INTRODUCTORY ECONOMETRICS

3rd year LE & LADE LESSON 3

Dr Javier Fernández-Macho

etpfemaj@ehu.es

Dpt. of Econometrics & Statistics

UPV-EHU

3 The Linear Regression Model (II). Inference and Prediction.

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 110/191

OLS estimator under Normality

■ If $Y = X\beta + u$, where $u \sim \mathcal{N}(0, \sigma^2 I_T)$ then (recall) OLS estimator:

$$\widehat{\beta}_{\mathsf{OLS}} = (X'X)^{-1}X'Y = \beta + (X'X)^{-1}X'u$$

= $\beta + \Gamma'u$ is linear in disturbances.

■ Therefore, same Multivariate Normal distribution, with (recall)

$$\begin{cases} \mathsf{E}(\widehat{\beta}) &= \beta, \\ \mathsf{Var}(\widehat{\beta}) &= \sigma^2(X'X)^{-1}. \end{cases}$$

■ That is:

$$|\widehat{\beta} \sim \mathcal{N}(\beta, \sigma^2 (X'X)^{-1})|$$

3.1a Distribution of the Least-Squares Estimator under the Normality assumption.

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 111/19

Introductory Econometrics - p. 113/191

OLS estimator under Normality (cases)

Since $\widehat{\beta} \sim \mathcal{N}(\beta, \sigma^2 (X'X)^{-1})$

■ For the k-th coefficient:

$$\widehat{\beta}_k \sim \mathcal{N}(\beta_k, \sigma^2 \, a_{kk})$$

where a_{kk} is the (k+1)-th diagonal element of $(X'X)^{-1}$

- for example: $\widehat{\beta}_1 \sim \mathcal{N}(\beta_1, \sigma^2 \, a_{11})$, $a_{11} = 2$ nd diagonal element.
- For a set of linear combinations:

$$R\widehat{\beta} \sim \mathcal{N}(R\beta, \sigma^2 R(X'X)^{-1}R').$$

■ For a subvector of $\widehat{\beta}$: $R = [0_s \dots 0_s | I_s]$; then

$$\widehat{\beta}^s \sim \mathcal{N}(\beta^s, \sigma^2 A_{ss})$$

where $\beta^s =$ subvector of β , $A_{ss} =$ submatrix of $(X'X)^{-1}$.

© J Fernández (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 112/191 © J Fernández (EA3-UPV/EHU), June 15, 2008

OLS estimator under Normality (cases)2

■ In particular, if
$$R = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 \Rightarrow

$$R \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \beta^*$$
 (without intercept):

■ and

$$(X'X)^{-1} = \begin{pmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{pmatrix}$$

■ then

$$\widehat{\beta}^{\star} \sim \mathcal{N}(\beta^{\star}, \sigma^2)$$

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 114/191

3.1b Hypothesis Testing: a Review.

OLS residuals under Normality

lacksquare Similarly, if $u \sim \mathcal{N}(0, \sigma^2 I_T)$

Then,

$$\widehat{u} \sim \mathcal{N}(0, \sigma^2 M)$$

■ In particular, for the 4-th residual:

$$\widehat{u}_t \sim \mathcal{N}(0, \sigma^2 m_{44})$$

where m_{44} is the 4-th diagonal element of matrix M.

©J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 115/1

Hypothesis and Tests (rev1)

■ Starting point:

$$Y = X\beta + u u \sim \mathcal{N}(0, \sigma^2 I_T)$$

$$\begin{cases} \widehat{\beta} \sim \mathcal{N}(\beta, \sigma^2 (X'X)^{-1}) \\ \widehat{u} \sim \mathcal{N}(0, \sigma^2 M) \end{cases}$$

- Hypothesis: "conjecture about parameter(s) dn fn". For example:
 - in SLRM: $\widehat{\beta} \sim \mathcal{N}(\beta, v)$; assume $\beta = 2.5$.
 - ♦ in GLRM: $\widehat{\beta} \sim \mathcal{N}(\beta, \sigma^2(X'X)^{-1})$; assume $\beta_1 + \dots + \beta_K = 1$.
 - in general: Ec. Th. → hypothesis e.g.: Cobb-Couglas Fn:

$$Y_t = e^{\beta_0} L_t^{\beta_1} K_t^{\beta_2} e^{u_t}$$

with Constant returns to scale: $\beta_1 + \beta_2 = 1$

■ Test: "procedure to reject or accept the hypothesis"

Hypothesis and Tests (rev2)

	elements	steps	
a)	hypothesis to test (about estimator)	$H_0:\dots$ vs. $H_a:\dots$ (disjoint)	
b)	estimator dn	obtain test statistic with tabulated dn under H_0 :	
		calculated statistic	
c)	decision vulo	€ critical region ("large")	∉ critical region ("small")
	decision rule	₩ Reject	v not Reject

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 118/191

Hypothesis and Tests: Critical region

Hypothesis and Tests (rev2-cont)

Example:

a)	$H_0: \beta = 2.5 \text{ vs. } H_a: \beta \neq 2.5$	$(Var(\beta)=4)$
b)	$\widehat{\beta} \sim \mathcal{N}(\beta, 4) \leadsto z = \frac{\widehat{\beta} - \beta}{2} \sim \mathcal{N}(0, 1)$	
c)	$z = \frac{\widehat{\beta} - 2.5}{2} \in \begin{bmatrix} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \end{bmatrix}$	

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 119/19

Hypothesis and Tests: Critical region (one sided)

© J Fernández (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 120/191 © J Fernández (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 121/191

Hypothesis and Tests: Distributions (rev)

1. Def of χ^2 (chi-square):

Def of
$$\chi^2$$
 (chi-square):
$$Z_i \sim \operatorname{iid} \mathcal{N}(0,1) \\ Z \sim \mathcal{N}(0,I_m)$$
 $Z'Z = \sum_{i=1}^m Z_i^2 \sim \chi^2(m)$
$$\left\{ \mathsf{E} \left(\chi^2(m) \right) = m \\ \mathsf{Var} \left(\chi^2(m) \right) = 2m \right.$$
 $Z \sim \mathcal{N}(\mu,\Omega) \Rightarrow (Z-\mu)'\Omega^{-1}(Z-\mu) \sim \chi^2(m)$

1b.
$$Z \sim \mathcal{N}(\mu, \Omega) \Rightarrow (Z - \mu)' \Omega^{-1}(Z - \mu) \sim \chi^2(m)$$

2. Def of *t* (Student):

$$Z \sim \mathcal{N}(0,1), \quad W \sim \chi^2(m)$$
 $Z, W \text{ independent}$ $\frac{Z}{\sqrt{W/m}} \sim t(m)$

3. Def of \mathcal{F} (Snedecor):

$$V \sim \chi^2(n) \quad W \sim \chi^2(m) \ V, W \ \text{independent} \ \frac{V/n}{W/m} \sim \mathcal{F}_m^n$$

4b.
$$n=1\Rightarrow \frac{Z^2}{W/m}\sim {\cal F}_m^1\equiv {\pmb t}(m)^2$$

© J Fernández (EA3-UPV/EHU), June 15, 2008

3.2a Testing for the Significance of a single parameter. Confidence Intervals.

Hypothesis and Tests: Useful result

From $\widehat{u} \sim \mathcal{N}(0, \sigma^2 M)$:

■
$$\frac{\text{RSS}}{\sigma^2} = \sum (\widehat{u}_t^2/\sigma^2) = \sum \mathcal{N}(0,1)^2$$
's $\sim \chi^2(T\!-\!K\!-\!1)$

■ Then:
$$\frac{\widehat{\sigma}^2}{\sigma^2} = \frac{\text{RSS}}{\sigma^2(T-K-1)} = \frac{\text{RSS}}{\sigma^2(T-K-1)} = \chi^2/\text{d.f.'s}$$

•
$$\frac{\mathsf{expr}}{\sigma} \sim \mathcal{N}(0,1)$$
:

$$\frac{\mathsf{expr}}{\widehat{\sigma}} = \frac{\mathsf{expr}/\sigma}{\widehat{\sigma}/\sigma} = \frac{\mathsf{expr}/\sigma}{\sqrt{\widehat{\sigma}^2/\sigma^2}} = \frac{\mathcal{N}(0,1)}{\sqrt{\chi^2/\mathsf{d.f.s}}} = t$$

•
$$\frac{\mathsf{expr}}{\sigma^2} \sim \chi^2(n)$$
:

■ In short:
$$\sigma^2 \to \widehat{\sigma}^2$$
 \Rightarrow $\frac{\mathcal{N}(0,1) \to \boldsymbol{t}}{\chi^2 \to \mathcal{F}}!!$

© J Fernández (EA3-UPV/EHU), June 15, 2008

Single parameter Significance test: estimator dn

■ Standardise $\widehat{\beta}_i \sim \mathcal{N}(\beta_i, \sigma^2 a_{ii})$

$$\frac{\widehat{\beta}_i - \beta_i}{\sqrt{\mathsf{Var}(\widehat{\beta}_i)}} = \frac{\widehat{\beta}_i - \beta_i}{\sigma \sqrt{a_{ii}}} \quad = \frac{\widehat{\beta}_i - \beta_i}{\sigma_{\widehat{\beta}_i}} \sim \mathcal{N}(0, 1)$$

■ change σ by $\widehat{\sigma}$:

$$\frac{\widehat{\beta}_i - \beta_i}{\widehat{\sigma} \sqrt{a_{ii}}} = \frac{\widehat{\beta}_i - \beta_i}{\sqrt{\widehat{\mathsf{Var}}(\widehat{\beta}_i)}} = \boxed{\frac{\widehat{\beta}_i - \beta_i}{S_{\widehat{\beta}i}}} \sim \boldsymbol{t}(T-K-1)$$

■ Note how $\sigma_{\widehat{\beta}_i} \to S_{\widehat{\beta}_i} \Rightarrow \mathcal{N}(0,1) \to \boldsymbol{t} !!$

© J Fernández (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 124/191 © J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 125/191

Single parameter Significance test: rule

$$lacksquare \frac{\widehat{eta}_i - eta_i}{S_{\widehat{eta}i}} \sim m{t}(T-K-1)$$

- Which Test? $\begin{cases} H_0: \beta_i = c & \text{(informative test)} \\ H_0: \beta_i = 0 & \text{(test of significance)} \end{cases}$
- Remember: Hypothesis → statistic → rule...
- Test of Significance:
 - Hypothesis: $H_0: \beta_i = 0$ vs. $H_a: \beta_i \neq 0$
 - Statistic: $t = \frac{\beta_i}{S_{\widehat{\beta}i}} \sim t(T-K-1)$ under H_0 :
 - lacktriangled Rule: $|t|=|rac{\widehat{eta}_i}{S_{\widehat{eta}i}}|>m{t}_{lpha/2}(T\!\!-\!\!K\!\!-\!\!1) \quad \Rightarrow \quad {
 m reject}\; H_0:$
 - $\Rightarrow \quad \beta_i$ is (statistically or significantly) different from zero
 - $\Rightarrow X_i$ is a (statistically) relevant or significant variable.
- similarly for informative test $H_0: \beta_i = c$ (Exercise: Try it!!)

© J Fernández (EA3-UPV/EHU), June 15, 2008

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 126/19

Confidence interval for β_i

lacksquare Recall that $\dfrac{\widehat{eta}_i - eta_i}{S_{\widehat{eta}i}} \sim \emph{t}(T\!-\!K\!-\!1)$

critical region | confidence region | critical region

critical region | confidence region | critical region

$$\begin{split} \text{i.e.:} \quad & \Pr[-\boldsymbol{t}_{\alpha/2} \leq \frac{\widehat{\beta}_i - \beta_i}{S_{\widehat{\beta}i}} \leq +\boldsymbol{t}_{\alpha/2}] = 1 - \alpha \\ & \Pr[\widehat{\beta}_i - \boldsymbol{t}_{\alpha/2} \; S_{\widehat{\beta}i} \leq \beta_i \leq \widehat{\beta}_i + \boldsymbol{t}_{\alpha/2} \; S_{\widehat{\beta}i}] = 1 - \alpha \end{split}$$

$$\mathsf{CI}_{1-lpha}\left(eta_{i}
ight)$$

Introductory Econometrics - p. 128/191

Econometrics

Single parameter Significance test: rule (cont)

■ Rule:
$$|t| = |\frac{\widehat{\beta}_i}{S_{\widehat{\beta}_i}}| > t_{\alpha/2}(T-K-1)$$
 \Rightarrow reject H_0 :

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 127/1

Confidence interval for β_i (cont)

■ That is:

$$\mathsf{Cl}_{1-lpha}\left(eta_{i}
ight)=[\widehat{eta}_{i}\pm oldsymbol{t}_{lpha/2}\ S_{\widehat{eta}i}]$$

lacksquare e.g. for lpha=5% , $T\!\!-\!\!K\!-\!\!1=25,$ $\widehat{eta}_i=2.12$ and $S_{\widehat{eta}_i}=0.08$:

$$\begin{aligned}
\mathsf{Cl}_{95\%}\left(\beta_{i}\right) &= \left[\widehat{\beta}_{i} \pm \mathbf{t}_{2.5\%}(25) \ S_{\widehat{\beta}_{i}}\right] \\
&= \left[\widehat{\beta}_{i} \pm 2.06 \ S_{\widehat{\beta}_{i}}\right] = \left[2.12 \pm 2.06 \cdot 0.08\right] = \left[1.9552 \ ; \ 2.2848\right]
\end{aligned}$$

testing by means of confidence interval:

Hypothesis: $H_0: \beta_i = c \text{ vs. } H_a: \beta_i \neq c$

Interval: $CI_{95\%}(\beta_i)$

Rule: Reject H_0 : if $c \notin Cl_{95\%}(\beta_i)$, with 5% significance.

■ e.g. $H_0: \beta_i = 0$? \Rightarrow Reject $\Rightarrow \beta_i$ is significant (at 5% level).

© J Fernández (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 129/191

Testing a Single Linear Combination

■ Let's have a restricted GLRM with 1 restriction (q = 1): $R\beta = r$ but now simpler...

R = d' (any row of K+1 values $d_0, d_1, \ldots, +d_K$) and r = c (any single value):

■ Let $H_0: \nu = d'\beta = d_0\beta_0 + d_1\beta_1 + \cdots + d_K\beta_K = c$ that is.

an informative test about the value c that takes a single linear combination ν of the parameters.

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 130/191

Testing a Single Linear Combination: dn

■ Since $\widehat{\beta} \sim \mathcal{N}(\beta, \sigma^2(X'X)^{-1})$, we have that

$$d'\widehat{\beta} \sim \mathcal{N}(d'\beta, \sigma^2 d'(X'X)^{-1}d)$$
$$\widehat{\nu} \sim \mathcal{N}(\nu, \text{Var}(\widehat{\nu}))$$

where $\operatorname{Var}(\widehat{
u}) = \sigma^2 \sum_{i,j=0}^K d_i d_j a_{ij}$

■ As before, standardise $\hat{\nu}$

$$\frac{\widehat{\nu} - \nu}{\sqrt{\mathsf{Var}(\widehat{\nu})}} \sim \mathcal{N}(0, 1)$$

■ Therefore (recall $\sigma \to \widehat{\sigma}$):

$$\Rightarrow \frac{\widehat{\nu} - \nu}{S_{\widehat{\nu}}} \sim t(T - K - 1)$$

where
$$S_{\widehat{\nu}} = \widehat{\sigma} \sqrt{\sum_{i,j=0}^{K} d_i d_j a_{ij}}$$
.

Testing a Single Linear Combination: Example

■ Let's have the linearised Cobb-Douglas fn

$$\log Y_t = \alpha + \beta_L \log L_t + \beta_K \log K_t + u_t$$

$$\mathbf{d'} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$$
 and $\mathbf{c} = 1$:

$$H_0: \nu = d'\beta = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \begin{pmatrix} \alpha \\ \beta_L \\ \beta_K \end{pmatrix} = \beta_L + \beta_K$$

that is, $H_0: \beta_L + \beta_K = 1$;

the test of the constant returns to scale hypothesis.

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 131/191

Testing a Single Linear Combination: rule

 $\blacksquare \ \ \frac{\widehat{\nu} - \nu}{S_{\widehat{\nu}}} \sim \boldsymbol{t}(T - K - 1)$

- $\blacksquare \ \, \text{Which Test?} \, \, \Big\{ H_0 : \nu (=d'\beta) = c \quad \text{(informative test)} \\$
- Remember: Hypothesis → statistic → rule...
- Test for a linear combination:
 - Hypothesis: $H_0: \nu = c$ vs. $H_a: \nu \neq c$
 - Statistic:

$$m{t} = rac{\widehat{
u} - c}{S_{\widehat{
u}}} \sim m{t}(T - K - 1) \; \; ext{under} \; H_0 :$$

- ♦ Rule: $|t| > t_{\alpha/2}(T-K-1)$ ⇒ reject H_0 : ⇒ value of linear combination isn't right.
- cf test of single parameter β_k , any similarities?.

Testing a Single Linear Combination: rule (cont)

■ Rule:
$$|t| = \left| \frac{\widehat{\nu} - c}{S_{\widehat{\nu}}} \right| > t_{\alpha/2} (T - K - 1) \implies \text{reject } H_0:$$

significance level
$$\alpha=5\%=0.05$$

© J Fernández (EA3-UPV/EHU), June 15, 2008

ntroductory Econometrics - p. 134/191

Introductory Econometrics - p. 136/191

Testing a Single Linear Combination: Example

- Hypothesis: $H_0: \beta_L + \beta_K = 1$ vs. $H_a: \beta_L + \beta_K \neq 1$
- Statistic:

$$\widehat{\mathbf{v}} = \widehat{\beta}_L + \widehat{\beta}_K$$
$$= 0.67 + 0.27 = 0.89$$

•

$$S_{\widehat{\nu}} = \sqrt{\widehat{\operatorname{Var}(\widehat{\beta}_L)} + \widehat{\operatorname{Var}(\widehat{\beta}_K)} + 2\widehat{\operatorname{Cov}(\widehat{\beta}_L, \widehat{\beta}_K)}}$$

$$= \widehat{\sigma} \sqrt{a_{11} + a_{22} + 2a_{12}}$$

$$= 2\sqrt{4 + 7 + 2(-1)} = 2\sqrt{9} = 6$$

•

$$t = \frac{\hat{\nu} - 1}{S_{\hat{\nu}}}$$

$$= \frac{0.89 - 1}{6} = \frac{-0.11}{6} = -0.018.$$

■ Rule: $|t| = 0.018 < t_{0.025}(50) = 2.01 \Rightarrow \text{don't reject } H_0$:

"constant returns to scale" is supported by data.

© J Fernández (EA3-UPV/EHU), June 15, 2008

AFG

Testing a Single Linear Combination: Example

■ In the linearised Cobb-Douglas fn:

$$\widehat{\log Y}_t = \widehat{\alpha} + \widehat{\beta}_L \log L_t + \widehat{\beta}_K \log K_t, \quad T = 53;$$

 $\widehat{\log Y}_t = 2.10 + 0.67 \log L_t + 0.32 \log K_t, \quad \widehat{\sigma}^2 = 4 ;$

$$(X'X)^{-1} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & -1 & 7 \end{pmatrix}$$

■ Test the H_0 : constant returns to scale at the $\alpha = 5\%$ significance level:

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 135/19

3.2b Testing for Overall Significance.

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 137/191

Overall Significance Test: estimator dn

$$\blacksquare H_0: \beta_1 = \beta_2 = \dots = \beta_K = 0 \quad \rightsquigarrow$$

$$\blacksquare H_0: \beta^* = \mathbf{0} \quad \leadsto$$

$$\blacksquare \widehat{\beta}^{\star} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \begin{bmatrix} a_{00} & a_{01} & \dots & a_{0K} \\ a_{10} & a_{11} & \dots & a_{1K} \\ \vdots & \vdots & \dots & \vdots \\ a_{K0} & a_{K1} & \dots & a_{KK} \end{bmatrix}) \sim \mathcal{N}(\mathbf{0}, \sigma^2(\mathbf{x}'\mathbf{x})^{-1})$$

■ Standardise and SS:

•

$$\frac{\widehat{\beta}^{\star\prime} x' x \widehat{\beta}^{\star}}{\sigma^2} \sim \chi^2(K) \quad \text{under } H_0:$$

■ Therefore (recall changing $\sigma^2 \to \hat{\sigma}^2$):

$$F = rac{\widehat{eta}^{\star\prime}x'x\widehat{eta}^{\star}/K}{\widehat{\sigma}^2} \sim \mathcal{F}^K_{T\!-\!K\!-\!1}$$

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 138/191

Overall Significance Test: rule (cont)

■ Rule: $F > \mathcal{F}_{\alpha}(K, T-K-1)$ \Rightarrow reject H_0 :

Overall Significance Test: rule

$$\blacksquare \quad F = \frac{\widehat{\beta}^{\star\prime} x' x \widehat{\beta}^{\star} / K}{\widehat{\sigma}^2} \sim \mathcal{F}_{TK\!-\!1}^K \quad \text{ under } H_0:$$

- lacksquare Overall significance test: $\Big\{ H_0 : eta^\star = 0$
- Remember: Hypothesis → statistic → rule...
 - Hypothesis: $H_0: \beta^* = 0$ vs. $H_a: \beta^* \neq 0$ (i.e. $\exists \beta_i \neq 0$)
 - Statistic:

$$\begin{split} F &= \frac{\widehat{\beta}^{\star\prime}\,x'x\,\widehat{\beta}^{\star}\,/K}{\widehat{\sigma}^2} = \frac{\widehat{y}'\widehat{y}\,/K}{\widehat{v}'\widehat{u}\,/(T\!-\!K\!-\!1)} = \frac{\mathsf{ESS}\,/K}{\mathsf{RSS}\,/(T\!-\!K\!-\!1)} \\ &= \frac{(\mathsf{ESS}/\mathsf{TSS})\,/K}{(\mathsf{RSS}/\mathsf{TSS})\,/(T\!-\!K\!-\!1)} = \frac{R^2\,/K}{(1-R^2)\,/(T\!-\!K\!-\!1)} \sim \mathcal{F}^K_{T\!-\!K\!-\!1} \, \text{under} \, H_0 : \end{split}$$

- Rule: $F > \mathcal{F}_{\alpha}(K, T-K-1) \Rightarrow \text{reject } H_0$:
 - ⇒ all coefs are jointly significant (different from zero)
 - ⇒ whole regression is (statistically) relevant.

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 139/19

Overall Significance Test: Example

■ In the previous example (linearised Cobb-Douglas fn:)

$$\widehat{\log Y}_{t} = \widehat{\alpha} + \widehat{\beta}_{L} \log L_{t} + \widehat{\beta}_{K} \log K_{t}, \quad T = 53;$$

$$\widehat{\log Y}_{t} = 2.10 + 0.67 \log L_{t} + 0.32 \log K_{t}, \quad \widehat{\sigma}^{2} = 4; \mathbb{R}^{2} = 0.88$$

- Test the overall significance
- at the $\alpha=5\%$ significance level:

$$F = \frac{R^2 / K}{(1 - R^2) / (T - K - 1)}$$

$$= \frac{0.88 / 2}{(1 - 0.88) / (50)} = \frac{0.44}{0.024} = 183.33 > \mathcal{F}_{0.05}(2, 50) = 3.19$$

- $\Rightarrow \beta_K \& \beta_L$ are jointly significant
- ⇒ regression is (statistically) relevant.

3.3 A General Test for Linear Restrictions.

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 142/191

Testing for Linear Restrictions: Example 2

- $\blacksquare H_0: \underset{(q \times K+1) (K+1 \times 1)}{R} = \underset{(q \times 1)}{p}.$
 - 2. Let's assume q=K restrictions such that

$$R = \begin{bmatrix} \mathbf{0} & \mid & \mathbf{I}_K \end{bmatrix} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \text{ and } r = \mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

© J Fernández (EA3-UPV/EHU), June 15, 2008

$$H_0: R\beta = \begin{bmatrix} \mathbf{0}_K & | & \mathbf{I}_K \end{bmatrix} \begin{pmatrix} \beta_0 \\ \vdots \\ \beta^* \end{pmatrix} = \beta^*$$

that is, $H_0: \beta^* = \mathbf{0}$;

the test of overall significance of the regression.

Introductory Econometrics - p. 144/191

Testing for Linear Restrictions: Example 1

■ Recall GLRM subject to *q* linear restrictions:

- Previous tests = special cases LRs:
- 1. Let's have the GLRM with

$$q=1, R=\begin{bmatrix}0&0&1&\dots&0\end{bmatrix}$$
 and $r=0$:

$$H_0: R\beta = \begin{bmatrix} 0 & 0 & 1 & \dots & 0 \end{bmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_K \end{pmatrix} = r$$

i.e., $H_0: \beta_2 = 0$;

the test of individual significance of X_2 .

©J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 143/19

Testing for Linear Restrictions: Example 3

- $\blacksquare H_0: R \qquad \beta = r .$
- $\begin{array}{ll} (q\times K+1)\;(K+1\times 1) & (q\times 1)\\ \textbf{3. Let's assume}\;q=2\;\text{restrictions such that} \end{array}$

$$R = \begin{bmatrix} 0 & 2 & 3 & 0 & \dots & 0 \\ 1 & 0 & 0 & -2 & \dots & 0 \end{bmatrix}$$
 and $r = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$:

$$H_0: R\beta = \begin{bmatrix} 0 & 2 & 3 & 0 & \dots & 0 \\ 1 & 0 & 0 & -2 & \dots & 0 \end{bmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \dots \\ \beta_K \end{pmatrix} = \begin{bmatrix} 2\beta_1 + 3\beta_2 \\ \beta_0 - 2\beta_3 \end{bmatrix}$$

$$= r$$

$$= \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

that is, the GLRM under H_0 : $\begin{cases} 2\beta_1 + 3\beta_2 = 5 \\ \beta_0 - 2\beta_3 = 3 \end{cases}$

© J Fernández (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 145/191

Testing for Linear Restrictions: dn

...so, can have a general test statistic to cover for all hypothesis of the form

$$H_0: \underset{(q \times K+1)}{R} \underset{(K+1 \times 1)}{\beta} = \underset{(q \times 1)}{r} ?$$

■ Given that $\widehat{\beta} \sim \mathcal{N}(\beta, \sigma^2(X'X)^{-1})$, we have that

$$R\widehat{\beta} \sim \mathcal{N}(R\beta, \sigma^2 R(X'X)^{-1}R')$$

■ As before, standardise $R\widehat{\beta}$ and construct SS,

$$\frac{(R\widehat{\beta} - R\beta)'[R(X'X)^{-1}R']^{-1}(R\widehat{\beta} - R\beta)}{\sigma^2} \sim \chi^2(q)$$

■ Therefore (recall changing $\sigma^2 \to \hat{\sigma}^2$):

$$\frac{(R\widehat{\beta} - R\beta)'[R(X'X)^{-1}R']^{-1}(R\widehat{\beta} - R\beta)/q}{\widehat{\sigma}^2} \sim \mathcal{F}_{TK-1}^q$$

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 146/191

General Test for Linear Restrictions: rule (cont)

■ Rule: $F > \mathcal{F}_{\alpha}(q, T-K-1)$ \Rightarrow reject H_0 :

significance level
$$\alpha=5\%=0.05$$
 confidence region critical region 0.6 0.5 0.4 0.3 0.2 0.1 \mathcal{F}_{α} confidence region critical region

Econometrics

General Test for Linear Restrictions: rule

- lacksquare Which Test? $\Big\{ H_0 : R eta = r$
- Remember: Hypothesis → statistic → rule...
- Test for linear restrictions:
 - Hypothesis: $H_0: R\beta = r$ vs. $H_a: R\beta \neq r$
 - Statistic:

$${\color{red} F} = \frac{(R\widehat{\beta} - r)'[R(X'X)^{-1}R']^{-1}(R\widehat{\beta} - r)/q}{\widehat{\sigma}^2} \sim \mathcal{F}^q_{T\!K\!-\!1} \ \ \text{under} \ H_0:$$

♦ Rule: $F > \mathcal{F}_{\alpha}(q, T-K-1)$ \Rightarrow reject H_0 : \Rightarrow linear restrictions aren't (jointly) true.

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 147/19

3.4 Tests based on the Residual Sum of Squares.

© J Fernández (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 148/191 © J Fernández (EA3-UPV/EHU), June 15, 2008

General Test for Linear Restrictions: rule 2

- Hypothesis: $H_0: R\beta = r$ vs. $H_a: R\beta \neq r$
- Statistic:

$$F = \frac{(R\widehat{\beta} - r)'[R(X'X)^{-1}R']^{-1}(R\widehat{\beta} - r)/q}{\widehat{\sigma}^2}$$

■ using result on $\widehat{\beta}_R = (I - AR)\widehat{\beta} + Ar$, numerator is difference between SS's:

$$F = rac{(\mathsf{RSS}_R - \mathsf{RSS})/q}{\mathsf{RSS}/(T\!-\!K\!-\!1)} \sim \mathcal{F}_{T\!K\!-\!1}^q \; \; \mathsf{under} \; H_0 :$$

■ Rule: $F > \mathcal{F}_{\alpha}(q, T-K-1)$ \Rightarrow reject H_0 :

⇒ linear restrictions aren't (jointly) true.

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 150/191

Test based on SS: Example Cobb-Douglas

- Hypothesis: $H_0: \beta_L + \beta_K = 1$ vs. $H_a: \beta_L + \beta_K \neq 1$
- Statistic:

$$\widehat{\nu} = \widehat{\beta}_L + \widehat{\beta}_K$$
$$= 0.67 + 0.27 = 0.89$$

•

$$S_{\widehat{\nu}} = \sqrt{\widehat{\operatorname{Var}(\widehat{\beta}_L)} + \widehat{\operatorname{Var}(\widehat{\beta}_K)}} + 2\widehat{\operatorname{Cov}(\widehat{\beta}_L, \widehat{\beta}_K)}$$
$$= \widehat{\sigma} \sqrt{a_{11} + a_{22} + 2a_{12}}$$
$$= 2\sqrt{4 + 7 + 2(-1)} = 2\sqrt{9} = 6$$

•

© J Fernández (EA3-UPV/EHU), June 15, 2008

$$t = \frac{\hat{\nu} - 1}{S_{\hat{\nu}}}$$

$$= \frac{0.89 - 1}{6} = \frac{-0.11}{6} = -0.018.$$

- Rule: $|t| = 0.018 < t_{0.025}(50) = 2.01$ \Rightarrow don't reject H_0 :
 - ⇒ "constant returns to scale" is supported by data.

Econometrics A F G

General Test for Linear Restrictions: Summary

- Hypothesis: $H_0: R\beta = r$ vs. $H_a: R\beta \neq r$
- Statistic:

$$\begin{split} F &= \frac{(R\widehat{\beta} - r)'[R(X'X)^{-1}R']^{-1}(R\widehat{\beta} - r)/q}{\widehat{\sigma}^2} \\ &= \frac{(\text{RSS}_R - \text{RSS})/q}{\text{RSS}/(T - K - 1)} \sim \mathcal{F}^q_{T + K - 1} \quad \text{under } H_0: \end{split}$$

- Rule: $F > \mathcal{F}_{\alpha}(q, T-K-1) \Rightarrow \text{reject } H_0:$ $\Rightarrow \text{linear restrictions aren't (jointly) true.}$
- Note that, SS form needs estimating twice: unrestricted and restricted regressions.
- and, of course, they can also be used to test for individual significance, overall significance, informative restrictions, etc.

© J Fernández (EA3-UPV/EHU), June 15, 2008

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 151/191

Test based on SS: Example Cobb-Douglas

Alternatively, use SS form to calculate this t ratio: unrestricted:

$$\log Y = \alpha + \beta_L \log L + \beta_K \log K + u, \quad \leadsto \quad \text{RSS} = 200$$

• restricted: $\alpha + \beta_L \log L + (1 - \beta_L) \log K + u$

$$\log(Y/K) = \alpha + \beta_L \log(L/K) + u, \quad \leadsto \quad \mathsf{RSS}_R = 200.001296$$

$$F = \frac{(\text{RSS}_R - \text{RSS})/q}{\text{RSS}/(T-K-1)}$$

$$= \frac{(200.001296 - 200)/1}{200/50} = \frac{.001296}{4} = 0.000324$$

$$< \mathcal{F}_{0.05}(1,50) = 4.04$$

$$lacktriangledown$$
 or (recall $m{t}(m)=\sqrt{\mathcal{F}(1,m)}$)
$$t=\sqrt{F}=\sqrt{0.000324}=0.018$$
 $$

General Test: Example 3

■ GLRM with
$$q=2$$
, $R=\begin{bmatrix}0&2&3&0&\dots&0\\1&0&0&-2&\dots&0\end{bmatrix}$ and $r=\begin{bmatrix}5\\3\end{bmatrix}$:
$$R\widehat{\beta}=\begin{bmatrix}d'_1\widehat{\beta}\\d'_2\widehat{\beta}\end{bmatrix}=\begin{bmatrix}2\widehat{\beta}_1+3\widehat{\beta}_2\\\widehat{\beta}_0-2\widehat{\beta}_3\end{bmatrix}$$

$$R\widehat{\beta} = \begin{bmatrix} d_1'\widehat{\beta} \\ d_2'\widehat{\beta} \end{bmatrix} = \begin{bmatrix} 2\widehat{\beta}_1 + 3\widehat{\beta}_2 \\ \widehat{\beta}_0 - 2\widehat{\beta}_3 \end{bmatrix}$$

$$R(X'X)^{-1}R' = \begin{bmatrix} d'_1(X'X)^{-1}d_1 & d'_1(X'X)^{-1}d_2 \\ d'_2(X'X)^{-1}d_1 & d'_2(X'X)^{-1}d_2 \end{bmatrix}$$
$$= \begin{bmatrix} 4a_{11} + 9a_{22} + 6a_{12} & 2a_{10} - 4a_{13} + 3a_{20} - 6a_{23} \\ a_{00} + 4a_{33} - 2a_{03} \end{bmatrix}$$

■ Therefore F =

Therefore
$$F = \begin{bmatrix} 2\beta_1 + 3\beta_2 - 5 & \beta_0 - 2\beta_3 - 3 \end{bmatrix} \begin{bmatrix} 4a_{11} + 9a_{22} + 6a_{12} & 2a_{10} - 4a_{13} + 3a_{20} - 6a_{23} \\ & a_{00} + 4a_{33} - 2a_{03} \end{bmatrix}^{-1} \begin{bmatrix} 2\beta_1 + 3\beta_2 - 5 \\ \beta_0 - 2\beta_3 - 3 \end{bmatrix} / 2$$

 $\sim \mathcal{F}_{\scriptscriptstyle \mathcal{TK}\!\!\perp\!\!1}^2$ under H_0 :

■ *i.e.*, an "F" statistic for testing two linear restrictions jointly.

© J Fernández (EA3-UPV/EHU), June 15, 2008

General Test: Example 2

■ GLRM with q = K, $R = \begin{bmatrix} \mathbf{0}_K & \mathbf{I}_K \end{bmatrix}$ and $r = \mathbf{0}_K$:

$$R\widehat{\beta} \rightsquigarrow \text{selects} \quad \beta^*$$

$$R(X'X)^{-1}R' \implies \text{selects} \quad \begin{bmatrix} a_{00} & a_{01} & \dots & a_{0K} \\ a_{10} & a_{11} & \dots & a_{1K} \\ \vdots & \vdots & \dots & \vdots \\ a_{K0} & a_{K1} & \dots & a_{KK} \end{bmatrix} = (x'x)^{-1}$$

■ Therefore:

$$F = \frac{(\widehat{\beta}^* - 0)'[(x'x)^{-1}]^{-1}(\widehat{\beta}^* - 0)/K}{\widehat{\sigma}^2}$$
$$= \frac{\widehat{\beta}^{*'} x'x \, \widehat{\beta}^*/K}{\widehat{\sigma}^2}$$

■ *i.e.*, the usual "F" statistic for testing the overall significance of the regression.

General Test: Example 3

■ Alternatively (easier), use SS form to calculate this F statistic:

$$H_0: \begin{cases} 2\beta_1 + 3\beta_2 = 5\\ \beta_0 - 2\beta_3 = 3 \end{cases}$$

$$\beta_1 = \frac{5 - 3\beta_2}{2}, \qquad \beta_0 = 3 + 2\beta_3$$

unrestricted:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 \cdots + u \implies RSS$$

restricted:

$$Y = (3 + 2\beta_3) + (2.5 - 1.5\beta_2)X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 \dots + u$$

$$Y - 3 - 2.5X_1 = \beta_2 \underbrace{(X_2 - 1.5X_1)}_{X_2^*} + \beta_3 \underbrace{(X_3 + 2)}_{X_3^*} + \beta_4 X_4 \dots + u$$

$$Y^* = \beta_2 X_2^* + \beta_3 X_3^* + \beta_4 X_4 \dots + u \implies \mathsf{RSS}_R$$

 \blacksquare and $F = \frac{(RSS_R - RSS)/q}{RSS_R (TK_1)}$, etc.

© J Fernández (EA3-UPV/EHU), June 15, 2008

General Test: Example 2

■ Alternatively, use SS form to calculate this *F*:

unrestricted:
$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_K X_K + u \quad \leadsto \quad \text{RSS}$$
 restricted: $Y = \beta_0 + u \quad \leadsto \quad \text{RSS}_R = \text{TSS}$

Statistic:

$$F = \frac{(\mathsf{RSS}_R - \mathsf{RSS})/q}{\mathsf{RSS}/(T-K-1)} = \frac{(\mathsf{TSS} - \mathsf{RSS})/K}{\mathsf{RSS}/(T-K-1)} \\ = \frac{\mathsf{ESS}/K}{\mathsf{RSS}/(T-K-1)} \\ = \frac{R^2/K}{(1-R^2)/(T-K-1)}$$

obtaining same formula as before.

© J Fernández (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 156/19 © J Fernández (EA3-UPV/EHU), June 15, 2008

3.5 Point Prediction and Prediction Interval.

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 158/191

Concept

- Time series: prediction (of future values)

 ⇒ Forecasting
- Cross-section: prediction (of unobserved values)
 ⇒ Simulation
- In general: prediction \Rightarrow answer to "what if...?" questions, i.e. what value would take Y if $X = X_p$?

Prediction

- Previous chapters: Specification, Estimate and Validation.
- This chapter: Final stage: Use = Prediction.
- Starting point: appropriate model to describe behaviour of variable Y:

Model Specification

↓

Parameter Estimation

↓

Validation and Hypothesis Testing

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 159/1

Basic Elements

■ Model or PRF:

$$Y_t = \beta_0 + \beta_1 X_{1t} + \dots + \beta_K X_{Kt} + u_t$$

$$Y_t = X_t' \beta + u_t, \quad t = 1, \dots, T.$$

■ Estimated model or SRF:

$$\widehat{Y}_t = X_t' \widehat{\beta}, \quad t = 1, \dots, T.$$
 (8)

■ Prediction observation: with subindex p =(usually $p \notin [1, T]$):

$$Y_p = X_p' \beta + u_p. (9)$$

■ Random disturbance u_p :

$$\mathsf{E}(u_p) = 0$$
, $\mathsf{E}(u_p^2) = \sigma^2$, $\mathsf{E}(u_p u_s) = 0 \quad \forall s \neq p$.

■ Known value of vector X'_n .

© J Fernández (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 160/191

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 161/191

Point Prediction

■ Substituting in SRF (8):

$$\widehat{Y}_p = X_p' \, \widehat{\beta}. \tag{10}$$

i.e., numeric value as approximation to unknown value.

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 162/191

Interval Prediction

■ Standardised prediction error:

$$\frac{e_p - 0}{\sigma_e} = \frac{e_p}{\sigma \sqrt{1 + X_p'(X'X)^{-1}X_p}} \sim \mathcal{N}(0, 1),$$

■ Recall how changing $\sigma \to \widehat{\sigma} \quad \Rightarrow \quad \mathcal{N}(0,1) \to \boldsymbol{t}$!!, then

$$\frac{e_p}{\widehat{\sigma}_e} = \frac{e_p}{\widehat{\sigma}\sqrt{1 + X_p'(X'X)^{-1}X_p}} \sim \mathbf{t}(T-K-1).$$

■ Therefore:

$$Pr(-\boldsymbol{t}_{\alpha/2} \leq \frac{e_p}{\widehat{\sigma}_e} \leq \boldsymbol{t}_{\alpha/2}) = 1 - \alpha,$$

 \blacksquare and solving for Y_p :

$$Pr(\widehat{Y}_p - \widehat{\sigma}_e \boldsymbol{t}_{\alpha/2} \le Y_p \le \widehat{Y}_p + \widehat{\sigma}_e \boldsymbol{t}_{\alpha/2}) = 1 - \alpha.$$

■ Then, the $(1 - \alpha)$ confidence interval for the unknown Y_p is:

$$CI(Y_p)_{(1-\alpha)} = \left[\widehat{Y}_p \pm \widehat{\sigma}_e \ \boldsymbol{t}_{\alpha/2} \right],$$

Prediction Error

■ The error made (when taking \hat{Y}_p instead of the true Y_p) is

$$e_p = Y_p - \widehat{Y}_p,$$

- which can be expressed as:
- as a function of the two error sources introduced in the prediction.
- Under normality:

$$(\widehat{\beta} - \beta) \sim \mathcal{N}(0, \sigma^2(X'X)^{-1}), \quad \text{and} \quad u_p \sim \mathcal{N}(0, \sigma^2),$$

so that

$$e_p \sim \mathcal{N}(0, \sigma_e^2)$$

where the prediction error variance is:

$$\begin{split} & \sigma_e^2 = X_p' \underbrace{\operatorname{Var}(\widehat{\beta})}_{\sigma^2(X'X)^{-1}} X_p + \underbrace{\operatorname{Var}(u_p)}_{\sigma^2} + \underbrace{\operatorname{Cov}(\widehat{\beta}, u_p)}_{0} \\ & = \sigma^2 (1 + X_p'(X'X)^{-1} X_p). \end{split}$$

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 163/1

Prediction: Example

■ In the previous example (linearised Cobb-Douglas fn:)

$$\widehat{\log Y}_t = \widehat{\alpha} + \widehat{\beta}_L \log L_t + \widehat{\beta}_K \log K_t, \quad T = 53;$$

$$\widehat{\log Y}_t = 2.10 + 0.67 \log L_t + 0.32 \log K_t, \quad \widehat{\sigma}^2 = 4$$

- "What value would Y_p take if $\log L_p = 2.5; \log K_p = 2.0$?":
- $\blacksquare \ X_p' = \begin{bmatrix} 1 & 2.5 & 2.0 \end{bmatrix}$

$$\widehat{\log Y_p} = X_p' \,\widehat{\beta} = \begin{bmatrix} 1 & 2.5 & 2.0 \end{bmatrix} \begin{bmatrix} 2.10 \\ 0.67 \\ 0.32 \end{bmatrix}$$
$$= 2.10 + 0.67 \cdot 2.5 + 0.32 \cdot 2.0 = 4.42$$

Prediction: Example

■ Construct a 95% CI for the true Y_p :

$$\widehat{\sigma}_e^2 = \sigma^2 (1 + X_p'(X'X)^{-1} X_p)$$

$$= 4 \left(1 + \begin{bmatrix} 1 & 2.5 & 2.0 \end{bmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & -1 \\ 0 & -1 & 7 \end{pmatrix} \begin{bmatrix} 1 \\ 2.5 \\ 2.0 \end{bmatrix} \right)$$

$$= 4 \left(1 + \begin{bmatrix} 2 & 8 & 11.5 \end{bmatrix} \begin{bmatrix} 1 \\ 2.5 \\ 2.0 \end{bmatrix} \right)$$

$$= 4 (1 + 45) = 4 \cdot 46 = 184$$

$$\begin{split} CI(\log Y_p)_{0.95} &= \left[\widehat{\log Y_p} \pm \widehat{\sigma}_e \ \pmb{t}_{0.025}(50)\right] \\ &= \left[4.42 \pm \sqrt{184} \cdot 2.01\right] \\ &= \left[4.42 \pm 27.25\right] \\ &= \left[-22.84 \quad ; \quad 31.68\right] \end{split}$$

© J Fernández (EA3-UPV/EHU), June 15, 2008

Introductory Econometrics - p. 166/19