neighbourhood that removes a job from its current
position and inserts in some other random position. The swapping
neighbourhood that exchanges positions of two randomly selected
jobs is also shown to be efficient. Due to the quadratic growth
of both neighbourhoods, when increasing the size of the problem
solved, usually, only some fixed-size sub-neighbourhoods of solu-
tions selected randomly are considered for evaluation. Exploring
sub-neighbourhoods does not guarantee identification of local op-
tima. However, it is compensated by consuming less of the avail-
able computation time.

3.3. Path-relinking

In the original GRASP, the local search exploits a region of the
search space around some starting point, and exploration is com-
pensated by the multiple restarts. However, from evolutionary
computation it is known that taking two good solutions and swap-
ping parts of them may result in new good solutions. Such opera-
tion is known as crossover. Glover suggested a more determinis-
tic approach to trace solutions that are located on trajectories (or
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paths) connecting good (or elite) solutions [9]. The basic idea is
to transform one of the solutions (initial one) in the direction of
the other (guiding) solution. Small changes to the initial solution
allow to obtain new solutions located in between of the two re-
linked solutions. In [10], path-relinking was applied together with
GRASP, and in [4], this approach was successfully applied to job
shop scheduling.

There are different ways to perform path-relinking [11]. Here, a
new solution is obtained by swapping elements of the initial so-
lution with respect to the position of one of them in the guiding
solution. The new solution is evaluated on objectives and com-
pared to the initial solution. In case the new solution dominates
the initial one it gets the chance to be added to the archive, see
next section. In [12], it was demonstrated that for some problems,
the solutions located near local optima are better than those lo-
cated on the rest of the paths. This principle is used in the trun-
cating path-relinking, where only sub-paths (and, consequently,
sub-neighbourhoods) near to local optima are explored.

Depending on the size of the set to be interlinked, the neighbour-
hood created by path-relinking can be large, and, consequently,
time-consuming. That is why here to reduce computational com-
plexity and still keep the quality of solutions high, the truncating
path-relinking is applied for all possible pairs of nondominated so-
lutions.

3.4. Archive of solutions

All nondominated solutions found after construction, local search
and path-relinking phases are stored in an external archive. The so-
lution is added to the archive if it is non-dominated with respect to
the solutions already stored in the archive. On the other hand, so-
lutions stored in the archive that become dominated by the current
solution are removed from it. An archive of solutions has already
been used in the elitist multiobjective GRASP for the quadratic
assignment problem in [13].

To reduce computational efforts, each new neighbour solution is
first compared for the non-dominance with the original solution
from which it stemmed from, either initial solution of the local
search (LS) or initial and/or guiding solutions in case of path-
relinking (PR). In case the new solution appears to be non-dominated,
it is compared to all solutions stored in the archive for non-dominance.
Such approach was suggested in [14] to avoid redundant computa-
tions.

3.5. moGRASP-PR routine

The general scheme of the main loop of the moGRASP-PR cycle
applied to the current population is presented in Algorithm 1.

Algorithm 1: moGRASP-PR main loop
Require: Number of generation NGEN, population size NIND

gen = 0
archive = {}
while gen < NGEN do

init_pop = construct(NIND)
archive← non_dominated(init_pop

⋃
archive)

neighbours = LS(archive)
archive← non_dominated(neighbours

⋃
archive)

neighbours = PR(archive)
archive← non_dominated(neighbours

⋃
archive)

neighbours = LS(archive)
archive← non_dominated(neighbours

⋃
archive)

gen = gen+1
end while

At the beginning, a population of solutions with size NIND = 102
is constructed. The two solutions are constructed with the NEH
heuristics for makespan and tardiness, respectively, initially or-
dered according to the LPT and EDD heuristics. Then, for the
predefined number of generations, NGEN = 20, the rest of the
population is composed of 50 solutions, constructed from the best
jobs selected randomly from the RCL based on the SPT rule, and
50 solutions selected from the RCL based on the EDD rule. The
non-dominated solutions are selected from all constructions and
preserved in the archive. Then, the archive is updated at each iter-
ation after new neighbours are created with either local search or
path-relinking.

3.6. Performance assessment

Among different performance measures available in the literature,
the hypervolume [15] is considered to have good convergence prop-
erties [16]. The main disadvantages of the hypervolume is its com-
putational complexity. Recently, several efficient algorithms that
try to reduce computational time for calculating the hypervolume
have been proposed. In this work, the hypervolume is computed
with the improved dimension-sweep algorithm proposed in [17].

4. EXPERIMENTAL RESULTS

In this work, we compare the performance of the multiobjective
GRASP with path-relinking applied to the PFSP with the results
of 21 best algorithms obtained in [5]. The experiments presented
in table 1 were performed on the well-known Taillard’s benchmark
for the PFSP proposed in [18] and modified for the makespan and
tardiness objectives in [5]. The set of 110 instances is available
for download at http://soa.iti.es/files/Taillard_DueDates.7z. In this
work, the instances with different combinations [n×m] of n jobs
and m machines are used, such as [20,50]× [5,10,20] and [100×
5]. The moGRASP-PR algorithm runs for 1 (for large size prob-
lems) to 3 (for small size problems) times on each instance (in total
226 problems are solved) with 20 GRASP iterations in each run.
The results presented in table 1 are the averages of hypervolumes
for each algorithm on all runs.

Table 1: Comparative results with the hypervolume criterion

Method Hypervol Method Hypervol
MOSA_Varadhar 0.927 ε-NSGAII 0.71

MOGALS_Arroyo 0.861 moGRASP-PR 0.703
PESA 0.851 (µ +λ )-PAES 0.605

PESAII 0.848 ε-MOEA 0.621
PGA_ALS 0.815 PAES 0.588

MOTS 0.795 MOSA_Suresh 0.851
MOGA_Murata 0.755 SA_Chakrav 0.515

CMOGA 0.741 PILS 0.43
NSGAII 0.725 ENGA 0.426
SPEA 0.724 A-IBEA 0.159

CNSGAII 0.722 SPEAII 0.159

A more detailed analysis shows that the algorithm proposed in
this paper performs best compared to the rest of the algorithms
for small data sets. However, for the large data sets it converges
prematurely. That is why, the overall hypervolume is not as high
as expected. Some diversity preservation mechanism is planned to
be integrated into the algorithm in the near future.

The moGRASP-PR algorithm is implemented in Python 2.6 on a
single Intel Core 2 Duo T9550 processor running at 2.66 GHz with
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4 GB of RAM.

5. CONCLUSIONS AND FUTURE WORK

In this work, a multiobjective GRASP with path-relinking is ap-
plied to a biobjective flowshop problem with the makespan and the
tardiness objectives. The approach was tested on several flowshop
instances and compared to existing methods with the hypervol-
ume performance measures. The initial results are promising for
the small flowshop instances, but the performance of the algorithm
should be investigated for the larger ones.
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ABSTRACT

We consider the rooted delay-constrained Steiner tree problem
which arises for example in the design of centralized multicasting
networks where quality of service constraints are of concern.
We present a path based integer linear programming formulation
which has already been considered in the literature for the
spanning tree variant. Solving its linear relaxation by column
generation has so far been regarded as not competitive due to
long computational times needed. In this work, we show how to
significantly accelerate the column generation process using two
different stabilization techniques. Computational results indicate
that due to the achieved speed-up our approach outperforms so-far
proposed methods.

Keywords: Network design, Stabilized column generation,
Delay-constrained Steiner tree

1. INTRODUCTION

When designing a communication network with a central server
broadcasting or multicasting information to all or some of the par-
ticipants of the network, some applications such as video confer-
ences require a limitation of the maximal delay from the server
to each client. Beside this delay-constraint minimizing the cost
of establishing the network is in most cases an important design
criterion. As another example, consider a package shipment orga-
nization with a central depot guaranteeing its customers a delivery
within a specified time horizon. Naturally the organization aims
at minimizing the transportation costs but at the same time has to
hold its promise of being in time. Such network design problems
can be modeled as rooted delay-constrained Steiner tree problem
(RDCSTP), which is an NP-hard combinatorial optimization prob-
lem [1]. The objective is to find a minimum cost Steiner tree of
a given graph with the additional constraint that the total delay
along each path from a specified root node to any other required
node must not exceed a given delay bound.

More formally, we are given an undirected graph G = (V,E) with
a set V of n nodes, a fixed root node s ∈V , a set T ⊆V \{s} of ter-
minal or required nodes, a set S =V \(T ∪{s}) of optional Steiner
nodes, a set E of m edges, a cost function c : E → Z+, a delay
function d : E→ Z+, and a delay bound B ∈ Z+. A feasible solu-
tion to the RDCSTP is a Steiner tree GS = (VS,ES), s ∈ VS, T ⊆
VS ⊆V, ES ⊆ E satisfying the constraints ∑e∈PS(t) de ≤ B, ∀t ∈ T ,
where PS(t)⊆ E denotes the edge set of the unique path from root
s to terminal t. An optimal solution G∗S is a feasible solution with
minimum costs c(G∗S) = ∑e∈ES

ce.

2. PREVIOUS & RELATED WORK

There are many recent publications dedicated to this problem and
its more special variants. Several metaheuristics have been applied
to the RDCSTP, such as GRASP [2, 3], path-relinking [4] and vari-
able neighborhood search [3]. More heuristic approaches can be
found for the spanning tree variant with T =V \{s}, e.g. GRASP
and variable neighborhood descent (VND) in [5] and ant colony
optimization and variable neighborhood search in [6]. Further-
more, preprocessing methods are presented in [6] to reduce the size
of the graph significantly in order to speed up the solving process.
Exact methods based on integer linear programming (ILP) have
been explored by Leggieri et al. [7] who describe a compact ex-
tended node-based formulation using lifted Miller-Tucker-Zemlin
inequalities. Since the used Big-M inequalities usually yield rather
low linear programming (LP) relaxation bounds this formulation
is improved by separating directed connection cuts. Several ILP
approaches for the spanning tree variant have been examined by
Gouveia et al. in [8] based on a path formulation solved by two
different methods. Standard column generation (CG) turns out to
be computationally inefficient while a Lagrangian relaxation ap-
proach together with a fast primal heuristic exhibits better per-
formance. A third approach reformulates the constrained short-
est path problem on a layered graph and solves it using a multi
commodity flow (MCF) formulation. Since the size of the layered
graph and therefore the efficiency of the according model heav-
ily depends on the number of achievable discrete delay values this
approach can in practice only be used for instances with a quite re-
stricted set of achievable delay values. Additionally a MCF model
usually suffers from the huge amount of flow variables used al-
together leading to a slow and memory-intensive solving process.
Nevertheless solving these layered graph models turned out to be
very effective on certain classes of instances.

3. PATH FORMULATION

In this section we present a path based ILP formulation for the
RDCSTP which is a straightforward modification of the model
discussed by Gouveia et al. [8] for the spanning tree variant of
the RDCSTP. In our directed formulation we use arc set A con-
taining an arc (s, j) for each edge {s j} ∈ E incident to the root
node and two oppositely directed arcs (i, j), ( j, i) for all other
edges {i j} ∈ E, i, j 6= s. We further assume the edge cost and
delay functions to be defined on the set of arcs too, i.e. ci j = ce
and di j = de, ∀(i, j) ∈ A,e = {i j} ∈ E. The integer master prob-
lem (IMP) defined by (1)–(6) is based on variables xi j ∈ {0,1},
∀(i, j) ∈ A, which indicate arcs included in the directed solution.
We further use path variables λp ∈ {0,1}, ∀p∈P=

⋃
t∈T Pt , where

Pt ⊆ 2A is the set of feasible paths from the root node s to terminal
t. Each path is represented by its arc set. A path p ∈ Pt to termi-
nal t ∈ T is feasible if and only if it satisfies the delay bound, i.e.
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∑(i, j)∈p di j ≤ B. Variable λp is set to one if path p ∈ P is realized.

(IMP) min ∑
(i, j)∈A

ci jxi j (1)

s.t. ∑
p∈Pt

λp ≥ 1 ∀t ∈ T (2)

xi j− ∑
p∈Pt |(i, j)∈p

λp ≥ 0 ∀t ∈ T, ∀(i, j) ∈ A (3)

∑
(i, j)∈A

xi j ≤ 1 ∀ j ∈V (4)

xi j ∈ {0,1} ∀(i, j) ∈ A (5)
λp ∈ {0,1} ∀p ∈ P (6)

Since the number of feasible paths for each terminal t ∈ T and
thus the total number of variables in the model is in general ex-
ponentially large, we apply CG – see e.g. [9, 10] – to solve the
LP relaxation. We start with a small subset P̃t ⊆ Pt , ∀t ∈ T , of
path variables λp in the restricted master problem (RMP) where
the integrality conditions on arcs (5) and paths (6) are replaced by
(7) and (8), respectively. Further variables are added on demand
according to the solution of the pricing subproblem.

xi j ≥ 0 ∀(i, j) ∈ A (7)
λp ≥ 0 ∀p ∈ P (8)

Let µt ≥ 0, ∀t ∈ T , denote the dual variables associated to the
convexity constraints (2) and πt

i j ≥ 0, ∀t ∈ T , ∀(i, j) ∈ A, denote
the dual variables associated to the coupling constraints (3). Then
the pricing subproblem is defined as

(t∗, p∗) = argmint∈T,p∈Pt
−µt + ∑

(i, j)∈p
πt

i j. (9)

Hence we need to solve a resource constrained shortest path prob-
lem on a graph (V,A) with nonnegative arc costs πt

i j, ∀(i, j) ∈ A,
for each terminal t ∈ T . We solve each such problem in pseudo-
polynomial time O(B · |A|) using the dynamic programming based
algorithm from [8]. As long as path variables λp, p∈Pt , t ∈ T with
negative reduced costs c̄ =−µt +∑(i, j)∈p πt

i j exist, we need to add
at least one of them and resolve the RMP. This process is repeated
until no further variable with negative reduced costs exists.

In each iteration we add for each terminal t ∈ T multiple path vari-
ables using the approach from [8]: We consider all nodes v∈V that
are adjacent to terminal t and all delay bounds b = 0, . . . ,B− dvt
for which a path from s to v in conjunction with arc (v, t) is a fea-
sible path to t. In case a shortest path p to v of total delay b,
b = 0, . . . ,B− dvt , exists and p′ = p∪{(v, t)} yields negative re-
duced costs, the corresponding variable is added to the RMP.

4. COLUMN GENERATION STABILIZATION

It is well known that basic CG approaches typically suffer from
computational instabilities such as degeneracy or the tailing-off
effect [11] which often increase the needed computational effort
for solving them dramatically. Stabilization techniques to re-
duce the effects of these instabilities are usually classified into
problem specific approaches such as the usage of dual-optimal
inequalities [12, 13] and problem independent approaches, see
e.g. [14, 15]. The latter are often based on the concept of stability
centers and deviations from a current stability center are penal-
ized, e.g. by using piecewise linear penalty functions. Recently,
we showed how to significantly accelerate the CG process for a
survivable network design problem without modifying the RMP
by choosing alternative dual optimal solutions when solving the
pricing subproblem [16, 17, 18]. In the following we will adapt
this technique for the RDCSTP before we discuss an alternative
stabilization approach based on piecewise linear penalty functions.

4.1. Alternative Dual Optimal Solutions

Let γ j ≤ 0, ∀ j ∈ V , be the dual variables associated to constraints
(4) and P̃ =

⋃
t∈T P̃t denote the set of paths for which correspond-

ing variables have already been included in the RMP. Then the dual
of the RMP is given by (10)–(15).

max ∑
t∈T

µt + ∑
j∈V

γ j (10)

s.t. ∑
t∈T

πt
i j + γ j ≤ ci j ∀(i, j) ∈ A (11)

µt − ∑
(i, j)∈p

πt
i j ≤ 0 ∀t ∈ T, ∀p ∈ P̃t (12)

µt ≥ 0 ∀t ∈ T (13)

πt
i j ≥ 0 ∀t ∈ T, ∀(i, j) ∈ A (14)

γ j ≤ 0 ∀ j ∈V (15)

Let (µ∗,π∗,γ∗) denote the current dual solution computed by the
used LP solver when solving the RMP. It is easy to see that for
arcs A′ not part of any so far included path – i.e. A′ = {(i, j) ∈
A | @p ∈ P̃ : (i, j) ∈ p} – any values for the dual variables πi j are
optimal as long as ∑t∈T πt

i j
∗+ γ j

∗ ≤ ci j, ∀(i, j) ∈ A′, since they
do not occur in inequalities (12). Dual variable values πt

i j
∗, t ∈ T ,

may also be increased for arcs (i, j) ∈ A\A′ if inequalities (11) are
not binding. We conclude that any values πt

i j ≥ πt
i j
∗, ∀(i, j) ∈ A,

∀t ∈ T , are dual optimal if ∑t∈T πt
i j ≤ ∑t∈T πt

i j
∗+ δi j, ∀(i, j) ∈ A

holds, where δi j = ci j + |γ j| −∑t∈T πt
i j
∗, ∀(i, j) ∈ A. Note that

state-of-the-art LP solvers such as IBM CPLEX, which we use in
our implementation, usually choose minimal optimal dual variable
values, i.e. πt

i j
∗ = 0, ∀t ∈ T , ∀(i, j) ∈ A′.

On the contrary to most other stabilization approaches we do not
modify the RMP. Instead we aim to choose alternative dual op-
timal solutions which facilitate the generation of those path vari-
ables relevant for solving the LP relaxation of the IMP by increas-
ing the dual variable values used as arc costs in the pricing sub-
problem. Obviously, we can simply split the potential increase δi j
equally to all relevant dual variables, i.e. use alternative dual vari-
ables π̄t

i j = πt
i j
∗+ δi j

|T | , ∀t ∈ T , ∀(i, j) ∈ A. In our previous work
for a survivable network design problem [16, 17, 18], however, it
turned out to be beneficial to initially use different dual optimal
solutions, one for each terminal t, which finally converge towards
π̄t

i j, ∀t ∈ T , ∀(i, j) ∈ A. Hence, we consider two additional vari-
ants whose correspondingly used dual variables will be denoted as
π̃t

i j and π̂t
i j, ∀t ∈ T , ∀(i, j) ∈ A, respectively. Equation (16) defines

dual variable values π̃t ′
i j used in the pricing subproblem when con-

sidering terminal t ′ ∈ T . Parameter q ∈ N, 1≤ q≤ |T |, is initially
set to one and gradually incremented by max{1, |T |10 } in case no
negative reduced cost path has been found. After at most ten such
major steps π̃t ′

i j = π̄t ′
i j, for each terminal t ′. Thus, we can terminate

the CG process if q = |T | and no path variables have been added.

π̃t ′
i j =

{
πt

i j
∗+ δi j

q if t = t ′

πt
i j
∗ otherwise

,∀(i, j) ∈ A. (16)

Dual variable values π̂t
i j correspond to π̃t

i j except for the fact that
q is directly set to |T | once no new negative reduced cost path can
be found when using q = 1.

4.2. Piecewise Linear Stabilization

As mentioned above other successful stabilization techniques are
often based on penalizing deviations from a current stability cen-
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Figure 1: Piecewise linear dual penalty function g(π).

ter by adding piecewise linear penalty functions to the dual prob-
lem. Among these, especially five-piecewise linear function have
shown to frequently yield good results if all parameters are chosen
carefully; compare [19]. In our case, however, preliminary tests
with various settings and concrete parameter values showed that
due to a large number of relatively time consuming updates of the
stability center this concept does not seem to pay off. Since high
dual variable values facilitate the generation of good path variables
it is reasonable to penalize only small dual variable values. Hence
we use a modified version of the approach from [14] where in each
major iteration l ∈N, l ≥ 1, only dual variable values smaller than
the current stability center π(l) ∈ R|T |·|A|+ are penalized accord-

ing to vectors δ (l),γ(l) ∈ R|T |·|A|+ , see Figure 1. Let πt
i j
∗, ∀t ∈ T ,

∀(i, j) ∈ A, denote the dual variable values after the CG approach
on the penalized model at major iteration l terminates. If there ex-
ists at least one dual variable value in the penalized region – i.e. if
∃t ∈ T ∧ (i, j) ∈ A : πt

i j
∗ < δ t

i j
(l) – we need to update the stability

center according to the current dual solution – i.e. π(l+1) = π∗

– and correspondingly set δ (l+1) and γ(l+1) and continue the CG
process. As has been shown previously [14] this process, which
needs to be repeated until each dual variable value lies within an
unpenalized region, terminates yielding the LP relaxation value of
the IMP after finitely many steps.

According to preliminary tests, the following settings have been
chosen for our computational experiments. We set ε = 0.3 and
ζ = 1, the size of the inner trust region T (l) = π(l)−δ (l) = 1 while
π(l)− γ(l) = 5 ·T (l) for all dimensions, i.e. ∀t ∈ T , ∀(i, j) ∈ A. Let
A′ denote the set of arcs used by the paths included in the initial
model. We set πt

i j
(1) = πt

i j
∗+ δi j, ∀t ∈ T , ∀(i, j) ∈ A′, πt

i j
(1) =

πt
i j
∗+ δi j

|T | , ∀t ∈ T ,∀(i, j) /∈ A′.

5. COMPUTATIONAL RESULTS

All computational experiments have been performed on a single
core of a multi-core system consisting of Intel Xeon E5540 pro-
cessors with 2.53 GHz and 3 GB RAM per core. We used IBM
CPLEX 12.2 as LP solver and applied an absolute time limit of
10000 CPU-seconds to all experiments. All preprocessing meth-
ods mentioned in [6] are used to reduce the input graphs prior
to solving. To build an initial set of paths a simple construction
heuristic is applied on Steiner tree instances: the delay constrained
shortest paths to all terminal nodes are iteratively added to the tree
dissolving possible cycles. On instances where T = V \ {s} we
apply the Kruskal-based heuristic followed by a VND both in-
troduced in [5]. Tables (1) and (2) report average CPU-times in
seconds and needed iterations for different instance sets. In both
tables π∗ denotes the unstabilized CG approach, and π̄ , π̂ , and
π̃ refer to the three strategies discussed in Section 4.1 for using
alternative dual optimal solutions in the pricing subproblem. The
piecewise linear stabilization approach from Section 4.2 is denoted
by PL, LagG and CGG denote the Lagrangian and CG approach
from [8], respectively. The results of the latter two have, however,
been computed on a different hardware using an older CPLEX ver-
sion for the CG approach and are thus not directly comparable.

CPU time [s] Iterations
Set B LagG CGG π∗ π̄ π̂ π̃ PL CGG π∗ π̄ π̂ π̃ PL

r,100 100 493 4752 314 13 15 10 72 1041 189 25 39 92 115
150 639 8215 111 10 8 8 48 12561 357 26 42 98 144
200 288 10001 123 4 4 8 46 18736 904 28 41 102 238
250 526 10001 261 5 4 9 71 24881 1676 32 44 115 325

c,100 100 809 10026 38 10 9 12 78 480 176 31 44 96 171
150 544 10034 135 26 15 18 142 329 346 41 56 118 187
200 711 10061 1151 50 37 21 367 314 697 58 69 123 311
250 1066 10076 3779 43 27 25 500 327 2702 68 78 141 444

e,100 100 976 10033 481 90 75 25 598 239 208 40 64 115 307
150 1817 10106 3980 705 356 66 2927 193 364 52 84 138 403
200 2972 10096 9297 5148 2670 177 8607 209 397 92 123 172 459
250 4008 10104 10000 7013 3489 142 9090 195 357 98 160 203 339

r,1000 1000 971 8064 25 7 6 11 25 891 119 22 39 96 84
1500 1744 8538 112 12 10 16 60 4240 253 27 43 112 118
2000 869 10002 220 11 11 20 70 15600 716 28 42 114 125
2500 790 10007 535 14 12 20 89 18233 1527 34 48 124 156

c,1000 1000 668 8186 60 26 24 18 82 869 91 26 38 84 109
1500 942 10024 112 30 25 33 111 418 163 37 46 104 122
2000 2389 10037 788 68 57 34 235 451 401 36 58 109 188
2500 1256 10037 1272 70 44 48 425 437 953 53 62 122 261

e,1000 1000 2846 10065 137 52 34 25 474 615 129 34 56 107 165
1500 3041 10031 4540 711 378 71 2787 469 266 53 70 130 296
2000 5882 10083 8423 1814 897 134 6418 396 254 71 95 172 443
2500 5726 10070 10000 4583 2222 183 9468 385 176 88 136 181 439

Table 1: Results for instance sets from [8] consisting of five com-
plete graphs with 41 nodes, T =V \{s}, different graph structures
(r, c, e), delay ranges (100, 1000), and bounds B.

CPU time [s] Iterations
|T |
|V\{s}| B π∗ π̄ π̂ π̃ PL π∗ π̄ π̂ π̃ PL

0.3 30 19 6 6 10 36 143 30 36 92 84
50 139 15 16 23 55 413 41 50 124 102

100 2849 97 89 55 509 1345 44 55 149 194
0.7 30 77 29 29 34 171 142 32 46 93 198

50 727 112 107 80 1091 561 51 62 130 475
100 7942 819 923 253 7557 1361 79 92 182 958

1.0 30 213 77 62 67 630 184 34 54 98 797
50 1807 302 328 172 5769 614 56 81 142 2039

100 9615 2615 2196 837 10000 851 86 123 214 694

Table 2: Results for 30 randomly generated complete graphs with
|V | = 100, different sets of terminal nodes, delays and costs uni-
formly distributed in [1,99] and delay bounds B.

We conclude that all stabilization methods based on alternative
dual-optimal solutions lead to an enormous reduction of the nec-
essary CPU-time. While π̂ performs best for easier instances, π̃
clearly outperforms all other approaches on harder instances, i.e.
on those which generally need more time. Stabilization based on
piecewise linear penalty functions outperforms unstabilized CG in
the majority of cases, but is clearly not competitive to our three ap-
proaches based on alternative dual-optimal solutions. We further
observe that our unstabilized CG variant needs significantly less
iterations than the conceptually identical one discussed by Gou-
veia et al. [8]. We believe that next to a different CPLEX version,
these differences are mainly based on choosing a better set of ini-
tial path variables, more sophisticated graph preprocessing, and
the fact that we use the dual simplex algorithm which turned out to
perform better than the primal one in our case. Comparing the rel-
ative computational times of the Lagrangian approach from [8] to
their CG approach with the speed-up achieved by our stabilization
methods, we conclude that the proposed stabilized CG method also
outperforms this method. All approaches based on dual-optimal
solutions terminated before the time limit was met in all but one of
the experiments reported in Table 1, while both unstabilized CG
variants and the piecewise linear stabilization approach failed to
do so for a number of experiments.
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6. CONCLUSIONS & FUTURE WORK

In this paper we showed how to significantly accelerate a column
generation approach based on a path formulation for the RDC-
STP using alternative dual-optimal solutions in the pricing sub-
problem. We conclude that this method does further outperform
a stabilization method based on piecewise linear penalty functions
as well as a previously presented approach based on Lagrangian
relaxation [8]. We are currently extending the presented stabilized
column generation towards a branch-and-price approach in order
to compute proven optimal solutions to medium sized instances of
the RDCSTP. In future, we also plan to consider additional pricing
strategies – e.g. by restricting the total number of path variables to
be included in each pricing iteration – and want to compare our ap-
proach to further stabilization techniques such as e.g. interior point
stabilization [15]. Finally, we also want to study the impact of
choosing better initial columns computed by metaheuristics which
may lead to further significant speed-up as well as implement the
Lagrangian relaxation approach from [8] for a fair comparison.
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ABSTRACT

The performance of multi-user digital subscriber line (DSL) net-
works is limited by the electro-magnetic coupling between twisted
pair cables. The adverse effect of this coupling can be reduced
by controlling the transmit powers of all lines. The correspond-
ing multi-user, multi-carrier power control problem can be mod-
eled as a multi-dimensional nonlinear Knapsack problem which
has previously motivated the application of various mathematical
decomposition methods. These methods decompose the problem
into a large number of combinatorial per-subcarrier problems. Our
main contribution lies in the proposal and analysis of various low-
complexity heuristics for these combinatorial problems. We pro-
vide insights in the parameter setting as well as simulation results
on a large set of 6 and 30-user DSL scenarios. These show that
simple randomized greedy heuristics perform well even in case of
a very stringent complexity budget and that the heuristics’ average
suboptimality is dependent on the targeted data-rate.

Keywords: Power Control, DSL, Metaheuristics, Column Gen-
eration

1. MOTIVATION

Digital subscriber lines (DSL) are the most widely deployed broad-
band access technology today, with more than 320 million cus-
tomers world-wide in 2010 [1]. DSL systems suffer from the
electro-magnetic coupling between the twisted pair cables which
induces so called “far-end crosstalk” noise at the DSL receivers.
This in turn is the main limiting factor for the data-rate perfor-
mance of current DSL modems. Furthermore, today’s DSL sys-
tems are based on discrete multi-tone (DMT) modulation which
splits the available frequency bandwidth into independent subchan-
nels (“subcarriers”). We consider the problem of optimally con-
trolling the transmitted power levels on each of these subchannels
and hence the crosstalk noise as well as the conveyable total data-
rate. This problem is also fundamental in multi-carrier wireless
networks [2]. The classical objective is the maximization of a
weighted sum of data-rates. Recently this technique has also been
discovered useful for reducing the system power consumption in
DSL [3, 4]. Current state-of-the-art multi-carrier power control al-
gorithms for tens of subscriber lines are based on techniques such
as user-iterative power updates, dual relaxation of transmission
rate and sum-power constraints, as well as successive continuous
and convex approximation, cf. [3, 5, 6] and the references therein.
Dual relaxation results in the independent optimization of a large
number of per-subcarrier problems. The distinctive feature of the
nonlinear Dantzig-Wolfe decomposition [7, Ch. 23] based scheme

This work has been supported in parts by the Austrian Government
and the City of Vienna within the competence center program COMET.

in [8] is that it allows for the suboptimal solution of the indepen-
dent per-subcarrier problems.

Our main contribution is the proposal of various heuristics for
complexity reduction of solving the combinatorial per-subcarrier
optimization subproblems, thereby expanding upon the work in
[8]. We begin in Section 2 by reviewing the optimization prob-
lem of controlling the transmit power in DSL. In Section 3 we
then turn to the main focus of this paper, namely the combinatorial
per-subcarrier problems and various heuristics for their solution.
Section 4 gives an example of the heuristics’ performance when
applied in conjunction with the framework in [8] to solve the main
problem from Section 2. Our conclusions are summarized in Sec-
tion 5.

2. BACKGROUND - GLOBAL PROBLEM

We denote the index sets of users and subcarriers by U = {1, . . . ,U}
and C = {1, . . . ,C}, respectively, where U and C are the to-
tal number of users and subcarriers, respectively. The optimiza-
tion variables are the power levels pc

u of user u on subcarrier c,
where we will compactly write pc ∈RU

+ for the power allocation
of all users on subcarrier c. The data-rate of user u on subcar-
rier c is a nonlinear function rc

u (pc) [9] which notably depends
on the power allocation of all users on that subcarrier. Again, we
will compactly write rc(pc) ∈ RU to denote all users’ rates on
subcarrier c. Reversely, the power allocation pc(rc) for rates rc

can be computed as the unique [10] solution of a system of lin-
ear equations of size U ×U . Power levels are constrained by a
regulatory power mask constraint pc

u ≤ p̂c
u and the implicit con-

straint rc
u (pc) ∈B,∀u ∈U ,c ∈ C , motivated by practical modu-

lation schemes which only support a discrete set of data-rates B.
Altogether we may compactly write the set of feasible power allo-
cations on subcarrier c as

Qc = {pc|rc
u (p

c) ∈B, 0≤ pc
u ≤ p̂c

u,∀u ∈U }. (1)

Additional to these per-subcarrier constraints the U users have
minimum target-rates R ∈RU

+ dependent on the accepted service
level, as well as technology-dependent maximum sum-power lev-
els P ∈RU

+ . Our optimization objective is defined as the sum of
per-subcarrier objectives f̄c(pc, ŵ, w̆),c ∈ C . These are given as
the following weighted sum of users’ transmit powers and rates

f̄c(pc, ŵ, w̆) = ŵᵀpc− w̆ᵀrc(pc), ∀c ∈ C , (2)

where the weights ŵ, w̆ ∈ RU
+ allow us to trade-off between rate

and energy optimization, i.e., we can consider rate-maximization
and energy-minimization as special cases. We are now ready to
formally write the optimization problem for multi-user power con-
trol in DSL as the following multi-dimensional nonlinear Knap-
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sack problem [11]

minimize
pc∈Qc,∀c∈C ∑

c∈C
f̄c(pc, ŵ, w̆) (3a)

subject to ∑
c∈C

rc (pc) � R, (3b)

∑
c∈C

pc � P. (3c)

3. THE COMBINATORIAL SUBPROBLEM

3.1. Subproblem Formulation

After Lagrange relaxation of constraints (3b) and (3c), respec-
tively, one faces for each subcarrier c ∈ C an independent, non-
linear (and non-convex), wide-sense combinatorial [12, Sec. 4.4]
pricing subproblem in the form of [8]

minimize
{rc|pc(r)∈Qc}

fc(rc) = f̄c(pc(rc), ŵ+ννν , w̆+λλλ ), (4)

where ννν ,λλλ ∈ RU
+ are the Lagrange multipliers associated with

constraints (3b) and (3c), respectively, cf. [8] for details. Note that
for reasons of algorithm design we use the discrete vector rc as our
variables instead of the uniquely coupled power allocation pc used
above. In the following sections we study the solution of the sub-
problem in (4) and therefore omit subcarrier indices c for ease of
notation. The search space we consider is ×u∈U B, i.e., we only
search over discrete rate allocations and do not explicitly consider
the constraints in (4). An allocation r violating these constraints
has by definition an objective f (r) = ∞ and our algorithms thereby
never traverse infeasible allocations. As mentioned above, in or-
der to evaluate the objective f (r) and to determine feasibility we
need to solve a linear system of equations, cf. (1) and (4). Later we
will introduce the number of evaluations of p(r) as a reproducible
complexity measure to compare different algorithms.

The optimal solution of the problem in (4) was shown to have poly-
nomial complexity in [8]. However, obtaining optimal solutions
for practical values of U was found intractable for conventional
branch-and-bound schemes [8, 13]. Furthermore, the number of
these per-subcarrier problems is in the order of thousands in the
newest generations of DSL technology. This altogether motivates
our work on fast heuristics in the following sections.

3.2. Constructive Greedy Base Heuristics

In the full paper we review the greedy base heuristic as well as the
sequential greedy heuristic in [8] and provide an analysis of vari-
ous 6-user VDSL scenarios, cf. Section 3.5 for simulation details.
This analysis shows that the suboptimality of the base heuristic is
zero for all collocated network scenarios while the highest subop-
timality appears in classical near-far type of scenarios. This insight
will guide the parameter settings of randomized heuristics below.
Basically two approaches will be taken in the following to improve
upon purely greedy schemes, namely a) a randomization of greedy
decisions, and/or b) randomized local searches.

3.3. Local Search

Local search schemes aim at iteratively improving a given solu-
tion r. Their key ingredient is the definition of a neighborhood
N (r)⊆×u∈U B around r from which a next candidate allocation
is picked, cf. [14] for various examples of local search schemes.
Here we restrict ourselves to two possible neighborhood defini-

Name Abbr. Reference
Joint Greedy Optimization JOGO [8]

Sequential Greedy Optimization SEGO [8]
Local Search LS Section 3.3

Rollout Algorithm RA [15]
Greedy Rand. Adapt. Search Proc. GRASP [14, Ch. 8]

Iterated Local Search ILS [14, Ch. 11]
Simulated Annealing SA [14, Ch. 10]
Ant Colony System ACS [16]
Randomized SEGO rSEGO Section 3.4

Randomized LS rLS Section 3.4
Solver “Couenne” COU [17]

Optimal Branch-and-Bound OPT [8]

Table 1: Heuristics compared on the problem in (4).

tions: The first is a simple one-step neighborhood

N (1)(r) = {r̃ ∈ ×u∈U B | r̃u = ru±∆,
r̃i = ri,∀i ∈U \{u},u ∈U }, (5)

which contains all allocations r̃ that can be reached by perturbing
a single element of r by ∆. The second used neighborhood is

N (2)(r) =N (1)(r)∪ ¯N (2)(r), (6)

¯N (2)(r) ={r̃ ∈ ×u∈U B | r̃u = ru±∆, r̃ū = rū±∆,
r̃i = ri,∀i ∈U \{u, ū},u 6= ū,u, ū ∈U }, (7)

which contains all allocations r̃ that can be reached by perturb-
ing at most two different elements of r by ∆. Furthermore, two
neighborhood search strategies are considered, namely the “first-
improving” and the “best-improving” search strategy, cf. [14, Ch.
8].

3.4. Heuristics Inspired by Meta-Heuristics

In the full paper we will present detailed descriptions of various
heuristics for the bit-loading problem in (4) which are partly in-
spired by well-known meta-heuristics, cf. the overview of all stud-
ied algorithms in Table 1. Rollout algorithms and rSEGO/ant colony
system algorithms are deterministic and randomized sequential de-
cision making algorithms, respectively. GRASP is an extension of
the greedy base heuristic using randomization, while iterated local
search, randomized local search, as well as simulated annealing
are randomized local search schemes.

3.5. Methodology, Simulations and Discussion

In order to be able to compare to optimal schemes as in [8] we
restrict ourselves in this section to U = 6 users. We construct
our network scenarios using a set of specified line lengths L =
{200,400,600,800}m, considering all U-combinations with rep-
etitions. For example, for U = 6 this results in

m =

(
|L |+U−1

U

)
= 84, (8)

generated network scenarios. Note that this allows us to identify
scenarios where the given algorithms perform badly. Such scenar-
ios were used to initially set the algorithmic parameters. Based
on these settings various parameter changes were selected and the
impact on the average performance studied by Monte-Carlo simu-
lation. As in [8] we use equal Lagrange multipliers λu,νu, for all
u ∈ U . For setting the parameters of the heuristics we chose La-
grange multipliers λu = 1,νu = 0 and weights w̆u = 0, ŵu = 1/U ,
which leads to a maximum sum-rate in our 6-user scenarios [8].
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Figure 1: Average suboptimality of randomized heuristics in 6-
user VDSL scenarios; a) Dependency on the complexity budget;
b) Dependency on Lagrange multipliers λu = λ ,∀u ∈U .

We further make the practical assumption that there is a restriction
in simulation time for solving the subproblems in (4). However, in
order to make our results reproducible we will use the number of
power evaluations p(r) by solving a linear system of equations [9]
as the stopping criterion of all considered heuristics. Note that this
metric also includes evaluations of infeasible allocations, cf. the
discussion in Section 3.1. Simulation results provided in the full
paper further motivate this complexity metric as it was found to
preserve the comparability among different heuristics. While for
six users we were able to compute the optimum of the problem in
(4), for a higher number of users we either compare to the greedy
base heuristic JOGO due to its simplicity, or to a lower bound be-
ing the optimal objective of a discrete, convex problem relaxation,
cf. [8, Alg. 5] for an analytic solution with O(U) complexity. We
find that this lower bound gives a low gap to the optimal objective
when the Lagrange multipliers λλλ (and therefore the users’ rates)
are low. Simulations were carried out using our DSL simulator
available in [18] and using common parameters as in [8].

We investigated the solution quality of all presented heuristics for
solving the subproblems in (4) in a VDSL system with 1635 sub-
carriers, where for the comparisons in this section we only se-
lect a subset of subcarriers C̃ = 1,51, . . . ,1601. As a benchmark
for all our algorithms we use “Couenne” [17], a free branch-and-
bound based solver for non-convex mixed-integer problems. As a
base-line for our stochastic heuristics we added a randomized local
search (rLS) scheme where the LS algorithm is reinitialized at ran-
dom starting points r uniformly drawn from ×u∈U B. In the full
paper we provide the specific parameter settings and the intuitions
behind these settings for all heuristics described in Section 3.4.
Figure 1(a) depicts the average suboptimality of all randomized
heuristics as a function of the complexity budget in various 6-user
VDSL network scenarios. Intuitively, allowing the algorithms to
test more solutions leads on average to a better performance. ACS
performs best in these test scenarios, where its curve stops at 103

as it is optimal on the simulated points beyond that. Note that rLS
eventually performs better than ILS and SA, which hints at insuf-
ficient diversification capabilities of these two schemes. Figure
1(b) similarly shows, for fixed complexity budget of 103 evalua-
tions, the dependency of the heuristics’ average suboptimality on

Heuristics

Dantzig-Wolfe
Master Problem

Combination
Heuristic

Per-Subcarrier
Subproblems

Solution

Figure 2: Framework [8] for applying heuristics in DSL.

the Lagrange multipliers λu = λ ,∀u ∈ U , and hence on the tar-
geted transmission rate as the average rate per user increases with
these multipliers. JOGO, which is used as an initial incumbent for
all schemes, was found to have a monotonously increasing subop-
timality with λ . Also, the optimal rates do not change in most sce-
narios above λ = 10−2. Differently to JOGO, all heuristics show
a peak suboptimality for a specific multiplier value, however, at
different values for different heuristics. Intuitively this can be ex-
plained by the fact that with increasing λ what matters most is the
total number of bits achieved by all users. Then it matters less
how the bits are distributed among the users as this distribution
only influences the power consumption which has a comparably
low weight in the objective for high λ . In 30-user VDSL scenarios
with a complexity limit of 2 ·104 power evaluations per subcarrier
problem and using the same parameter settings for all algorithms
as above the picture is very different. The randomized heuristics
GRASP, rSEGO and ILS perform now best, with an improvement
upon the objective values achieved by the greedy base heuristic by
on average 9.9%, 9.8%, and 9.2%, respectively. Note however
that the simple deterministic extension of the greedy constructive
heuristic by a two-step local search improves the greedy heuristic
already by on average 8% while taking on average only 0.4 · 104

power evaluations. Notably, the maximum improvement in sum-
objective over all 33 tested subcarriers encountered in any tested
network scenario was as high as 32%. Further insights in the per-
formance of all heuristics in Table 1 for 6 and 30-user VDSL sce-
narios will be given in the full version of this paper.

4. PERFORMANCE EVALUATION FOR DSL

The purpose of this section is to provide evidence of the practical
usefulness of the proposed approach based on heuristics. As these
only target the subproblems in (4) we exemplarily apply the heuris-
tic rSEGO in conjunction with the complexity reduction technique
in [19] and the column generation framework in [8], cf. Figure 2.
The algorithm consisting of these techniques is compared to state-
of-the-art multi-carrier power control algorithms [5, 20]. When
using the dual relaxation based, iterative spectrum balancing algo-
rithm (ISB) in [5] we subsequently use the greedy central discrete
bit-loading algorithm (CDBL) in [20] to obtain a discrete feasible
solution. As an example of the DSL performance we consider a
sum-rate maximization problem in a near-far downstream scenario
with 50 collocated users, where 40 lines connect to the central of-
fice at a distance of 800m and 10 lines connect to a closer remote
cabinet at 200m distance. Compared to CDBL we obtain a 2.1%
sum-rate increase, or more importantly an 8.3% sum-rate increase
for the lines connected to the central office. Comparing to ISB our
results show an 8.2% increase in total sum-rate and a 12.3% in-
crease in sum-rate for the lines connected to the central office. The
full paper will provide simulation settings and extensive average
performance and complexity comparisons.
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5. CONCLUSIONS

We studied the application of various heuristics to a combinatorial,
non-convex power allocation problem in digital subscriber lines
(DSL). Parameter setting for various 6−user DSL scenarios al-
lowed to obtain near-optimal results using several of the proposed
randomized heuristics. Under various 30−user scenarios extend-
ing the greedy constructive heuristic by a proposed local search
scheme gave already substantial improvements at low complex-
ity. Randomized heuristics still gave slight improvements beyond
that for moderate complexity limits. Summarizing, the proposed
heuristics have shown an average gain in objective value compared
to the greedy constructive heuristic of up to 10%.
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ABSTRACT

Given a capacitated telecommunications network with single path
routing and an estimated traffic demand matrix, the network load
balancing problem is the determination of a routing path for each
traffic commodity such that the network load balancing is opti-
mized, i.e., the worst case link load is minimized, among all such
solutions, the second worst case link load is minimized, and so
on... We discuss a meta-heuristic which runs a GRASP with Path
Relinking procedure on a restricted search space defined by Col-
umn Generation. We discuss some computational results showing
that, for the network load balancing problem, this approach is suc-
cessful in obtaining good quality solutions in short running times.

Keywords: Load Balancing, GRASP with Path Relinking, Col-
umn Generation, Hybrid Meta-Heuristics

1. META-HEURISTIC PROPOSAL

Greedy Randomized Adaptive Search Procedure (GRASP) is a
meta-heuristic first introduced for the set covering problem [1].
It is a multi-start local search method where, at each start, a so-
lution is randomly generated (with some greediness) and local
search is applied to it to find its closest local minimum solution
(in a minimization problem). Path Relinking (PR), originally pro-
posed as an intensification method applied to tabu search [2], is
a method that tries to find better solutions by the combination of
two initial solutions. The common combination of GRASP with
PR (GRASP+PR) is to run PR at the end of each GRASP iteration
between its local minimum solution and one solution randomly se-
lected from a given list of elite solutions (please see [3] for a sur-
vey on many applications where GRASP with Path Relinking has
been applied). The key idea of our approach is to run GRASP+PR
on a restricted search space instead of running it on the complete
solution space of the problem. The restricted search space aims to
make the search more efficient provided that it contains good qual-
ity solutions. To manage the restricted search space, we use Col-
umn Generation (CG): the initial restricted search space is com-
posed by the columns generated by CG solving the LP relaxation
of the original problem; then, during the search, the restricted
search space is modified by including new columns and/or ex-
cluding existing columns. New columns are generated by CG
solving a perturbed problem which is defined based on the cur-
rent incumbent solution of the GRASP+PR and on the LP value

of the original problem. This meta-heuristic may be seen as an
implementation of the general framework for combining CG and
meta-heuristics entitled SearchCol (Meta-heuristic search by col-
umn generation) [4].

2. NETWORK LOAD BALANCING OPTIMIZATION

Consider a telecommunications network modeled on a graph G(N,A)
where N is the set of network nodes and A is the set of network
links connecting nodes. The link between nodes i ∈ N and j ∈ N
is denoted by {i, j} and each link {i, j} ∈ A has a given capacity
c{i j}. Consider a set of commodities K, where each commodity
k ∈ K is to be routed through a single path on the network and is
characterized by its origin node ok ∈N, its destination node dk ∈N
and its demand bk > 0.

Let Pk be the set of paths available on graph G between the end
nodes of k ∈ K and let δ pk

{i j} be a binary parameter that is 1 if link
{i, j} ∈A is in the path p∈Pk. To model the optimization problem,
we consider the following decision variables: the binary variables
ϕ p

k which are 1 if path p ∈ Pk is chosen as the routing path of
commodity k ∈ K; and the real variables µ{i j} accounting for the
load on link {i, j} ∈ A. The following set of constraints defines the
complete solution space:

lll ∑
p∈Pk

ϕ p
k = 1 ∀k ∈ K (1)

∑
k∈K

∑
p∈Pk

bkδ pk
{i j}ϕ

p
k = c{i j}µ{i j} ∀{i, j} ∈ A (2)

φ p
k ∈ {0,1}, µ{i j} ∈ [0,1] (3)

Constraints (1) guarantee that exactly one path of Pk is chosen for
each k ∈ K, constraints (2) account for the loads on each link, and
constraints (3) are the domain constraints. The load balancing op-
timization problem uses the concept of lexicographical optimiza-
tion. Given two vectors a=(a1, ...,am) and b=(b1, ...,bm), vector
a is lexicographically is said to be smaller than vector b if either
a1 < b1 or there exists an index l ∈ {1, ...,m−1} such that ai = bi
for all i ∈ l and al + 1 < bl + 1. Now consider the vector of link
loads µ = (µ{i j} : {i, j} ∈ A) and let [µ] be the vector obtained
from by rearranging its elements in a non-increasing order. The
load balancing optimization problem can be defined in a non-linear
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manner as:

llllexmin [µ] (4)
Subject to

(1)− (3)

where lexmin denotes the lexicographical minimization of [µ],
i.e., finding a vector [µ∗] which is lexicographically minimal among
all possible vectors [µ]. It is known that the solution of the load
balancing optimization problem can be obtained by solving a se-
quence of mixed integer linear programming models. One such
method is the conditional means approach (for details, please see
[5-6]). The use of CG to solve the LP relaxation if this sequence
of models is straightforward since constraints (1) define a sub-
problem for each commodity k ∈ K whose solutions are paths. For
this reason, CG is usually named Path Generation and the columns
generated by CG for the subproblem associated to commodity k
represent paths between its end nodes ok and dk in graph G.

3. EFFICIENCY OF THE PROPOSED META-HEURISTIC

The network load balancing problem was addressed in [7], where
GRASP+PR was applied to the restricted search space given by the
columns generated by CG solving the LP relaxation of the prob-
lem. In that approach, the restricted search space is not modified
during the search and PR is done only between the local minimum
solution of each GRASP iteration and the incumbent solution (i.e,
the elite list is composed by a single solution). That approach was
compared to the equivalent GRASP+PR applied to the complete
solution space of the load balancing problem. The computational
results showed that the constrained search space gives much better
results because it contains good quality solutions and, due to its
size, enables to find them in much shorter running times.

In order to test our meta-heuristic, we have defined a set of 24
instances based on the well known network topology of the NSF
network with 26 nodes and 42 links. In all test instances, we have
randomly generated a demand matrix with the aim of emulating
different possible real scenarios.

In terms of PR, the computational results show that: (i) the use of
an elite list does not provide significant improvements when PR is
done only with one randomly selected elite solution; (ii) there is a
significant improvement if PR is done to each of all elite solutions
provided that the list size is not too large and the elite solutions are
quite different; (iii) forward and backward PR was the best strategy
in terms of heuristic efficiency.

Since the proposed method is a stochastic process, it gives differ-

ent solutions in different runs. In order to generate useful data for
comparison analysis, we have adopted the following methodology.
Whenever we aim to compare two algorithms, we run both algo-
rithms 10 times, giving the same runtime to each, and compare
each pair of solutions. Then, we sum the number of times the sec-
ond algorithm was better than the first algorithm. We average these
numbers over the set of test instances of interest and calculate, in
percentage, how many runs produce better results with the second
algorithm when compared with the first one.

Globally, the best algorithm exhibits an efficiency performance im-
provement of 94.1% when compared to running GRASP+PR with
no restricted search space modifications, showing that our meta-
heuristic is far better than the simplest one exploited in [7].
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ABSTRACT

A 0–1 nonlinear model for the Collision Avoidance in Air Traffic
Management (ATM) problem is presented. The aim of this prob-
lem is deciding the best strategy for an arbitrary aircraft configu-
rations such that all conflicts in the airspace are avoided where a
conflict is the loss of the minimum safety distance that two aircraft
have to keep in their flight plans. A mixed 0–1 nonlinear optimiza-
tion model based on geometric constructions is developed know-
ing the initial flight plan (coordinates, angles and velocities in each
time period) and minimizing the acceleration variations where air-
craft are forced to return to the original flight plan when no aircraft
are in conflict. A linear approximation by using iteratively Taylor
polynomials is developed to solve the problem in linear terms, as
well as a metaheuristic based on Variable Neigbourhood Search
(VNS) in order to reduce the resolution time.

Keywords: Air Traffic Management (ATM), Collision avoidance,
Mixed 0-1 nonlinear optimization

1. INTRODUCTION

Aircraft conflict detection and resolution is currently attracting the
interest of many air transportation service providers and is con-
cerned with the following question: Given a set of airborne aircraft
and their intended trajectories, what control strategy should be fol-
lowed by the pilots and the air traffic service provider to prevent
the aircraft from coming too close to each other?

Several approaches can be found in the literature, where different
works tackle the problem from different points of view. In Kuchar
and Yang (2000) [1] can be found several approaches until 2000.
However, the developments from thereafter are very interesting.
Some of the most important works can be found in Martín-Campo
(2010) [2].

The organization of the remainder of the note is as follows. First,
Section 2 presents the problem description. Section 3 introduces
the notation of the elements of the problem. Section 4 presents
the mixed 0–1 nonlinear model. Section 5 gives the main ideas
of the iterative procedure for problem solving as well the VNDS
metaheuristic scheme. Section 6 shows the main computational
results and, finally, section 7 concludes.

2. PROBLEM DESCRIPTION

A 0–1 nonlinear constrained model is developed by using the ge-
ometric and theoretical ideas from the Velocity Changes problem
(VC) presented in Pallottino et al. (2002) [3] and the Velocity and
Altitude Changes problem (VAC) presented in Alonso-Ayuso et al.
(2010) [4] and Martín-Campo (2010) [2]. The VC and VAC mod-
els assume instantaneous changes in velocity to avoid a conflict. In
the new model, so-called VCTP (Velocity Changes through Time

Periods), continuous velocity changes are proposed by using the
properties of a rectilinear movement and uniformly accelerating
movement. The VCTP model can also assume nonlinear trajec-
tories by considering the polygonal (in each time period) of the
trajectory.

The model suppose that the preliminary trajectories of F aircraft
are known and it can be extracted the aircraft configurations in
T fixed time points. In these points the velocity and the position
(abscissa and ordinate) of each aircraft in each point and the mo-
tion angles between two points are known. With these data we
construct a new model for obtaining the optimal configuration by
changing the aircraft accelerations and avoiding all conflicts be-
tween the aircraft.

3. NOTATION

Let the following notation for the formulation of the model:

Sets

F = {1, . . . ,F}, set of aircraft in the airspace.

T = {0, . . . ,T}, set of time periods.

Parameters

s, safety distance between aircraft, usually, 2.5 nautical miles.

e, distance bound to consider as a conflicting pair of aircraft.

w1,w2, weight (between 0 and 1) for each objective function term.

div, integer parameter greater than 1 to be considered for the bounds
of some variables.

For all t ∈T :

It , length of the time period between times instants t−1 and t.

For all f ∈F and t ∈T :

x∗tf ,y
∗t
f , initial configuration of position, abscissa and ordinate, for

aircraft f in time period t, respectively.

d∗tf , covered distance for aircraft f during time period t in the ini-
tial configuration.

v∗tf , initial velocity configuration for aircraft f in time period t.

a∗tf , initial acceleration configuration for aircraft f in time period
t.

rt
f , safety radius for each aircraft f in time period t, usually 2.5

nautical miles (nm).

vt
f ,v

t
f , minimum and maximum velocities allowed for aircraft f

in time period t, respectively.

at
f ,a

t
f , minimum and accelerations allowed for aircraft f in time

period t, respectively.
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m∗tf , direction of motion in (−π,π] for aircraft f in time period t.

x̂t
f , ŷ

t
f , position parameters to be updated in the Taylor approxi-

mation for aircraft f in time period t.

d̂t
f , distance parameter to be updated in the Taylor approximation

for aircraft f in time period t.

v̂t
f , velocity parameter to be updated in the Taylor approximation

for aircraft f in time period t.

ca+
f t ,c

a−
f t , costs for positive and negative acceleration changes for
aircraft f in time period t, respectively.

cv
f t , costs for the difference between the initial and optimal veloc-

ity configuration for aircraft f in time period t.

cd
f t , costs for the difference between the initial and optimal cov-

ered distance for aircraft f in time period t.

For all f ∈F :

x
∗td

f
f ,y

∗td
f

f ,x
∗tr

f
f ,y

∗tr
f

f , departure and arrival positions (abscissa and
ordinate) for aircraft f .

dtot
f , total length of the polygonal of the trajectory for aircraft f .

td
f , t

r
f , scheduled departure and arrival times for flight f .

Data preprocessing

For all f ∈F and t ∈T :

xt
f ,y

t
f ,d

t
f , upper bounds for variables x, y and d, respectively.

xt
f ,y

t
f , lower bounds for variables x and y, respectively.

For all i, j ∈F : i < j, for all t ∈T :
t =
{

max{td
i , t

d
j }+1, . . . ,min{tr

i , t
r
j}−1

}
:

f ct
i j, 0–1 parameter that detects if there is a “false conflict” be-

tween aircraft i and j in time period t.

pt
i j, 0–1 parameter that will be 1 if the pair of aircraft i and j

will not be taken into account in time period t for conflict
resolution. This parameter depends on the criterion decided
by the ATC. Notice that this parameter will be 1 if f ct

i j = 1.

ipi jt , intersection point between the straight line trajectories of the
corresponding polygonal segment for time period t for air-
craft i and j, if the trajectories are not parallel o coincident.

d1
i jt , distance between the i aircraft position and ipi jt in time pe-

riod t.

d2
i jt , distance between points

(
xt

i + cos(m∗ti ),yt
i + sin(m∗ti )

)
and

ipi jt for aircraft i and j in time period t.

Variables

For all f ∈F and for all t ∈T :

xt
f ,y

t
f , the position (abscissa and ordinate) of aircraft f in time

period t, for f ∈F and t ∈T , respectively.

at
f , acceleration variation for aircraft f in time period t, for f ∈F

and t ∈ T . This variable is real and can be divided in two
positive variables, say, at+

f and at−
f , such that at

f = at+
f −

at−
f as a traditional way in LP.

at+
f , positive acceleration variation for aircraft f in time period t,

for f ∈F and t ∈T .

at−
f , negative acceleration variation for aircraft f in time period t,

for f ∈F and t ∈T .

vt
f , velocity for aircraft f in time period t, for f ∈F and t ∈T .

dt
f , covered distance for aircraft f during time period t, for f ∈F

and t ∈T .

γ1
f t ,γ

2
f t ,γ

3
f t ,γ

4
f t ,γ

t
f auxiliary 0–1 variables to model the case of

early or delay for aircraft f in time period t, for f ∈ F
and t ∈T .

For all i, j ∈F : i < j, for all t ∈T :
t =
{

max{td
i , t

d
j }+1, . . . ,min{tr

i , t
r
j}−1

}
and n = 1, . . . ,8:

δ n
i jt , auxiliary 0–1 variables for modeling the or-constraints.

4. MIXED 0–1 NONLINEAR MODEL

Now, the full formulation for the VCTP model is presented below,
including all the aspects that have been studied above.

minw1 ∑
f∈F

∑
t∈T

( ca+
f t at+

f

at
f −at

f
+

ca−
f t at−

f

at
f −at

f

)
+w2 ∑

f∈F
∑

t∈T
cd

f t β
t
f (1)

subject to ∀ f ∈F ,∀t ∈T : t = {td
f +1, . . . , tr

f }

vt
f 6 vt−1

f +at
f It 6 vt

f (2a)

at
f 6 at

f 6 at
f (2b)

∀ f ∈F ,∀t ∈T : t = {td
f +1, . . . , tr

f }

dt
f = vt−1

f It +
1
2
(at+

f −at−
f )I2

t (3)

∀i, j ∈F : i < j∧ pi j = 0,∀t ∈T : t =
{

max{td
i , t

d
j }+1, . . . ,min{tr

i , t
r
j}−1

}

vt
i
(

cos(m∗ti )(1− pct
i j)− sin(m∗ti )pct

i j
)
−

vt
j
(

cos(m∗tj )(1− pct
i j)− sin(m∗tj )pct

i j
)
6 (vt

i + vt
j)(1−δ 1

i jt ) (4a)

− vt
i
(
ht

i(1− pct
i j)+h

′t
i pct

i j
)
+ vt

j
(
ht

j(1− pct
i j)+h

′t
j pct

i j
)
6

((
vt

i |ht
i |+ vt

j |ht
j |
)
(1− pct

i j)+
(
vt

i |h
′t
i |+ vt

j |h
′t
j |
)

pct
i j

)
(1−δ 1

i jt ) (4b)

vt
i
(

cos(m∗ti )(1− pct
i j)− sin(m∗ti )pct

i j
)
−

vt
j
(

cos(m∗tj )(1− pct
i j)− sin(m∗tj )pct

i j
)
6 (vt

i + vt
j)(1−δ 2

i jt ) (4c)

vt
i
(
kt

i (1− pct
i j)+ k

′t
i pct

i j
)
− vt

j
(
kt

j(1− pct
i j)+ k

′t
j pct

i j
)
6

((
vt

i |kt
i |+ vt

j |kt
j |
)
(1− pct

i j)+
(
vt

i |k
′t
i |+ vt

j |k
′t
j |
)

pct
i j

)
(1−δ 2

i jt ) (4d)

− vt
i
(

cos(m∗ti )(1− pct
i j)− sin(m∗ti )pct

i j
)
+

vt
j
(

cos(m∗tj )(1− pct
i j)− sin(m∗tj )pct

i j
)
6 (vt

i + vt
j)(1−δ 3

i jt ) (4e)

vt
i
(
ht

i(1− pct
i j)+h

′t
i pct

i j
)
− vt

j
(
ht

j(1− pct
i j)+h

′t
j pct

i j
)
6

((
vt

i |ht
i |+ vt

j |ht
j |
)
(1− pct

i j)+
(
vt

i |h
′t
i |+ vt

j |h
′t
j |
)

pct
i j

)
(1−δ 3

i jt ) (4f)

− vt
i
(

cos(m∗ti )(1− pct
i j)− sin(m∗ti )pct

i j
)
+

vt
j
(

cos(m∗tj )(1− pct
i j)− sin(m∗tj )pct

i j
)
6 (vt

i + vt
j)(1−δ 4

i jt ) (4g)

− vt
i
(
kt

i (1− pct
i j)+ k

′t
i pct

i j
)
+ vt

j
(
kt

j(1− pct
i j)+ k

′t
j pct

i j
)
6

((
vt

i |kt
i |+ vt

j |kt
j |
)
(1− pct

i j)+
(
vt

i |k
′t
i |+ vt

j |k
′t
j |
)

pct
i j

)
(1−δ 4

i jt ) (4h)

δ 1
i jt +δ 2

i jt +δ 3
i jt +δ 4

i jt = 1 (4i)

∀ f ∈F ,∀t ∈T : t = {td
f +1, . . . , tr

f }
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t

∑̀
=1

d`
f −

t

∑̀
=1

d∗`f 6
d∗tf

div
γ t

f (5a)

t

∑̀
=1

d`
f −

t

∑̀
=1

d∗`f − ε > (−
d∗tf

div
− ε)(1− γ t

f ) (5b)

xt
f − x∗tf −

( t

∑̀
=1

d`
f −

t

∑̀
=1

d∗`f
)

cos(mt
f )6 (xt

f − x∗tf +
d∗tf

div
)(1− γ t

f ) (5c)

xt
f − x∗tf −

( t

∑̀
=1

d`
f −

t

∑̀
=1

d∗`f
)

cos(m∗tf )> (xt
f − x∗tf −

d∗tf

div
)(1− γ t

f ) (5d)

yt
f − y∗tf −

( t

∑̀
=1

d`
f −

t

∑̀
=1

d∗`f
)

sin(m∗tf )6 (yt
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The objective function (1) gives the optimization criterion for the
model. It has two terms, one for minimizing the sum of the abso-
lute values of the accelerations and the other one for forcing air-
craft to return to the initial configuration, where the values of the
w1 and w2 emphasizes one term over the other. If the second term
of the objective function is contemplated, it must be accompanied
by constraints (6). Constraints (2) avoid the velocity and the ac-
celeration to be bigger or smaller than the upper or lower bound,
respectively. Constraints (3) update the covered distance by an air-
craft after the changes in its configuration in time period t ∈ T .
Constraints (4) detect and solve the conflicts in the airspace. The

next terms are nonlinear ones:
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Constraints (5) update the positions in each time period t ∈T , ac-
cording to the previous changes in velocity made until the current
time period. Constraints (6) transform the second term of the ob-
jective function in a linear function, since it minimizes an absolute
value between the covered distances in the initial flight plan and
the covered distances in the resolution. Constraints (7) force some
variables to be into fixed bounds, in order to calculate the big M in
the position projection constraints. Finally, constraints (8) give the
variables’ type. See [2] and the full version of the paper [5] for a
detailed explanation.

5. ALGORITHMIC APPROACH

For solving iteratively the linearized model, the algorithmic ap-
proach described in Almiñana et al. (2007) [6] in a different con-
text inspires the work presented in this paper. It is based on a
iterative optimization by starting with the initial configuration and
updating the input parameters where the derivatives are centered
until a stop criterion is satisfied.

First, the nonlinear constraints have to be linearized by using Tay-
lor polynomials, so the new mathematical expression for each in-
equality (n = 1, . . . ,4) can be expressed as follows,
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The algorithm for the resolution is presented below:

Step 1. Computing the values of the nonlinear constraints ∀i, j ∈
F : i < j and ∀ f ∈F , such that vt

i ,v
t
j,x

t
i ,x

t
j,y

t
i ,y

t
j are re-

placed with v̂t
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t
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t
j, respectively. In the first it-

eration, v̂t
i = v∗ti , v̂t

j = v∗tj , x̂
t
i = x∗ti , x̂t

j = x∗tj , ŷ
t
i = y∗ti , ŷt

j =

y∗tj , d̂
t
f .

Step 2. Solving the mixed zero-one model, where the nonlinear
constraints are substituted by its linear approximation. Let
dt

f be the optimal values of the respective variables.

Step 3. Optimality test. If the following condition is satisfied then
stop, the quasi-optimal solution has been obtained. Other-
wise, go to Step 4.

∑
f∈F

∑
t∈T

(dt
f − d̂t

f )
2 ≤ ε

where ε is a positive tolerance.
Step 4. Updating the covered distance, the acceleration, the veloc-

ity and the positions and go to Step 1.

See [2] and [5] for a detailed explanation.
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Now, the linearized model can be solved by using the optimiza-
tion engine of choice for mixed 0–1 linear models. Unfortunately,
the resolution time for large-scale instances could be very big due
to the exponential complexity of the Branch and Bound (B&B)
schemes in MILP.

In view of the situation, one alternative consists of implementing a
metaheuristic scheme able to get a good solution in an affordable
time. The characteristics of this problem make the optimality to
be aside, being the feasibility of the solution the first goal. The
scheme of choice has been published by Lazić et al. (2010) [7], so
called “Variable Neighbourhood Decomposition Search” (VNDS).

6. COMPUTATIONAL RESULTS

For comparison purposes of the VNDS solution quality, Table 1
shows the objective function values by plain use of the engine
CPLEX [8] for optimizing the VCTP model according to the scheme
presented in section 5 and, independently, by using the VNDS
scheme for a large testbed, where the headings are as follows:

• Case: Case configuration: C-AAA denotes number of air-
craft (AAA) in conflict.

• zip: Optimal solution by using the exact algorithm.

• zV NDS: Best solution obtained by using VNDS.

• GAPV NDS: zV NDS−zip
zV NDS

%

• tip: Time (secs.) to obtain the zip value.

• tV NDS: Best time (secs.) to obtain the best solution by using
VNDS.

Table 1 shows the small GAP between the optimal solution ob-
tained by the above exact algorithm and the best solution obtained
by the VNDS scheme. The resolution times are notably shorter by
using the metaheuristic scheme instead of the exact one. See [2],
[5] and [9] for an extensive computational experience.

7. CONCLUSIONS

A mixed 0–1 nonlinear optimization model has been presented in
order to solve the collision avoidance for the ATM problem. Due
to four hard nonlinear constraints, the model has been linearized by
using iteratively Taylor polynomials approximations since no op-
timization engine to solve mixed integer nonlinear models could
solve the problem, as we know. Solving the model by successive
mixed 0–1 linear approximations could require a non affordable
time. However, a metaheuristic based on VNS has been imple-
mented, getting good solutions (GAP less than 1%) in short time.
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able neighbourhood decomposition search for 0-1 mixed in-
teger programs,” Computers & Operations Research, vol. 37,
pp. 1055–1067, 2010.

[8] IBM ILOG, CPLEX v12.1. User’s Manual for CPLEX, 2009.

[9] A. Alonso-Ayuso, L. F. Escudero, and F. J. Martín-
Campo, “Variable neighbourhood decomposition search for
the mixed 0-1 nonlinear collision avoidance problem,” To be
submitted, 2011.

ALIO-EURO 2011 – 263



Proc. of the VII ALIO–EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4–6, 2011

Low Energy Scheduling with Power Heterogeneous Multiprocessor Systems

Richard Dobson ∗ Kathleen Steinhöfel ∗

∗ King’s College London,
Department of Informatics

{richard.dobson, kathleen.steinhofel}@kcl.ac.uk

ABSTRACT

In this paper we consider low energy scheduling for power hetero-
geneous multiprocessor systems. This is a fast developing area that
is of great importance and is currently being researched by both in-
dustry and academia. This problem is of great importance because
real life multiprocessor computer systems are often heterogeneous
at run time. We have developed an algorithm which transforms
any multiprocessor system into a Virtual Single Processor (VSP).
Using our VSP platform, existing techniques can be explored for
low energy scheduling for heterogeneous multiprocessor schedul-
ing. In this study we focus on applying algorithms which minimise
∑Flow + Energy in conjunction with our VSP approach. ∑Flow +
Energy have been shown to be very useful in real life situations.

Keywords: Virtual Single Processor, Dynamic Speed Scaling, En-
ergy, Heterogeneous Multiprocessor Systems, Low Energy Schedul-
ing

1. INTRODUCTION

Energy consumption is an important consideration when designing
computer systems; especially when for use as a mobile device such
as a smart phone, which needs to provide both high performance
and good battery life. One of the largest drains of energy in a
computer system is the processor(s). In most modern processors
energy consumption and processing speed are intrinsically linked,
this is normally through the relationship Power = Speeda where
a is a constant which differs between processors but is typically
between 2 and 3. A good way of reducing the amount of energy
a processor uses is to lower the operational speed, for this we use
Dynamic Speed Scaling (DSS).

DSS allows the operating frequency of a processor to be modified
at runtime. This means that we do not have to run the processor at
maximum speed and waste energy when demand is low. DSS is a
tool which enables the speed of the processor(s) to be lowered but
we need to combine this with an objective function which controls
how much the processors should be slowed down by. This is by
no means a trivial task as we need to ensure that energy is not
needlessly wasted processing jobs too quickly; but we also need
to ensure that jobs are completed by at time such that they are not
compromising the operation of the computer system or the user
experience.

Multiprocessor computer systems have become increasingly com-
mon in the past few years with the most common of these being
homogeneous multiprocessor systems; where all processors are
equal. The general consensus between academics and industry
is that the way forward is heterogeneous multiprocessor systems;
where processors are not all equal. Heterogeneous multiproces-
sor systems are often favourable over homogeneous options due to

Research partially supported by EPSRC Grant No. EP/G501483/1 and
Nokia Ltd.

their flexibility. They can have many low powered processors for
low priority tasks or if the demand is low and a collection of high
powered processors to deal with high priority jobs or to relive pres-
sure if there is a large amount of jobs. This structure has the po-
tential to provide much greater performance for the user and con-
sume considerably less energy than an equivalent homogeneous
system. We also often find that a homogeneous multiprocessor
system which implements DSS is heterogeneous at run time.

We address the problem of trying to combine DSS with a hetero-
geneous multiprocessor system to provide a high level of perfor-
mance and energy efficiency.

1.1. Related Work

Yao et. al. [9] presented a solution which assumed all jobs have a
hard deadline, the processor is then ran at a speed such that all jobs
are processed before their deadlines. Job deadlines do not always
solicit a feasible schedule unless we allow the maximum speed of
the processor to be infinite or we restrict the set of incoming jobs.

Some years later Albers and Fujiwara [1] presented an alternative
solution which does not rely on deadlines but attempts to balance
the quality of service against power consumption. The authors
attempt to minimise ∑Flow+Energy, this balances the two con-
flicting values of Energy against ∑Flow where the Flow of each
job is the time between it’s release and completion. This means
that there is always a feasible solution without the need to have
infinite speed processors or restricted job sets. The best algorithm
for this problem has been developed by Andrew et al [2] and ob-
tains a competitive ratio of (2+ ε). Andrew et al also show that
there exists some trade off functions for which no algorithm can
be better than (2)Competitive.

Lam et al extended existing knowledge of single processor F+E
algorithms to the homogeneous multiprocessor situation in their
paper [7]. The authors looked at the online problem and sug-
gested an algorithm Classified Round Robin (CRR) where jobs are
distributed fairly evenly between all processors using a weighted
round robin; individual processors are then left to manage their
own speed using a single processor F+E minimisation algorithm.
Less than a year later Lam et al released [8] which presents a
slightly improved version of the algorithm.

Most recently Gupta et al [5] developed an algorithm for hetero-
geneous multiprocessor systems. They approached the problem
(which was formalised by Bower et al [4]) in a similar way to Lam
et al has approached the homogeneous multiprocessor problem.
Instead of distributing jobs as evenly as possible they aim to dis-
tribute jobs to the processor which will provide the least increase
in ∑weighted flow. The algorithm is outlined below.

1. Job Selection (which job should be ran on each processor):
Highest Density First

2. Speed Scaling (what speed should each processor run at):
The speed is set so the power is the fractional weight of the
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unfinished jobs

3. Assignment (which processor should each job be assigned
to): A new job is assigned to the processor that results in
the least increase in the projected future weighted flow, as-
suming the adopted speed scaling and job selection policies,
and ignoring the possibility of jobs arriving in the future

In the paper the authors prove this algorithm to be "scalable for
scheduling jobs on a heterogeneous multiprocessor with arbitrary
power functions to minimize the objective function of weighted
flow plus energy".

2. LOW ENERGY SCHEDULING FOR
HETEROGENEOUS MULTIPROCESSOR SYSTEMS

In [5] the authors present a solution for power heterogeneous mul-
tiprocessor systems using weighted Flow + Energy as their objec-
tive function. This solution has been shown to be theoretically
sound for the model which they use. If we consider a real life
multiprocessor computer system we often find that there are con-
straints which are applied to the processors. For example many
multi-core processors require the cores to always run at the same
speed. The Gupta et. al approach is not compatible with this situ-
ation as the processor speed is linked to the number of jobs.

The Gupta et al algorithm also requires a large amount of runtime
computation. Each time a job needs to be assigned to a processor it
must find out which processor will provide the smallest increase in
the weighted flow. This requires a small amount of processing for
just one job but over time this could potentially add up to a large
amount of computation. We present a solution that has the ability
to overcome both of these issues.

Our solution suggests that we should form a ’Virtual Single Pro-
cessor’ (VSP). The VSP is essentially a collection of processors
which have been combined together in an efficient way to form
what appears to be a single processor. We then present the VSP (as
a single processor) to a DSS algorithm which controls the speed of
the overall VSP and specifies which job should be processed first.
The VSP in turn translates the overall VSP speed into speeds for
each processor which when combined equal the VSP speed.

3. THE VIRTUAL SINGLE PROCESSOR

We begin by defining the term ’system speed’, that is the com-
bined processing power of all processors. We wish to use the least
amount of energy possible for any system speed. To achieve this
we control the processor speed at system level and allow the pro-
cessors to request a new job when they have completed their cur-
rent job.

We consider an example of a 4 processor system (P0, P1, P2, P3)
where each processor has a finite set of speeds and a simple power
function in the form of P = Sa, the attributes of which are outlined
below.

• P0 (0, 200,300,400, 500) a=2.3

• P1 (0, 600, 700,800,900) a=2.35

• P2 (0, 100, 300, 500, 700, 900) a=2.5

• P3 (0, 1200) a=2.2

We define a combination to be a set of processing speeds (one for
each processor); each combination has a system speed which is the
sum of the individual speeds. For example {200,600,100,1200} is
a valid combination with a system speed of 2100. This means it
can process 2100 cycles worth of work per second. In the simple

Figure 1: A graph showing the relationship between system speed
and power consumption for the best case and worst case processor
combinations.
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Figure 2: A graph showing the relationship between system speed
and power consumption including energy spikes and optimal sys-
tem speeds marked by dots

system outlined above there are 300 unique combinations many of
these provide the same system speed. For example there are 14
different combinations which make up the overall system speed of
1400 alone.

If we consider the worst and best ways of achieving the system
speed of 1400 (with regards to energy) we find that the worst case
uses 487% of the energy consumed by the most efficient combina-
tion. If we look at Figure 1 we can see the difference between the
most and least energy is largest in mid range speeds with the graph
converging at either end of the system speed range. This simple
example highlights how crucial it is to make the correct processor
speed selections and this is where the VSP method stems from.

The VSP method pre-computes the optimal processor combination
such that no other combination of processors provides the same
system speed but uses less energy. To find out which combina-
tions are best we first compute all processor combinations, these
are then ordered by system speed. We then compare all of the com-
binations with the same system speed and discard all apart from the
combination with the lowest energy usage. Now we have the list
of optimal combinations for each system speed although this is not
always good enough.

Using a technique from [3] we can ’simulate’ any speed between 0
and Smax by alternating between two speeds in different ratios. For
example if we wanted to simulate the processor speed of 4 with a
single processor which can only operate at either speed 3 or speed
5 we could run the processor for half the time at 3 and half the time
at 5. This would average out at speed 4. We can use this method
to ensure that we are always using the optimal amount of energy at
all times. Figure 2 shows how we can use this technique to lower
the overall energy consumption of the system for some speeds.

The VSP essentially provides a level of abstraction between the
single processor algorithm and the multiprocessor system. This
abstraction allows us to hide the complexity of the multiprocessor
system behind the VSP front. We can hide complex requirements
by computing a sub VSP where all processor combinations adhere
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to the requirements of the system. For example if two cores must
always operate at identical speed then we only accept combina-
tions where this is the case. We then feed this sub VSP into the
overall VSP as if it were a processor.

By computing the VSP we can also remove the burden of calcu-
lating which processor is best for each job as in [5]. This is made
possible as the VSP hides the fact that more processors exist and
only assigns jobs when a processor has a speed greater than 0 and
no job. This means that there is no need for the algorithm to per-
form costly calculations at run time.

3.1. Formal Description

We first define U to be a set of processing units where each pro-
cessor Ux has two properties UxS which is the set of valid process-
ing speeds (which may or may not contain simulated speeds) and
UxP(s) which is a function which given an input of a valid speed s
returns e the energy used per second by this speed.

To transform individual processors into a VSP we first combine the
processors to form a set of all possible combinations C = U0S×
U1S....×Un−1S where n is the total number of processing units.
We define each combination Ci to have 2 functions CiE which is
the energy consumption of all processors used in the combination
and CiS which is the overall speed of all processors in the combi-
nation. We then remove inefficient combinations to leave a stream-
lined collection of efficient processor combinations.

We define C′ to be a new set which contains only the combinations
which adhere to the following rules.

∀aCa ∈C′iff
∀bCaE ≤CbE where CaS =CbS
and
¬∃Cc ∈C′ where CcS =CaS

(1)

To form the VSP (V0) we need to extract the available speeds and
the power function from C′.

V0S = {C′0S, ...,C′nS}
∀V0P(V0Sa) =C′aE (2)

There is one final step we must perform to ensure optimal VSP
performance; we must remove speeds which are not efficient.

∀0<x<nV0P(V0Sx)<




((
V0Sx−V0Sx−1

V0Sx+1−V0Sx−1

)
×V0P(V0Sx+1)

)

+((
1−
(

V0Sx−V0Sx−1
V0Sx+1−V0Sx−1

))
×V0P(V0Sx−1)

)




(3)

4. USING THE VIRTUAL SINGLE PROCESSOR

Once we have constructed our VSP three things are needed before
it can be used: a job selection policy, a speed scaling policy and to
know whether the computer system will allow jobs to migrate be-
tween processors or not. The third point is crucial to job selection
and processor speed changes so we will discuss these two options
separately.

4.1. Migratory

Incoming jobs are sorted according to their ranking as judged by
the job selection policy. The job with the highest ranking from all
jobs which have not yet finished processing is always assigned to
the fastest processor, the second highest ranking with the second

fastest processor and so on. Jobs are interrupted and replaced such
the first criteria is always true. This makes sure that jobs with
high priorities always finish quickly. The speed scaling policy is
used in conjunction with the system power function to determine
what speed our system should operate at, this is then translated into
individual processor speeds by the VSP. If a processor is directed
to use speed 0 then the job it is currently processing is suspended
and returned to the list of incoming jobs.

4.2. Non Migratory

Once again the incoming jobs are sorted according to their ranking
as judged by the job selection policy but we also keep a note of 2
things for each processor, how much time is required to finish the
current job being processed if the processor speed stays constant
PiT and what the current speed of the processor is PiSc. We then
calculate which processor will allow the highest priority job to fin-
ish first providing processor speeds stay constant and the second
highest to finish second and so on. Jobs are then assigned to the
’correct’ processors when they become available. When the speed
scaling algorithm decides that the system speed should change the
VSP converts this into individual processor speed changes; if the
speed of a processor should raise then this happens straight away,
if the speed of a processor should drop this action is taken after
the processor has finished processing the current job. This ensures
that no job is trapped on a processor which has a speed 0 as this
could result in the job never being finished.

5. VSP SYSTEM ANALYSIS

It is important that we do not see the VSP as a complete scheduling
algorithm. It is a platform which allows scheduling algorithms
to be applied to or developed for heterogeneous multiprocessor
system more easily. In this section we compare the VSP platform
combined with the Gupta et al speed scaling algorithm to the Gupta
et al approach to show that the VSP is a strong alternative solution.

We first consider a batch of tasks arriving at over time so that
we can compare how each approach will deal with these. The
Gupta approach will sort the jobs by their density and then cal-
culate which processor will provide the least increase in projected
flow for each job, the job is assigned to this processor. Each pro-
cessor will calculate what speed it should be running at based on
the fractional weighted flow of it’s work. The VSP approach will
sort the jobs by their density and then calculate what the speed of
the VSP should be. The VSP will then instruct the processors what
speed they should be running at. Jobs are assigned to a processor
if it’s speed is greater than 0 and it does not already have a job.
Jobs with higher priorities will be assigned to faster processors.

The VSP approach has allowed us to remove the majority of the
computation from run time; this is possible because we pre-compute
the processor configurations. Once we have the processor config-
urations all we have to do at run time is look up the desired system
speed based on the quantity of work and implement the indicated
processor speeds. Job distribution is then simplified to putting the
highest density job on the fastest processor. This indicates that
in real life situations the VSP approach could save a considerable
amount of effort at run time over the Gupta et al approach.

5.1. Simulations

To test the overall performance of the VSP system we developed
simulations of both approaches and ran a number of tests with a
variety of processor configurations and job sets. In this section we
will highlight the tests regarding a processor configuration outlined
in [6]. The suggested processor configuration has x high powered
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Figure 3: A graph showing the average results from the simula-
tions and the average results with outliers removed

processors, 2x medium powered processors and 4x high powered
processors.

We use the processor configuration from [6] where x = 1. 1 ×
High speed processor: s = {0,1000,2000}a = 2.8, 2 × medium
speed processors: s = {0,250,500,750,1000}a = 2.55, 4 × low
speed processor: s = {0,50,100,150,200,250}a = 2.25. We split
the test data into 3 different categories all of which contain jobs
with random weights and sizes:

• Immediate; all jobs are all released at time 0

• Uniformly random; jobs are released randomly over time
up to time x

• Peaks and troughs; jobs are released in surges which are
similar to the action of a computer system up to time x

Covering these categories gives us a good indication of overall sys-
tem performance.

After running our simulations we found some very interesting re-
sults. We report the values below in terms of VSP performance
in comparison to the Gupta et. al. algorithm. Upon extracting
the data from the simulations we found that there were some jobs
which were severely throwing the average finish time for both the
VSP and Gupta algorithms. The few jobs which have been re-
moved have both a very low weight and a very large size. After
removing these we recalculate the averages and have reported this
in Figure 3.

The results prove to be very interesting. They show us that the VSP
platform is very promising; this has allowed us to combine the
Gupta et. al. algorithm with the VSP platform and achieve very
competitive results. Although the energy consumption is larger,
the ∑Flow + Energy is lower. This is the aim of the algorithm, to
minimise the ∑Flow + Energy so this has been very successful.

6. CONCLUSION

In this paper we present the Virtual Single Processor approach
to low energy scheduling for power heterogeneous multiprocessor
computer systems. We show that the VSP approach is theoretically
sound and can be used with existing technologies soliciting strong
results. In future papers we hope to expand this area by looking
at variations of the VSP system that are split into sub VSPs some
that are designed to handle large / sequential jobs and others for
smaller parallel jobs.
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ABSTRACT

As traffic congestion during rush hours is a growing problem for
most cities, there is an increasing need for more effective man-
aging traffic signal control and traffic assignment systems. We
present here a new adaptive system based on a linear program-
ming model for the signal control problem, having as objective
to minimize the total length of the queues of cars waiting at each
corner. The model is intended to be fed with traffic information
provided by real-time sensors installed at each intersection. In or-
der to compare the performance of our program with that of the
current scheduling designed by the transit office of Buenos Aires
city, we used a traffic simulation system and real traffic flow data
of a pilot area of the city. Preliminary results are very promising.

Keywords: Urban traffic control, Adaptive signal control, Signal
timing optimization, Linear programming

1. INTRODUCTION

Traffic signal control are systems for synchronizing the timing of
any number of traffic signals in a certain area.Despite the research
done in the field of urban traffic control systems since around five
decades, there is still an increasing need for more effective manag-
ing of traffic control systems. None of the proposals we were able
to found in the literature solves the complete optimization prob-
lem for big urban areas. As this is a very difficult problem authors
handle only part of the problem, or propose hierarchical models
that divide the problem in parts that are addressed independently.
Some studies focus on small regions or in a single intersection.

Main decisions in signal control strategies at urban areas include
determining the duration of the complete cycle and the duration of
green lights at each direction of every intersection. Several math-
ematical and computational approaches have been proposed, most
of them based on heuristics. Existing exact models for traffic sig-
nal control are very limited in scope but they are useful for pro-
viding insight into the problem and examining the performance of
heuristics.

Most of the currently implemented traffic control systems may be
grouped into three principal categories:

• Fixed time strategies, that are derived off-line by use of
codes based on historical data.

• Traffic-responsive strategies make use of real-time measure-
ments to calculate in real time the suitable signal settings.

• Predictive strategies are based on off-line and on-line infor-
mation.

It is no possible to survey here all the work done in this vast re-
search area, so we will mention only a few selected references.
A review on traffic control strategies can be found at [1]. Also
Cheng et al.[2], Dotoli et al. [3] and Wey[4] present an overview
of available traffic control methods.

Some of the approaches are already implemented in real life while
other reflect work still at the research and development stage.
Among the commercial systems we can mention TRANSYT [5]
which was first developed by Robertson [5] and was substantially
improved later. It uses historical information and computes sig-
nal control schemes off-line. SCOOT [6, 7] includes a network
model that is fed with real data and is run repeatedly to investigate
the effect of incremental changes of splits, offsets and cycle times.
Changes are implemented if they show to be beneficial. RODHES
[8], PRODYN [9] and OPAC [10] developed more rigorous model-
based traffic responsive strategies. RODHES and PRODYN solve
in real time optimization problems employing dynamic program-
ming and OPAC employs exhaustive enumeration. So the three of
them are real-time feasible for only one intersection and they end
with a decentralized optimal strategies coordinated heuristically by
a superior layer. In TUC [11, 12] a store-and-forward strategy is
implemented. The main idea is to simplify the model in order to
be able to describe the traffic flow process without using discrete
variables. The optimization part of the system requires to solve a
quadratic programming problem.

Wey [4] presents an integer linear model for the network wide sig-
nal optimization problem and a modification of the network sim-
plex algorithm to solve it. The proposal is tested in a five inter-
sections area and compared with exact solution to the MIP. Lo
[13] models the traffic flow conditions using a cell transmission
model (CTM) based in hydrodynamic concepts. The resulting
model for the dynamic signal-control problem is a mixed-integer
linear programming program. A two intersections network is used
to demonstrate applicability of the formulation. Lin and Wang
[14] propose an enhanced 0-1 formulation based also on the CTM
model. Also He et al. [15] propose heuristics based on the linear
relaxation of the model for solving CTM based MIP formulations.
They tested the approach on examples of one or two intersections.

Barisone et al. [16] propose an elaborated real-time nonlinear op-
timization model. They report having successfully tested it in a
urban area of Genova consisting of 18 links. Dotoli et al. [3] mod-
ify this model to take into account the presence of pedestrians, dif-
ferent levels of traffic consgetion, vehicle classification, etc. Their
case study is an area of two consecutive intersections with heavy
traffic. Cheng et al.[2] presents a parallel algorithm for the prob-
lem of finding optimal coordinate signal timing plans for a large
area based on game theory. They test their algorithm in a real area
of 75 intersections, and they claim that using a thousand CPUŽs
they found a signal planning in less than 10 minutes. Aboudu-
las et al.[17] propose a methodology based on store-and-forward
traffic model, mathematical optimization and optimal control for
real-time signal control in congested large-scale urban traffic net-
works.

In [18] authors describe a genetic algorithm applied to the coor-
dination of signals in an urban network based on real-time traffic
information. They evaluate they approach on a 12 intersections
area, using the CORSIM traffic simulation software, and report
that they reduce average delay times in a 15%. There are sev-
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eral other heuristics approaches developing algorithms based on
genetic algorithms, ant colony optimization, Markov processes or
neural networks.

Systems already implemented in real life can be evaluated through
the improvement of traffic conditions in cities or areas were they
are installed. Other approaches are difficult to compare between
them, as they show results in different small real or generated ad-
hoc case studies.

Our goal was to develop an automatic system that determines in
real-time the cycles of the traffic signals in a region of the city,
based on information provided by sensors installed at each up-
stream corner. The system is continuously fed with information
provided by these sensors. Based on the results of the optimiza-
tion, the planning is automatically modified.

Optimization is done by means of a linear programming model
having as objective to minimize the total length of the queues of
cars waiting at each corner. Part of our model was derived from
some of the equations of the pioneer Robertson model for the pla-
toon dispersion ([5], see also [4]). This model represents vehicles
moving in platoons that flow from one corner to the other till they
are out of the area . We adapted the equations describing the num-
ber of vehicles waiting at the queues, but equations relating neigh-
bor intersections are not included in our model. We also added
constraints that bind the red and green lights at each intersection.
Bounds that prevent sudden changes on the length of the cycles
and the green lights, are also defined.

Several cycles of the traffic signals are considered at each run of
the optimization program.

2. MODEL FORMULATION

In this section we define the variables, parameters and constraints
and we describe the LP model in detail. We consider an area that
consists of a set N = {1 . . .N} of intersections. At each inter-
sections there is a variable number of J(n) directions from which
traffic flow arrives, so there are J(n) signals that have to be regu-
lated.

A cycle of the traffic signal is the sum of the lasting times of the
green and "not green" phases. The temporal horizon of the model
is a predetermined number of complete cycles of the signals H =
{1 . . .H}. The optimization program is run with the information of
the last H cycles. When new data is received from the sensors the
oldest cycle is discarded. Each phase (green and "not green") of
the cycle is partitioned in identical sets I = {1 . . . I} of time inter-
vals. The decision variables are the duration of each cycle at each
corner and the duration of the green lights at each direction. The
model implicitly calculates an offset that represents the beginning
of each cycle related to an arbitrary initial time.

We need to distinguish which are the cycles starting in green and
which are those starting in red, so we define

RS = {(n, j)/cycle at (n,j) starts in red}.
As there are several types of intersections in a city, we need to
provide the following definitions. Let JV R(n, j) be the set of di-
rections related to the intersection n, for which its greens lights
do not overlap and jointly define the time when light of direction
(n, j) is red. The simplest and more typical situation is an inter-
section with two crossing directions j and k. In this case we have
JV R(n, j) = {k} and JV R(n,k) = { j} and if (n, j) ∈ RS, we will
have to force Rh

n, j = V h
n,k; otherwise, Rh+1

n, j = V h
n,k. Analogously,

let JVV (n, j) be the set of directions related to the intersection n
in which green light times do not overlap and jointly define the
time when light (n, j) is green. Here a typical situation is related
to the two opposite directions in a two way street, which are usu-

ally in green simultaneously. Let us note that JVV (n, j) can be an
empty set for some j, but j have to belong to some JV R(n,k) or
JVV (n,k) for another direction k. Finally, let JRR(n, j) be a set
of directions related to the intersection n, in which red light times
are non overlapped and jointly define the time when light of (n, j)
direction is red.

2.1. Variables

Variables related to time are:

• V h
n, j: length of the green at intersection n ∈ N , direction

j ∈ J(N) and cycle h ∈H

• Rh
n, j: length of “not green” at intersection n ∈N , direction

j ∈ J(N) and cycle h ∈H (n, j)

Then Ch
n = Rh

n, j +V h
n, j for any direction ( j,n) ∈ RS, is the total

length of cycle h ∈H at intersection n ∈N . If (n, j) ∈ RS, vari-
able Rh+1

n, j appears instead of R1
n, j at the model. We define for each

(n, j) the set of indexes h, H (n, j), to represent these situations.

Variables related to number of vehicles are:

• LV h,i
n, j : queue length during green light at intersection n ∈

N , direction j ∈ J(n), cycle h ∈H and interval i ∈I

• LRh,i
n, j: queue length during red ("not green") light at inter-

section n ∈N , direction j ∈ J(n), cycle h ∈H (n, j) and
interval i ∈I

• Qh,i
n, j: outcoming flow of vehicles at intersection n ∈ N ,

direction j ∈ J(n), cycle h ∈H and interval i ∈I .

All variables of the model are allowed to take non integer values.

2.2. Coefficients

• As interval lasting Rh,i
n, j is a result of the optimization, ÊRh,i

n, j
is an estimation of the information that should be given by
sensors at direction j intersection n, cycle h, interval i dur-
ing red light. This estimation is based on values obtained
from the sensors after executing the planning obtained from
the last run of the model.

• ÊV h,i
n, j is the same estimation for green lights.

• CIn, j represents the length of the queue at the beginning of
the period to be optimized.

• Sn, j is the flow capacity of a street section (in number of
cars).

• α is a positive parameter of the objective function.

2.3. The model

The linear programming formulation we propose is the following:

min
N

∑
n=1

J(n)

∑
j=1

H

∑
h=1

I

∑
i=1

LRh,i
n, j +LV h,i

n, j −αQh,i
n, j

subject to the following constraints ∀n ∈N , j ∈ J(n):

ALIO-EURO 2011 – 269



Proc. of the VII ALIO–EURO – Workshop on Applied Combinatorial Optimization, Porto, Portugal, May 4–6, 2011

LRh,1
n, j = LV h−1,I

n, j +
ÊRh,1

n, j

I
Rh

n, j ∀h ∈H (n, j),h≥ 2 (1)

LV h,1
n, j = LRh,I

n, j +
ÊV h,1

n, j

I
V h

n, j−Qh,1
n, j ∀h ∈H ∩H (n, j) (2)

LRh,i
n, j = LRh,i−1

n, j +
ÊRh,i

n, j

I
Rh

n, j ∀h ∈H (n, j), i ∈ {2 . . . I}
(3)

LV h,i
n, j = LV h,i−1

n, j +
ÊV h,i

n, j

I
V h

n, j−Qh,i
n, j ∀h ∈H , i ∈ {2 . . . I} (4)

LV 1,1
n, j =CIn, j +

ÊV 1,1
n, j

I
V 1

n, j−Q1,1
n, j ∀ (n, j) /∈ RS (5)

LR1,1
n, j =CIn, j +

ÊR1,1
n, j

I
R1

n, j ∀ (n, j) ∈ RS (6)

Qh,i
n, j ≤

Sn, j

I
V h

n, j (7)

−δV ≤V h
n, j−V h−1

n, j ≤ δV (8)

−δR ≤ Rh
n, j−Rh−1

n, j ≤ δR (9)

VMin ≤V h
n, j ≤VMax (10)

RMin ≤ Rh
n, j ≤ RMax (11)

Rh
n, j = ∑

k∈JV R(n, j)
V h

n,k ∀h ∈H , (n, j) ∈ RS (12)

Rh
n, j = ∑

k∈JV R(n, j)
V h−1

n,k ∀h ∈H (n, j), (n, j) /∈ RS (13)

V h
n, j = ∑

k∈JVV (n, j)
V h

n,k ∀h ∈H (14)

Rh
n, j = ∑

k∈JRR(n, j)
Rh

n,k ∀h ∈H (n, j) (15)

V h
n, j, Rh

n, j, LRh,i
n, j, LV h,i

n, j , Qh,i
n, j ≥ 0 (16)

The objective is to minimize the sum of the queue lengths and to
maximize the car flow in the area. α is a parameter of the model
included to force the car outgoing flow at each corner, in order to
make equation (7) as tight as possible.

Constraints (1) to (6) define the new queue lengths for every inter-
val by adding to the previous length the car arrivals and subtracting
the outgoing flow of vehicles. These equations are inspired in part
of the Robertson model. However, instead of using information of
neighbor intersections, arrivals are computed multiplying estima-
tions of number of arriving cars per second by the length of the
interval. Constraints (1) and (2) define the length of the queues for
intervals i = 1, which is the first time interval for the current light
color. Constraints (3) and (4) compute the length of the queue in
contiguous intervals corresponding to the same light color. Finally,
(5) and (6) set initial values of the queues.

Constraint (7) sets a bound, based on street capacity, for the out-
going flow from direction j at intersection n. Constraints (8) and
(9) impose smoothness in the changes of light schedules, which is
very important, not only for safety, but also to guarantee the quality

of estimators ÊRh,i
n, j and ÊV h,i

n, j . (10) and (11) are bounds on light
duration and constraints (12) to (15) establish the necessary coor-
dination among traffic lights in different directions at each corner.
Depending on each intersection structure, some of the equations
(12) to (15) can be redundant. For the sake of clarity, we chose
to write the model as above instead of using a more complicated
notation that could have avoid redundancy in all cases.

3. EXPERIMENTAL RESULTS

Solution was implemented as a C library that takes care of commu-
nication between hub, sensors and signals and calls the LP solver.
The hub sends sensors information to the library and receives next
planing for every semaphore.

As the sensors have not been installed yet, we tested our model by
means of a microscopic traffic simulation software package TSIS-
CORSIM [19](Figure 1).

Figure 1: Adaptive System Scheme

In order to compare the performance of our program with the cur-
rent scheduling designed by experts from the transit office of Buenos
Aires city, we used real traffic flow data of a pilot area of the city
(7 intersections, some one direction streets, some avenues).(Figure
2) We have tested our model in eight different scenarios obtained

Figure 2: Pilot area

varying green lights lower bounds and traffic flow rates.

Preliminary results show that our optimization tool outperforms
the current system reducing the average queue length in 4,17% at
rush hours. Also on tests with 50% and 25% of the current traffic
flow, an improvement of 16,49% and 32.72o% respectively, was
obtained. Beside this we have tried with the following alternate
flow: 150% of rush hour flow in N and E direction and 66% in the
S and W. Results of experiments with green lights lower bounds of
30 sec. can be seen at (Figure 3).

Parameters used to perform the tests were: α = 0.033, H = 2, I =
5, CIn, j taking values from simulation using current lights plan and
Sn, j = 2 for every (n, j) except for those corresponding to Vernet
Avenue, in which case the value is 4 since the other streets has 2
lanes and Vernet has 4.
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Figure 3: Preliminary results

4. CONCLUSIONS

We developed an adaptive system based on a linear programming
model for the synchronization of traffic signals at an urban area.
The system gets real-time traffic information from sensors installed
at each intersection. According to the results of the optimization
the system will automatically coordinate traffic lights duration in
an area of the city. Preliminary results show that this proposal can
be integrated on an efficient tool for traffic congestion manage-
ment. As the optimization is done by means of an LP program (no
integer variables), computational times are affordable in the frame
of a real time system. This is the main advantage of our proposal.
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