INTRODUCTORY ECONOMETRICS

3rd year LE & LADE LESSON 4

Dr Javier Fernández-Macho

etpfemaj@ehu.es

Dpt. of Econometrics & Statistics

UPV-EHU

4.1 Dummy Variables. Definition and use in the GLRM.

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 167/191

1 QV with 2 categories

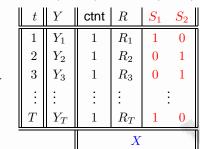
$$\begin{array}{ccc} \text{Consumption} = & f([\text{ctnt}], & \text{income}, \\ & \downarrow & \downarrow & \downarrow \\ & Y_t & & [1] & R_t \end{array}$$

sex)

M F

$$S_{1t}=\mathcal{I}(t\in M)$$
 $S_{2t}=\mathcal{I}(t\in F)$

	t	Y	ctnt	R	S
	1	Y_1	1	R_1	M
	2	Y_2	1	R_2	F
Sample:	3	Y_3	1	R_3	F
	:	:	:	:	:
	T	Y_T	1	R_T	M
				<i>X</i> ?	



In principle: substitute QV by

as many DVs as categories we have.

Dummy Variables: Definition

- Qualitative explanatory var \leadsto subsamples T_1, T_2, \ldots according to category or characteristics
- examples:
 - pure qualitative vars:
 - individual diffs: sex, race, civil state, etc.
 - time diffs: season, war/peace, etc.
 - spatial diffs: countries, A.C.'s, urban/rural, etc.
 - quantitative vars by sections: income, age, etc.
- Recall: we cannot use qualitative vars...

then substitute by dummy vars...

■ Def. of Dummy Variable:

$$D_{jt} = \left\{ egin{array}{ll} 1, & ext{if } t \in ext{category } j \in \ 0, & ext{otherwise.} \end{array}
ight.$$

$$\Rightarrow D_{jt} = \mathcal{I}(t \in T_j)$$

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 168/191

Dummy Var Trap: 1 qualitative var

- Model: $Y_t = \beta_0 + \beta_1 R_t + \gamma_1 S_{1t} + \gamma_2 S_{2t} + u_t$
- Problem (DV trap):

$$X$$
 is a $(T\times 4)$ matrix, but

$$S_1 + S_2 = [1]$$
 (exact l.c.) $\Rightarrow \operatorname{rk}(X) = 3 < 4$ (i.e. perfect MC)

- $\Rightarrow \det(X'X) = 0 \\ \Rightarrow (X'X)^{-1} \text{ doesn't exist!! and} \\ \widehat{\beta} \text{ cannot be calculated!!}$
- General Solution: eliminate ONE of the col's causing the problem: [1] or S_1 or S_2 .
- (POSSIBLE Solution: eliminate intercept...but...

© J Fernández (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 169/191 © J Fernández (EA3-UPV/EHU), June 15, 2008

Solution: DV without a category

MOST USUAL SOLUTION: eliminate category: e.g. $F(S_2)$:

■ Model to estimate:

$$Y_{t} = \beta_{0} + \beta_{1} R_{t} + \gamma_{1} S_{1t} + \gamma_{2} S_{2t} + u_{t}$$
$$= \beta_{0} + \beta_{1} R_{t} + \gamma_{1} S_{1t} + u_{t}$$

■ Subsample Models:

$$\mathsf{E}(Y_t|R_t=0, \textcolor{red}{S}=\textcolor{red}{F}) = \beta_0$$

without category F

■ Coefficient interpretation:

$$\mathsf{E}(Y_t|S=M) - \mathsf{E}(Y_t|S=F) = \gamma_1$$

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 171/191

Usual Tests with 1 QV

Hypothesis: qualitative variable (Sex) not significant (it doesn't affect Consumption)

i.e. M and F same Consumption:

Unrestricted Model

$$Y_t = \beta_0 + \beta_1 R_t + \gamma S_{1t} + u_t$$

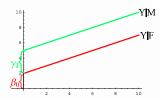
- Hypothesis: $H_0: \gamma = 0$ vs. $H_a: \gamma \neq 0$
- Restricted Model:

$$Y_t = \beta_0 + \beta_1 R_t + u_t$$

■ Use usual t Statistic (or F Statistic based on RSS)

Coefficient Interpretation

without category F



$$\mathsf{E}(Y_t|S = M) - \mathsf{E}(Y_t|S = F) = \gamma_1$$
$$\mathsf{E}(Y_t|R_t = 0, S = F) = \beta_0$$

■ that is,

 β_0 = expected consumption Women (base) if $R_t = 0$.

 $\gamma_1 = \text{diff expected consumption of Men}$

(vs. base
$$=$$
 Women).

$$\beta_1 = \Delta$$
 consumption if $\Delta R_t = 1$ (c.p.).

Recall: This case just means different intercepts for each category.

Note: Eliminating a category

transforms it into reference base.

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 172/

1 QV with 2 cats + 1 QV with 3 cats

$$\begin{array}{ccc} \text{Consumption} = & f([\text{ctnt}], & \text{income}, \\ & \downarrow & & \downarrow \\ & Y_t & & [1] & R_t \end{array}$$

 territory CAV) $\swarrow\downarrow\searrow$ $A \quad B \quad G$

$$S_{1t} = \mathcal{I}(t \in M)$$
 $T_{1t} = \mathcal{I}(t \in A)$ $T_{2t} = \mathcal{I}(t \in B)$ $T_{3t} = \mathcal{I}(t \in G)$

Sample:

t	Y	ctnt	R	S	T
1	Y_1	1	R_1	M	B
2	Y_2	1	R_2	F	G
3	Y_3	1	R_3	\boldsymbol{F}	B
÷	:	:	:	:	:
T	Y_T	1	R_T	M	\boldsymbol{A}
		<i>X</i> ?			

Recall: In principle, substitute qualitative var

by as many Dummy vars as categories we have.

© J Fernández (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 173/191

Dummy Var Trap: 2 qualitative vars

■ Model:

$$Y_t = \beta_0 + \beta_1 R_t + \gamma_1 S_{1t} + \gamma_2 S_{2t} + \delta_1 T_{1t} + \delta_2 T_{2t} + \delta_3 T_{3t} + u_t$$

■ Problem (DV trap):

X is a $(T \times 7)$ matrix, but

$$S_1 + S_2 = T_1 + T_2 + T_3 = [1]$$

(2 exact l.c.) $\Rightarrow \operatorname{rk}(X) = 5 < 7$ (*i.e.* perfect MC)

 $\Rightarrow \det(X'X) = 0 \\ \Rightarrow (X'X)^{-1} \text{ doesn't exist!! and}$ $\widehat{\beta} \text{ cannot be calculated!!}$

■ General Solution: eliminate ONE of the col's causing the problem: [1] or $(S_1 \text{ or } S_2)$ or $(T_1 \text{ or } T_2 \text{ or } T_3)$.

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 175/19

Coefficient Interpretation

without categories F nor G

$$\begin{split} \mathsf{E}\big(Y_t|S=M\big) - \mathsf{E}\big(Y_t|S=F\big) &= \gamma_1 \\ \mathsf{E}\big(Y_t|T=A\big) - \mathsf{E}\big(Y_t|T=G\big) &= \delta_1 \\ \mathsf{E}\big(Y_t|T=B\big) - \mathsf{E}\big(Y_t|T=G\big) &= \delta_2 \\ \mathsf{E}\big(Y_t|R_t=0,S=F,T=G\big) &= \beta_0 \end{split}$$

■ that is,

 $\beta_0 = \text{expected consumption Women } G \text{ (base) if } R_t = 0.$

 $\gamma_1=$ diff. expected consumption Men vs. Women .

 $\delta_1 = \text{diff.}$ expected consumption A vs. G.

 $\delta_2 = \text{diff.}$ expected consumption B vs. G.

 $\beta_1 = \Delta$ consumption if $\Delta R_t = 1$ (c.p.).

Recall: This case just means different intercepts for each category.

Recall: Eliminating a (combination of) category(ies)

view transforms it into reference base.

Econometrics

Solution: DV without combination of categories

MOST USUAL SOLUTION:

eliminate last category of each DV: S_2 and T_3 :

Model to estimate:

$$Y_t = \beta_0 + \beta_1 R_t + \gamma_1 S_{1t} + \gamma_2 S_{2t} + \delta_1 T_{1t} + \delta_2 T_{2t} + \gamma_3 T_{3t} + u_t$$

= $\beta_0 + \beta_1 R_t + \gamma_1 S_{1t} + \delta_1 T_{1t} + \delta_2 T_{2t} + u_t$

■ Subsample Models:

	S = M	S = F	M-F
T = A	$\beta_0 + \beta_1 R_t + \gamma_1 + \delta_1$	$\beta_0 + \beta_1 R_t + \delta_1$	γ_1
T = B	$\beta_0 + \beta_1 R_t + \gamma_1 + \delta_2$	$\beta_0 + \beta_1 R_t + \delta_2$	γ_1
T = G	$\beta_0 + \beta_1 R_t + \gamma_1$	$\beta_0 + \beta_1 R_t$	γ_1
A-G	δ_1	δ_1	
B-G	δ_2	δ_2	
A - B	$\delta_1 - \delta_2$	$\delta_1 - \delta_2$	

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 176/19

Usual Tests with 2 QVs

Hypothesis: Variable Sex doesn't affect Consumption (but place of residence might do)

Unrestricted Model:

$$Y_t = \beta_0 + \beta_1 R_t + \gamma_1 S_{1t}$$
$$+ \delta_1 T_{1t} + \delta_2 T_{2t} + u_t$$

($\gamma_1 = {\sf diff.} \ {\sf exp.} \ {\sf C} \ {\sf of} \ M \ {\sf vs.} \ F$)

- Hypothesis: $H_0: \gamma_1 = 0$ vs. $H_a: \gamma_1 \neq 0$
- Restricted Model:

$$Y_t = \frac{\beta_0}{\beta_0} + \beta_1 R_t + \delta_1 T_{1t} + \delta_2 T_{2t} + u_t$$

■ Use usual t Statistic (or F Statistic based on RSS)

Other usual Tests with 2 QVs

■ Unrestricted Model (without S_2 nor T_3):

$$Y_t = \beta_0 + \beta_1 R_t + \gamma_1 S_{1t} + \delta_1 T_{1t} + \delta_2 T_{2t} + u_t$$

- ♦ Recall: γ_1 is diff. expected C of M vs. F (base) δ_1 and δ_2 are diff. exp. C of A and B vs. G (base)
- Hypothesis: Same Consumption overall (independently of Sex and Residence):
 - $\bullet \ H_0: \gamma_1 = \delta_1 = \delta_2 = 0$
 - ◆ Restricted Model:

$$Y_t = \frac{\beta_0}{\beta_0} + \beta_1 R_t + u_t$$

- Hypothesis: Place of Residence doesn't affect Consumption (but *M* vs. *F* might do):
 - $\bullet \ H_0: \delta_1 = \delta_2 = 0$
 - Restricted Model:

$$Y_t = \beta_0 + \beta_1 R_t + \gamma_1 S_{1t} + u_t$$

© J Fernández (EA3-UPV/EHU), June 15, 2008

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 179/191

4.2 Seasonal effects

Other usual Tests with 2 QVs

■ Unrestricted Model (without S_2 nor T_3):

$$Y_t = \beta_0 + \beta_1 R_t + \gamma_1 S_{1t} + \delta_1 T_{1t} + \delta_2 T_{2t} + u_t$$

- ♦ Recall: δ_1 and δ_2 are diff. expected C of A and B vs. G (base)
- Hypothesis: Residents of same sex in *A* and *B* have same consumption level (but *G* might be different):
- $H_0: \delta_1 = \delta_2$ vs. $H_a: \delta_1 \neq \delta_2$
- Restricted Model:

$$Y_{t} = \beta_{0} + \beta_{1}R_{t} + \gamma_{1}S_{1t} + \delta(\underbrace{T_{1t} + T_{2t}}_{1 - T_{3t}}) + u_{t}$$

- Hypothesis: Residents of same sex in *B* and *G* have same consumption level (but *A* might be different):
 - $H_0: \delta_2 = 0$ vs. $H_a: \delta_2 \neq 0$
 - Restricted Model:

$$Y_t = \beta_0 + \beta_1 R_t + \gamma_1 S_{1t} + \delta_1 T_{1t} + u_t$$

© J Fernández (EA3-UPV/EHU), June 15, 2008

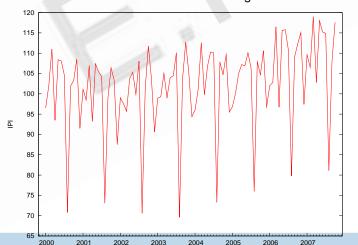
© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 180/1

Seasonal effect

- Seasonal effect:
- Seasonal var \rightsquigarrow subsamples T_1, T_2, \dots

according to seasons/months



Introductory Econometrics - p. 181/191

Introductory Econometrics - p. 182/191

Seasonal Dummy Variables: Definition

■ Def. of Seasonal Dummy Variable:

$$D_{jt} = \begin{cases} 1, & \text{if } t \in \text{season } j = 1, 2, 3, 4, \dots; \\ 0, & \text{otherwise.} \end{cases}$$

■ e.g. for quarterly data:

date(t)	IPI_t	X_t	D_{1t}	D_{2t}	D_{3t}	D_{4t}
1975.1			1	0	0	0
1975.2			0	1	0	0
1975.3			0	0	1	0
1975.4		18	0	0	0	1
1976.1		10.11	1	0	0	0
1976.2	110	100	0	1	0	0
1976.3			0	0	1	0
1976.4			0	0	0	1
1977.1			1	0	0	0
:		:	111111111111111111111111111111111111111			
2000.1			1	0	0	0
2000.2			0	1	0	0
2000.3			0	0	1	0
2000.4			0	0	0	1
2001.1			1	0	0	0

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 183/191

4.3 Interaction between DVs and quantitative Vars

Seasonal Dummy Variables: Definition

■ Model to estimate:

$$IPI_{t} = \beta_{0} + \beta_{1}X_{t} + \gamma_{1}D_{1t} + \gamma_{2}D_{2t} + \gamma_{3}D_{3t} + \gamma_{4}D_{4t} + u_{t}$$

= $\beta_{0} + \beta_{1}X_{t} + \gamma_{1}D_{1t} + \gamma_{2}D_{2t} + \gamma_{3}D_{3t} + u_{t}$

- interpretation of γ parameters?
- What if data are monthly observations (as in the IPI example actually)?

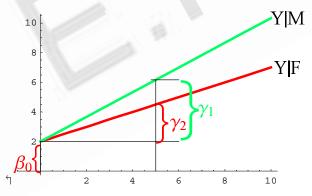
date(t)	IPI_t	X_t	D_{1t}	D_{2t}	D_{3t}	D_{4t}
1975.jan			1	0	0	0
1975.feb			1	0	0	0
1975.mar			1	0	0	0
1975.apr			0	1	0	0
1975.may			0	1	0	0
1975.jun			0	1	0	0
1975.jul			0	0	1	0
1975.ago			0	0	1	0
1975.sep			0	0	1	0
1975.oct			0	0	0	1
1975.nov			0	0	0	1
1975.dec			0	0	0	1
1976.jan			1	0	0	0
1976.feb			1	0	0	0
1976.mar			1	0	0	0

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 184/19

Interaction between DVs and quantitative Vars

Instead of different *intercepts*, we require different slopes for each category:



that is, different response "Y" for same "X"

© J Fernández (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 185/191 © J Fernández (EA3-UPV/EHU), June 15, 2008

Dummy Var Trap: interaction

■ Matrix *X*:

ctnt	R	$R \times S_1$	$R \times S_2$
1	R_1	$R_1 \times 1$	$R_1 \times 0$
1	R_2	$R_2 \times 0$	$R_2 \times 1$
1	R_3	$R_3 \times 0$	$R_3 \times 1$
:	:	÷	÷
1	R_T	$R_T \times 1$	$R_T \times 0$

	ctnt	R	RS_1	RS_2
	1	R_1	R_1	0
	1	R_2	0	R_2
\Rightarrow	1	R_3	0	R_3
	1:	1:	:	÷
	1	R_T	R_T	0

■ Model:

$$Y_t = \beta_0 + \beta_1 R_t + \gamma_1 R_t S_{1t} + \gamma_2 R_t S_{2t} + u_t$$

■ Problem (DV trap): X is $T \times 4$, but

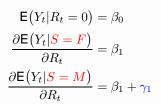
$$RS_1 + RS_2 = R \Rightarrow \operatorname{rk}(X) = 3 < 4$$
 (exact MC)

■ General Solution: eliminate ONE of the col's causing the problem: R or RS_1 or RS_2 .

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 187/19

Coefficient Interpretation



no RS_2

that is,

 β_0 = expected consumption if $R_t = 0$.

 $\beta_1 = \Delta$ consumption Women if $\Delta R_t = 1$ (c.p.).

 γ_1 = diff Δ consumption for Men (vs. base = Female).

Recall: This case means different slopes for each category.

Recall: again eliminating a category ->>

transforms it into reference base.

Solution: Interaction without a category

■ MOST USUAL SOLUTION:

eliminate last category of the DV: $F(RS_2)$:

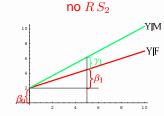
■ Model to estimate:

$$Y_t = \beta_0 + \beta_1 R_t + \gamma_1 R_t S_{1t} + u_t$$

■ Subsample Models:

Coefficient interpretation:

$$\mathsf{E}(Y_t|S = F) = \beta_0 + \beta_1 R_t = \mathsf{E}(Y_t|S = M) = \beta_0 + (\underbrace{\beta_1 + \gamma_1}_{\beta_1^*})R_t$$



$$\mathsf{E}\big(Y_t|R_t=0\big)=\beta_0$$

$$\frac{\partial \mathsf{E}(Y_t|S=F)}{\partial R_t} = \beta$$

$$\frac{\partial \mathsf{E}\left(Y_t|S=M\right)}{\partial R_t} = \beta_1 + \gamma$$

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 188/

Usual Tests with Interaction

Hypothesis: M and F equal Consumption or variable Sex doesn't affect Consumption:

Unrestricted Model:

$$Y_t = \beta_0 + \beta_1 R_t + \gamma_1 R_t S_{1t} + u_t$$

- Hypothesis: $H_0: \gamma_1 = 0$ vs. $H_a: \gamma_1 \neq 0$
- Restricted Model:

$$Y_t = \beta_0 + \beta_1 R_t + u_t$$

■ Use usual t Statistic (or F Statistic based on RSS)

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 191/191