INTRODUCTORY ECONOMETRICS

3rd year LE \& LADE LESSON 4

Dr Javier Fernández-Macho
etpfemaj@ehu.es
Dpt. of Econometrics \& Statistics
UPV-EHU

4.1 Dummy Variables.

Definition and use in the GLRM.

Dummy Variables: Definition

- Qualitative explanatory var \rightsquigarrow subsamples T_{1}, T_{2}, . according to category or characteristics
- examples:
- pure qualitative vars:
- individual diffs: sex, race, civil state, etc.
- time diffs: season, war/peace, etc.
- spatial diffs: countries, A.C.'s, urban/rural, etc
- quantitative vars by sections: income, age, etc
- Recall: we cannot use qualitative vars..
then substitute by dummy vars. . .
- Def. of Dummy Variable:

$$
\begin{aligned}
D_{j t} & = \begin{cases}1, & \text { if } t \in \text { category } j ; \\
0, & \text { otherwise. }\end{cases} \\
\Rightarrow D_{j t} & =\mathcal{I}\left(t \in T_{j}\right)
\end{aligned}
$$

©) F Femandez (EAB3:UPVVEHU), June 15, 2008

Dummy Var Trap: 1 qualitative var

Model: $Y_{t}=\beta_{0}+\beta_{1} R_{t}+\gamma_{1} S_{1 t}+\gamma_{2} S_{2 t}+u_{t}$

- Problem (DV trap):
X is a $(T \times 4)$ matrix, but
$S_{1}+S_{2}=[1]$ (exact I.c.) $\Rightarrow \operatorname{rk}(X)=3<4 \quad$ (i.e. perfect MC)

$$
\begin{gathered}
\quad \Rightarrow \operatorname{det}\left(X^{\prime} X\right)=0 \\
\Rightarrow\left(X^{\prime} X\right)^{-1} \text { doesn't exist!! and }
\end{gathered}
$$

$\widehat{\beta}$ cannot be calculated!!

- General Solution: eliminate ONE of the col's causing the problem:
[1] or S_{1} or S_{2}.
- (POSSIBLE Solution: eliminate intercept. . . but. . .

Solution: DV without a category

Coefficient Interpretation

MOST USUAL SOLUTION: eliminate category: e.g. $F\left(S_{2}\right)$:

- Model to estimate:

$$
\begin{aligned}
Y_{t} & =\beta_{0}+\beta_{1} R_{t}+\gamma_{1} S_{1 t}+\gamma_{2} S_{2 t}+u_{t} \\
& =\beta_{0}+\beta_{1} R_{t}+\gamma_{1} S_{1 t}+u_{t}
\end{aligned}
$$

without category F

- Subsample Models:
$\mathrm{E}\left(Y_{t} \mid S=F\right)=\beta_{0}+\beta_{1} R_{t} \quad \Rightarrow$
$\mathbf{E}\left(Y_{t} \mid S=M\right)=\beta_{0}+\beta_{1} R_{t}+\gamma_{1}$

$$
\mathrm{E}\left(Y_{t} \mid R_{t}=0, S=F\right)=\beta_{0}
$$

- Coefficient interpretation:

$$
\mathrm{E}\left(Y_{t} \mid S=M\right)-\mathbf{E}\left(Y_{t} \mid S=F\right)=\gamma_{1}
$$

- that is,

$$
\begin{aligned}
& \beta_{0}=\text { expected consumption Women (base) if } R_{t}=0 . \\
& \gamma_{1}=\text { diff expected consumption of Men }
\end{aligned}
$$

(vs. base = Women).

$$
\beta_{1}=\Delta \text { consumption if } \Delta R_{t}=1 \text { (c.p.). }
$$

Recall: This case just means different intercepts for each category. Note: Eliminating a category \rightsquigarrow transforms it into reference base

© J Fernandez (EA3-UPVVEHUU) June 15, 2008	Intoductory Econometrics -p. 771

1 QV with 2 cats +1 QV with 3 cats													
$\begin{array}{cccc} \text { Consumption }= & f([\text { ctnt }], & \text { income, } & \text { sex, } \\ \downarrow & \downarrow & \downarrow & \swarrow \\ Y_{t} & {[1]} & R_{t} & M \quad F \\ & & & \\ & & & S_{1 t}=\mathcal{I}(t \in M) \\ & & S_{2 t}=\mathcal{I}(t \in F) \end{array}$													
1 Y_{1} 2 Y_{2} 3 Y_{3} \vdots \vdots T Y_{T}		1	R_{1}	M	B	1	Y_{1}	1	R_{1}	10	0	1	0
		1	R_{2}	F	G	2	Y_{2}	1	R_{2}	$0 \quad 1$	0	0	1
		1	R_{3}	F	B		Y_{3}	1	R_{3}	$0 \quad 1$	0	1	0
		:	:						:	:			
		1	R_{T}			T	Y_{T}	1	R_{T}	10	1	0	0
X ?										X			

Recall: In principle, substitute qualitative var
©J Femández (EA3-UPVVEHU), June 15,2008 by as many Dummy vars as categories we have.

Solution: DV without combination of categories

- Model:
$Y_{t}=\beta_{0}+\beta_{1} R_{t}+\gamma_{1} S_{1 t}+\gamma_{2} S_{2 t}+\delta_{1} T_{1 t}+\delta_{2} T_{2 t}+\delta_{3} T_{3 t}+u_{t}$
- Problem (DV trap):
X is a $(T \times 7)$ matrix, but

$$
\begin{gathered}
S_{1}+S_{2}=T_{1}+T_{2}+T_{3}=[1] \\
\text { (2 exact I.c.) } \Rightarrow \operatorname{rk}(X)=5<7 \quad \text { (i.e. perfect MC) }
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow \operatorname{det}\left(X^{\prime} X\right)=0 \\
\Rightarrow & \left(X^{\prime} X\right)^{-1} \text { doesn't exist!! and }
\end{aligned}
$$

$\widehat{\beta}$ cannot be calculated!

- General Solution: eliminate ONE of the col's causing the problem: [1] or (S_{1} or S_{2}) or (T_{1} or T_{2} or T_{3}).

MOST USUAL SOLUTION:
eliminate last category of each DV: S_{2} and T_{3} :

- Model to estimate:

$$
\begin{aligned}
Y_{t} & =\beta_{0}+\beta_{1} R_{t}+\gamma_{1} S_{1 t}+\gamma_{2} S_{2 t}+\delta_{1} T_{1 t}+\delta_{2} T_{2 t}+\delta_{3} T_{3 t}+u_{t} \\
& =\beta_{0}+\beta_{1} R_{t}+\gamma_{1} S_{1 t}+\delta_{1} T_{1 t}+\delta_{2} T_{2 t}+u_{t}
\end{aligned}
$$

- Subsample Models:

	$S=M$	$S=F$	$M-F$
$T=A$	$\beta_{0}+\beta_{1} R_{t}+\gamma_{1}+\delta_{1}$	$\beta_{0}+\beta_{1} R_{t}+\delta_{1}$	γ_{1}
$T=B$	$\beta_{0}+\beta_{1} R_{t}+\gamma_{1}+\delta_{2}$	$\beta_{0}+\beta_{1} R_{t}+\delta_{2}$	γ_{1}
$T=G$	$\beta_{0}+\beta_{1} R_{t}+\gamma_{1}$	$\beta_{0}+\beta_{1} R_{t}$	γ_{1}
$A-G$	δ_{1}	δ_{1}	
$B-G$	δ_{2}	δ_{2}	
$A-B$	$\delta_{1}-\delta_{2}$	$\delta_{1}-\delta_{2}$	

Coefficient Interpretation

$\mathbf{E}\left(Y_{t} \mid S=M\right)-\mathbf{E}\left(Y_{t} \mid S=F\right)=\gamma_{1}$
$\mathrm{E}\left(Y_{t} \mid T=A\right)-\mathrm{E}\left(Y_{t} \mid T=G\right)=\delta_{1}$
$\mathrm{E}\left(Y_{t} \mid T=B\right)-\mathrm{E}\left(Y_{t} \mid T=G\right)=\delta_{2}$
without categories F nor G

$\mathrm{E}\left(Y_{t} \mid R_{t}=0, S=F, T=G\right)=\beta_{0}$

- that is,
$\beta_{0}=$ expected consumption Women G (base) if $R_{t}=0$.
$\gamma_{1}=$ diff. expected consumption Men vs. Women .
$\delta_{1}=$ diff. expected consumption A vs. G.
$\delta_{2}=$ diff. expected consumption B vs. G.
$\beta_{1}=\Delta$ consumption if $\Delta R_{t}=1$ (c.p.).
Recall: This case just means different intercepts for each category. Recall: Eliminating a (combination of) category(ies)

Other usual Tests with 2 QVs

- Unrestricted Model (without S_{2} nor T_{3}):

$$
Y_{t}=\beta_{0}+\beta_{1} R_{t}+\gamma_{1} S_{1 t}+\delta_{1} T_{1 t}+\delta_{2} T_{2 t}+u_{t}
$$

- Recall: γ_{1} is diff. expected C of M vs. F (base) δ_{1} and δ_{2} are diff. exp. C of A and B vs. G (base)
- Hypothesis: Same Consumption overall
(independently of Sex and Residence):
- $H_{0}: \gamma_{1}=\delta_{1}=\delta_{2}=0$
- Restricted Model:

$$
Y_{t}=\beta_{0}+\beta_{1} R_{t}+u_{t}
$$

- Hypothesis: Place of Residence doesn't affect Consumption
- $H_{0}: \delta_{1}=\delta_{2}=0$
(but M vs. F might do):

- Restricted Model:

$$
Y_{t}=\beta_{0}+\beta_{1} R_{t}+\gamma_{1} S_{1 t}+u_{t}
$$

© J J Fernández (EA3-UPVVEHU), June 15, 2008

4.2 Seasonal effects

Other usual Tests with 2 QVs

- Unrestricted Model (without S_{2} nor T_{3}):

$$
Y_{t}=\beta_{0}+\beta_{1} R_{t}+\gamma_{1} S_{1 t}+\delta_{1} T_{1 t}+\delta_{2} T_{2 t}+u_{t}
$$

- Recall: δ_{1} and δ_{2} are diff. expected C of A and B vs. G
- Hypothesis: Residents of same sex in A and B have same consumption level (but G might be different):
- $H_{0}: \delta_{1}=\delta_{2}$ vs. $H_{a}: \delta_{1} \neq \delta_{2}$
- Restricted Model:

$$
Y_{t}=\beta_{0}+\beta_{1} R_{t}+\gamma_{1} S_{1 t}+\delta(\underbrace{T_{1 t}+T_{2 t}}_{1-T_{3 t}})+u_{t}
$$

- Hypothesis: Residents of same sex in B and G have same consumption level (but A might be different):
- $H_{0}: \delta_{2}=0$ vs. $H_{a}: \delta_{2} \neq 0$
- Restricted Model:

$$
Y_{t}=\beta_{0}+\beta_{1} R_{t}+\gamma_{1} S_{1 t}+\delta_{1} T_{1 t}+u_{t}
$$

Seasonal effect

- Seasonal effect:
- Seasonal var \rightsquigarrow subsamples T_{1}, T_{2}, \ldots
according to seasons/months
according to seasons/months

Seasonal Dummy Variables: Definition

- Def. of Seasonal Dummy Variable:

$$
D_{j t}= \begin{cases}1, & \text { if } t \in \text { season } j=1,2,3,4, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

- e.g. for quarterly data:

date (t)	${ }^{I P I_{t}}$	x_{t}	$D_{1 t}$	$D_{2 t}$	$D_{3 t}$	${ }^{D_{4 t}}$
1975.1	.		1	0	0	0
1975.2			0	1	0	0
1975.3	.		0	0	1	0
1975.4			0	0	0	1
1976.1		-	1	0	0	0
1976.2			0	1	0	0
1976.3			0	0	1	0
1976.4			0	0	0	1
1977.1		.	1	0	0	0
2000.1	.	.	1	0	0	0
2000.2	.	.	0	1	0	0
2000.3			0	0	1	0
2000.4	.	.	0	0	0	1
2001.1			1	0	0	0

Eapmomember

4.3 Interaction between DVs and quantitative Vars

Seasonal Dummy Variables: Definition

- Model to estimate:

$$
\begin{aligned}
I P I_{t} & =\beta_{0}+\beta_{1} X_{t}+\gamma_{1} D_{1 t}+\gamma_{2} D_{2 t}+\gamma_{3} D_{3 t}+\gamma_{4} D_{4 t}+u_{t} \\
& =\beta_{0}+\beta_{1} X_{t}+\gamma_{1} D_{1 t}+\gamma_{2} D_{2 t}+\gamma_{3} D_{3 t}+u_{t}
\end{aligned}
$$

- interpretation of γ parameters?
- What if data are monthly observations (as in the IPI example actually)?

date (t)	$I P I_{t}$	x_{t}	$D_{1 t}$	$D_{2 t}$	$D_{3 t}$	$D_{4 t}$
1975.jan			1	0	0	0
1975.feb	.	.	1	0	0	0
1975.mar	.	.	1	0	0	0
1975.apr	.	.	0	1	0	0
1975.may	.	.	0	1	0	0
1975.jun	.	.	0	1	0	0
1975.jul	.	.	0	0	1	0
1975.ago	.		0	0	1	0
1975.sep		.	0	0	1	0
1975.0ct		.	0	0	0	1
1975.nov		.	0	0	0	1
1975.dec			0	0	0	1
1976.jan		.	1	0	0	0
1976.feb	.	.	1	0	0	0
1976.mar			1	0	0	0
		.				

Interaction between DVs and quantitative Vars

Instead of different intercepts, we require
different slopes for each category:

that is, different response " Y " for same " X "

Dummy Var Trap: interaction

- Matrix X :

ctnt	R	$R \times S_{1}$	$R \times S_{2}$
1	R_{1}	$R_{1} \times 1$	$R_{1} \times 0$
1	R_{2}	$R_{2} \times 0$	$R_{2} \times 1$
1	R_{3}	$R_{3} \times 0$	$R_{3} \times 1$
\vdots	\vdots	\vdots	\vdots
1	R_{T}	$R_{T} \times 1$	$R_{T} \times 0$

- Model:

$$
Y_{t}=\beta_{0}+\beta_{1} R_{t}+\gamma_{1} R_{t} S_{1 t}+\gamma_{2} R_{t} S_{2 t}+u_{t}
$$

- Problem (DV trap): X is $T \times 4$, but

$$
R S_{1}+R S_{2}=R \Rightarrow \operatorname{rk}(X)=3<4 \quad \text { (exact } \mathrm{MC} \text {) }
$$

- General Solution: eliminate ONE of the col's causing the problem: R or $R S_{1}$ or $R S_{2}$

Coefficient Interpretation

$$
\begin{aligned}
\mathbf{E}\left(Y_{t} \mid R_{t}=0\right) & =\beta_{0} \\
\frac{\partial \mathrm{E}\left(Y_{t} \mid S=F\right)}{\partial R_{t}} & =\beta_{1} \\
\frac{\partial \mathrm{E}\left(Y_{t} \mid S=M\right)}{\partial R_{t}} & =\beta_{1}+\gamma_{1}
\end{aligned}
$$

- that is,
$\beta_{0}=$ expected consumption if $R_{t}=0$.
$\beta_{1}=\Delta$ consumption Women if $\Delta R_{t}=1$ (c.p.).
$\gamma_{1}=$ diff Δ consumption for Men (vs. base $=$ Female $)$.
Recall: This case means different slopes for each category Recall: again eliminating a category transforms it into reference base.

Solution: Interaction without a category

- MOST USUAL SOLUTION:
eliminate last category of the DV: $F\left(R S_{2}\right)$:
- Model to estimate:

$$
Y_{t}=\beta_{0}+\beta_{1} R_{t}+\gamma_{1} R_{t} S_{1 t}+u_{t}
$$

- Subsample Models
$\mathbf{E}\left(Y_{t} \mid S=F\right)=\beta_{0}+\beta_{1} R_{t} \quad \Rightarrow$
$\mathbf{E}\left(Y_{t} \mid S=M\right)=\beta_{0}+(\underbrace{\beta_{1}+\gamma_{1}}_{\beta_{1}^{*}}) R_{t}$
no $R S_{2}$

$$
\mathrm{E}\left(Y_{t} \mid R_{t}=0\right)=\beta_{0}
$$

$$
\frac{\partial \mathrm{E}\left(Y_{t} \mid S=F\right)}{\partial R_{t}}=\beta_{1}
$$

$$
\frac{\partial \mathbf{E}\left(Y_{t} \mid S=M\right)}{\partial R_{t}}=\beta_{1}+\gamma_{1}
$$

Usual Tests with Interaction

Hypothesis: M and F equal Consumption or variable Sex doesn't affect Consumption:

- Unrestricted Model:

$$
Y_{t}=\beta_{0}+\beta_{1} R_{t}+\gamma_{1} R_{t} S_{1 t}+u_{t}
$$

- Hypothesis: $H_{0}: \gamma_{1}=0$ vs. $H_{a}: \gamma_{1} \neq 0$
- Restricted Model:

$$
Y_{t}=\beta_{0}+\beta_{1} R_{t}+u_{t}
$$

- Use usual t Statistic (or F Statistic based on RSS)

The End
THE END

