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2 The Linear Regression Model (I).
Specification and Estimation.
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2.1 Specification of the General Linear
Regression Model (GLRM).
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Specification of the GLRM (1)

m Objective: Quantifying the relationship between:
+ avariable Y and

+ a set of K explanatory variables
X1, Xo, ..., XK,

+ by means of a linear model.

® Starting point:

+ a linear model:
Y=00+6X1+ -+ B8xXk +u,

+ a data sample of size T
Yy, X1, Xogy oo, Xi, t=1...T,
where

Y, = t-thobs of Y,
X =tthobsof X, k=1,2... K.
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Specification of the GLRM (2)

® GLRM:

Yi=0Fo+ Xt + -+ B Xk +ug, t=1,2...T

whose elements are (recall):

+ Y dependent variable,

¢ X, k=1...K: explanatory variables,

* [y intercept,
Ok, k=1...K: coefficients ( parameters to be
estimated),

+ 1. (non-observable random) error or disturbance,
that allows for:
= variables not included in the model,
= random behaviour of economic agents,
= measurement errors.
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The GLRM in observation form The GLRM in matrix form (1)

the model or else in matrix form:
Yi=p0o+ 65X+ + B Xke +ug, t=1,2...7, v ] [ Bo + BiX11 4 BoXor + -+ + B XK1 | [y |
implies for each observation: Y Bo + B1-X12 + P2 Xo2 + -+ + B X2 Uz
i N T T L
Y1 =00+ b1 X1+ BeXor + -+ Bxk XK1+ Y, Bo + B1X1s + BoXop + -+ Bre Xkt U
Yo = B0 + B1X12 + BaXoo + -+ + Br Xpo + us I |
------ Yr| | Bo+BiXr + BeXor + -+ Bk Xkr|  |ur)

Yr = B0+ 61 Xar + foXor + - - + B XkT +ur
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The GLRM in matrix form (2)

m that is:
_Yl- —]. X11 X21 XKl- ﬁO —’U,l—
Y2 1 X12 X22 e XK2 ﬁl ug s . .
R N P P 2.2 Basic (Classical) Assumptions.
= 2 .
Y, 1 Xy Xo ... Xr _ g Interpretation.
_YT_ _1 XlT XQT e XKT_ BK _uT_
Y X g U
(T x 1) (T x K+1) (KH XD op 1y
|
Y = X8 +u.
q
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Basic Assumptions of the GLRM (1)

1. Assumptions about the relationship:
m Model is correctly specified:
Xy, explains Y & X, € model.

2. Assumptions about the parameters:
m they are constant throughout the sample,

m they appear linearly (i.e. a constant plus coefficients)
* Y= 0o+ 1 Xe +uy
m Note: butvars Y, X, X5, ... may be transformations:

1

* Y, :ﬁo+ﬁlXt+ﬁ2Xt2+ﬁ3Y + uy
t

* Y, = AXPI X D2eu (Why?)

¢ and this? Y; =06+ 51

+ u
Xe—B
¢ and these other?
InY; = Bo X uy;  Yi=BoX) +uy
Y = 1 X1 + Bo X0t Xor +uy; Yy = Fo + ﬁlXﬁ” + uy
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Basic Assumptions of the GLRM (2)

3. Assumptions about the explanatory variables:
(@) Xi,...,Xg, are quantitative and fixed (i.e. not random).
(b) X4,..., Xk, are linearly independent:
B AX;|Xy = lin. comb. of others (Why?)

m Examples of not valid cases:

* Y, = fo+ 51 Xe + B2 (2X; + 3) + w

* Y, = 0o+ B1X1s + BaXor + B3(X1e + Xae) + ue
m Examples of valid cases:

* Y, = fo+ 1 Xy + B XP +uy

* Y, = Bo+ B Xue + BoXo + B3 X1 Xoe + ur
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Basic Assumptions of the GLRM (3)

4. Assumptions about the disturbance term:
(a) Zero mean:
E(w) =0 Wt
(b) Homoscedastic:
Var(u;) = E(uf) = 02 (= 0?) const (Vt).
(c) Serially uncorrelated:
Cov(ut,us) = E(utus) =0 Vt#s.
(d) Normally distributed ™) :
ug ~ NVt (* added)
B Assumptions 4a—4d jointly:

(isn't obvious?).

uy ~ iid N(0,02)
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Basic Assumptions in matrix form (1)

m from 4a: Mean Vector:

E(ul) 0
E(u) = E(?Q) < " =0r
(T x1) '

E(’LLT) 0

m from 4b and 4c: Covariance Matrix:

[ E(u%) E(u1u2) E(uluT)
E(uu’) _ E(u2u1) E(u%) E('U,Q'U,T)
DTy  |7rrrrerer

|E(urw1)  E(urus) E(u})

(02 0 0

2
_ 0 o 0 _ UZIT
L0 O a2
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Basic Assumptions in matrix form (2)

® more compactly:

u ~( 0 705]T)

(T'x 1) (T'x1) (T'xT)

® plus 4d:

u ~N( o0 ,o2p)

(T x 1) (el (TSI
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2.3a Ordinary Least Squares (OLS) in a
Single Linear Regression Model (SLRM).
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SLRM: the PRF
mWithK=1 ~ Y;=0+ 01 X1+ uy,

(SLRM): Y, = a+ BX; + ;. (1)

m Population Regression Function (PRF):
E(u) =0 ~» systematic part or PRF:

E(Yt) =a+ (X

m [nterpretation of the parameters:
¢ o = E(Y;|X;, = 0): Expected value of Y;
when the explanatory variable is zero.
o 5 OE() _ AE(Y)
‘ 0X;,  AXy

: Increase in (expected) value of Y;
when X 1 one unit (c.p.).

m Objective: To obtain estimates «a, B
of the unknown parameters «, 3 in (1).
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The Sample Regression Function (SRF)

mQ, 3 ~  model estimate or SRF:

?t:aJrBXt

m Interpretation of the estimates:
¢ a = (Y| X; = 0): Estimated value of Y;
when the explanatory variable is zero.
~9Y, AY, _ . :
3= ~ ="' Estimated increase in Y;

* ~ .
0X,  AX,

=

when X 1 one unit (c.p.).

m Note difference: an estimator (a formula)
vs. an estimate (a number).
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Disturbances vs. Residuals

m Disturbances in PRF:

Ut:Yt—E(Yt)ZYt—a—/@Xt

m Residuals in SRF:
=YY =Y —a-px

m Residuals are to the SRF
what disturbances are to the PRF.
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SLRM: PRF and SRF

PRF E(Y)=a+BX

g X
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Estimation: Desired Properties (1)

Let B be an estimator of 3. ..
Unbiasedness:

E(@ =3 < Junbiased
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Estimation: Desired Properties (2)

Let B and B be unbiased estimators of ...
Relative efficiency:

Var(B) < Var(3) <« [ relatively efficient
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Estimation: OLS criteria

SLRM: Y;g =+ BXt + Uy,
m apply Least-Squares fit:

T
mmZut where u; =Y; —a— (X :

m First derivatlves

. 52

23 taut =23 uw(-1)

a%:;t =2 taUt =23 u(—Xy)

m Ist.o.c. (minimum) = f|rst derivatives are zero:

s Y =) (M-a-Bx) =0

. SuXe =Y (VX — X, — BX7)=0

(©J Fernandez (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 45/191

Estimation: Normal equations & LSE of «

®m From the above 1st.o.c’s:
Y (Vi—a-pBX,) =0
S (ViX, - aX, - BX}) =
® we obtain the Normal Equations:

ZYt =Ta+t ﬁZXt 2 equation system
Zytxt - aZXt + BZ x2 [ with 2 unknowns!!

® Dividing the 1st. normal eq. by 7

%ZYt: %T&+B%th

m That is:

dors =Y — X
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Estimation: Normal equations & LSE of 3

m Substituting « in the 2nd. normal eq.:

ZYtXt = (?*BY)ZXt +BZX3
m ... dividing by 7" and grouping together:
1 ~1
SO VX = (V- FX)F T X+ B2 > X7
1 == (1 5 =2
=Y VX, - VX = CAQ(TZXt ~X )
® ... and solving for the unknown:

A= =
Ly x2-X* gy [Why?

m Thatis:

Cov(Y, X)
Var(X)

Bops = 2Pt _
OLS ZI’?
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Recall: variances and covariances?

m variance from original (uncentred) data?

Var(X Z 2= Z L — X)?
=TZXE+%ZYQ—%YZXt

%ZIL‘? = %ZXE—YQ

m covariance from original (uncentred) data?

Cov(Y, X) Zztyt fZ (X: = X)(Y: —Y)

= TZXthJr%ZW—%VZXt—%YZYt
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Numerical example: strawberry prod data

m Data. ..

® Centred data or “in deviation form”
(deviations from respective means). . .

u Squares and products. . .
Y X y T y? 22 yx
40 10 | -30 -40| 900 1600 1200
60 25| -10 -25| 100 625 250
50 40 | -20 -10 | 400 100 200
70 45| 0 -5 0 25 0
90 60| 20 10 400 100 200
80 80|10 30 100 900 300
100 90 | 30 40 900 1600 1200
Sum 2800 4950 3350
Average 70 50| O 0 400 707.14 478.57
~ Cov(Y, X)
67 ( ~ Var(X) )
Can also use formulae based on original data. . . (Exercise: Try it!!)
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Numerical example: strawberry regres plot

120
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Econometrics

2.4a Properties of the Sample
Regression Function.
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Properties of residuals and SRF (1)

Bos ~ dos v Yi=a+pXy v~ u=Y;-Y;

1. residuals add up to zero: > u; =0

Demo: directly from 1st.o.c. a
2.V =Y B

Demo: bydef: 4, =Y, -Y, ~ Y=Y -7,

but@ = + > 4, = 0 (from prop 1) ~ Yy =Y. O
3. the SRF passes thru the pair of means (X,Y):

Y =a+pX
Demo: froma =Y — X (1st. normal eq.)
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Properties of residuals and SRF (2)

4. residuals orthogonal to expl. v. X: > X;u; =0
Demo: directly from 1st.o.c. |

5. residuals orthogonal to the explained partof Y: > Yu, =0
Demo: Z(a + BX,) T, =

a Y i +8 > X =0 O
N——" N—_——
=0 (from prop 1) =0 (from prop 4)
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Causality: Yon Xvs Xon Y

20
a
*
a
0
0 10 20 30 40 50 60 70 80 90 100
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Properties of residuals and SRF (5)

8. apLs and [o s unbiased ~ expected value = true value!
Demo:

> Z Yt Tt

S oF:
RERS eI AN

Bzt
E(B) =5
>
a=Y -3X
1 =
E(@) = 5 Y E() —E(A)X
1 _ .
= TZ(a—i—ﬂXt)—ﬁX:a—i—BX—BX
E(a) =«
(©J Fernandez (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 55/191

Econometrics

2.5a Goodness of Fit:
the Coefficient of Determination (R?).
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Goodness of fit: Coefficient of determination

®m Sum-of-Squares decomposition:
SOvE=) (V2 +ap + 2

= V)
n S yIv = ZW—T?Q +) az
n R = B4y

(T8s)  (BSS)  (R§S)

(from prop 5)

(from prop 2)

m Definition of R2:

0 < R?<1 (Interpretation in terms of total variance??)
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No intercept ~ invalid R?

SLRM: Y; = ﬁXt + Uy,
m apply Least-Squares fit:
T
m{}nZuf where u; =Y; — X, :
t=1

m First derivativer:
9> u; Ouy
op 2 B 2 u(=Xi)

m Ist.o.c. (minimum) = first derivative = zero:

ZatXt = Z(Y; Xt — BXE) =0

~

Ut
#+

~h

0,

A 1st equation!!  ~ { ~ invalid R*  (Why?)

=AM
=l

)
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Relationship of R? with correlation coef

TX pX(Br)? iy

R® = = =
DM D' T
_ mVar(X)  Cov(Y, X)? Var(X)
Var(Y') Var( X)2 Var(Y)
_ Cov(Y,X)’
~ Var(X)Var(Y)
R*= "'g(,y
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m recall data & previous calculations. . .

m do the same for fitted values. ..

m now calculate R?...

y* Y y v u u?

900 | 4292 -27.07 | 732.82 -2.92 8.58

100 | 53.08 -16.91 | 286.25 6.91 | 47.87

400 | 63.23 -6.76 4580 -13.23 | 175.09
0 | 66.61 -3.38 11.45 3.38 11.45

400 | 76.76 6.76 4580 13.23 | 175.09

100 | 90.30 20.30 | 412.21 -10.30 | 106.15

900 | 97.07 27.07 732.82 2.92 8.58

Average 400 70 0| 323.88
Sum || 2800 2267.17 532.82
TSS ESS RSS

R*=0.8097 (=58 =1- &
(Exercise: How does this compare with Corr(X, Y)? LTy it
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2.3b OLS in the GLRM.
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GLRM: the PRF

m Recall: model with K explanatory variables:

Yy =080+ 51 X1 + - + B Xkt + us,

Y=X08+4u @

is called GLRM.

m Population Regression Function (PRF):
E(u) = 0 ~ systematic part or PRF:

E(Y;) =00+ /Xt + -+ B Xkt
E(Y)= X8

m |nterpretation of the coefficients:
* 0o = E(Yi| X1t = Xot = -+ = Xkt = 0): Expected value of
Y; when all explanatory variables are equal to zero.
OE(Y:)  AE(Y) :
. = ~ k=1...K: Increase in
& 0X AXyy '
(expected) value Y; when X 1 one unit (c.p.).
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The Sample Regression Function (SRF)

m Objective of GLRM: To obtain estimator ,@ = (Boﬁl A BK)’
of unknown parameter vector in (2).

7 ~~ estimated model, fit or SRF:

Yi=Bo+ X+ -+ Bx Xk

Y = X3
m Notes:
< Disturbances in PRF:
w=Y,—EY) =Y, — 00— 51 X1 — - — B XK+

u=Y -EY)=Y — X8
¢ Residuals in SRF:
Y=Y, =Y, —Bo— B Xue — - — B Xk
—-Y=Y-Xj

<)

t

u=Y

m Residuals are to the SRF what disturbances are to the PRE
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Estimation: OLS

m apply Least-Squares fit to GLRM: Y = X3 + u,
m either in observation form:

T
min Y uf where u; =Y, — By — f1 X1y — -+ — B Xit
t=1

Bo---Bx —

®m or in matrix form:

{ recall: Uy

u’:(ul,ug,...,uT) w=| "

ur
Loy — 2,2 2 2 _ v 2
SOuu—u1+u2+~~+uT—§t:1ut }

m that is

mﬁin Wu where u=Y —Xp3
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Note: vector derivatives
m Let u = u(B): derivs of cu and cu? with respect to 3
i(cu)zca—u and 2u2:2u@

op op B op

m With vectors and matrices this is quite similar:

m The derivative of the linear combination u'c

o ¢ (=Y0 ciuy, ie. scalarll)
(1xn)(nx1)

B(u/c) _ou

with respectto g st 93 = 25¢

(kx1)

® The derivative of the sum of squares u'u

Economeirics]

1st.0.c. in matrix form

mﬂin(u'u) where u=Y — Xj

First derivatives of SS u/u with respect to 3:

8u’u_267u’

a8 “ap"
B a(Y/_BIX/)
=2 95 U
=-2X"u

in the minimum:

1st.o.c.: X! 7 = Ogn

o' @ (=Y, u?, i.e. scalar!l)
(1xmn)(nx1)
(') , (K+1 x T) (T x 1)
; o~ uu) o du
with respectto g st 55~ = 255U
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Estimation: Normal equations & LSE of

Solving the 1st.o.c. we obtain the normal equations:

-~

X'(Y-XB)=0 =

XY= XX 3 (3)

(K+1 x 1) (K41 x K+1) (K+1 x 1)

Whence premultiplying by (X’ X)~! we obtain the OLS

estimator

BoLs = (X' X)XV
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Estimation: LSE of 3 (cont)

m where X'X is a [K+1 x K+1] matrix: [recall X & Y? —]

]
T > Xt S X Y Xk

XX > X > X Do X1 Xor oo D X1 Xk

AL L) | rmemme e
ZXKt ZXKtXu ZXKtX% ZX%“

m and XY and j3 are [K+1 x 1] vectors:

S, B

Xy = > XY, 5= B
(K+1 x 1) (K+1 x 1) o
> XkiYs Bx

(©J Fernandez (EA3-UPV/EHU), June 15, 2008 Introductory Econometrics - p. 68/191




An alternative way to obtain the OLS estimator is

BBLS = (2'z) "2y

for the model coefficients.

...together with the estimated intercept obtained from the first

normal equation

Bo=Y — BiXy

AN —_—
Or X K
Note: special case with K = 1 ~ identical formulae as in
SLRM!! (Prove it!l)
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OLS estimator with centred (demeaned) data (co

2.4b Properties of the SRF.
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Properties of residuals and SRF (1)
~ ﬂ/\ W?IXBWQZY—?
B* ~ Bo
1. residuals add up to zero: > u; =0
Demo: directly from 1st.o.c.:

ST, 0

ST X1 0

Xi=0= | Y7 Xoiy |=| 0
ST X ey 0

2.V =Y
3. the SRF passes thru vector (X,... Xg,Y):
Y=0+M/X1+ - +0BxXk

Note: These properties 1 thru 3 are fulfilled if the regression
has an intercept; that is, if X has a column of “ones”.
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Properties of residuals and SRF (2)

4. residuals orthogonal to explanatory v.: X'u =0
5. residuals orthogonal to explained part of Y: Y'ia=0
Demo: Vi = (XB)a=0X1u=0 O
<~
=0
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2.5b Goodness of Fit:
Coefficient of Determination (R?) &

Estimation of the Error Variance.
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Goodness of fit: R? Revisited

Recall (same as before but now we’ll do it with vectors):

Y'Y

V' + @)Y + 1)
Y'Yy
0%

)~

au+2Y'a

A~

+
+u'u  (from prop 5)

|
=~

. ~, =2
Y'Y TV =Y'Y-TY +da  (from prop 2)

vy = ¥y + vu
!
(Ts)  (BSS)  (RSS)

2 ESS _ | RSS
T 1TSS  TSS
0<R*<1
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Goodness of fit: R? Revisited (cont)

Note 1: R? measures the proportion of the dependent variable
variation explained by (a linear combination) of the variations
of the explanatory variables.

Note 2:

Z at 7é Oa
Y47,
not validR? (Remember!)

. Alst row of 1st.0.c. ~
no intercept =
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Estimation of Var(u;)

T
0 = Var(u) = E(u}) ~ 7 3" uf
t=1

but with residuals, they must satisfy K+1 linear relationships in
X't = 0 so we loose K+1 degrees of freedom:

1 T
~2 _ ~2
7T KA ; Ut

Therefore we propose the following estimator:

_, RSS

O = ———
T—K—-1

which is unbiased:

O
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2.6 Finite-sample Properties of the
Least-Squares Estimator.
The Gauss-Markov Theorem.
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Properties of the Least-Squares Estimator (1)

The estimator Eo,_s = (X’'X)71X'Y has the following
properties:
W Linear: [BoLs IS a linear combination of disturbances:
B=(X'X)"'X'(XB+u)
= (X'X)'X'XB+ (X'X) ' X'u
=B+ (X'X) ' X'u
=8+T"u

® Unbiased: Since E(u) =0, BoLs is unbiased:

E(3) =E(8+T"u)
= ﬁ+F/E(u)
o
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Properties of the Least-Squares Estimator (2)

m Variance: Recall:
Var(u) =o?Ir,
B:ﬂ_"_ (X/X)le/u’

=E((B-B)(B-B))
=E((X'X) " X uu/X(X' X))
= (X'X)"'X'E(uw) X(X'X)™!
= (X'X)"' X o*Ip X(X'X)7!
=X’ X)) X' X(X'X)!

Var(@

Var(8) = o*(X'X) ™ o
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Val'/(\ao/)\ COV(BO/Z Bl) <o ¥ COV(@(), éK)
Var(@ - Cov(f1, %) Var () Cov(f1, Bk)
COV(EK,BQ) COV(BK,Bl) Var(BK)
app apo G@o1 ... QAOK
aip ai a2 ... Q1K
O'Q(X,X)71 :0'2 a0 a1 a929 a2 K
aGKo AaK1 QK2 99:¢:¢

i.e. axy, isthe (k + 1,k + 1)-element of matrix (X’ X)L
Var(ﬁk) = UQCka

Cov (B, 3;) = 0%k
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The Gauss-Markov Theorem

“Given the basic assumptions of GLRM, the OLS estimator is

that of minimum variance (best) among all the linear and
unbiased estimators”

5OLS =BLUE = BestLinearUnbiasedEstimator

Demo:
(SEE NOTES)
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2.3c OLS: Main Expressions & Timeline.
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Useful expressions for SS

|
TSS=3" (V-2 =YY -1V =YY -1V
|
~ = ~ =2 ~ . ~ o~ .
ESS =Y (M =YP =3 Y2-TV =3 V2-TV =YV -1V’
= (XB)(XB) —TY =B X'XB-TYV =XV — TV
——
XY
|
RSS =Y @ =4 =N 2N VE=vly - gXY
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Main expressions & Timeline

mY =XG+u
s (X'X)D XY
" = (X'X)'XY
" ESS = -TY" (needs Y)
n 7SS =YY -TY"
" RSS=Y'Y - BX'Y (no Y
m 22
., RSS
Hg° =
T-K—1

m Var(j) = 52(X'X) !
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2.7a Omission of relevant variables.
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Omission of relevant variables
m frue relationship:

Br

Y:Xﬁ+u:[X, | XH] Y
Br1
1 Xn XK1 | XKi+1,1 XK1
x=| ' X2 XKq,2 XK +1,2 XK2
1 X7 XK, 7 | XKi4+1,T XKT

Y = X181 + X11B8r1 +u
m estimated relationship:

Y =X;06r+wv where v = X101 + u,

then E(v) #0  ~  E(0) #0.

i.e. B is biased.
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Bo
B1

BK,

BKi+1

BK

Introductory Econometrics - p. 86/191

Econometrics

Omission of relevant variables: consequences

Summary:
m OLS estimator of coefficients is biased
(exceptif 2z =0).
m OLS estimator of intercept is always biased.
m Estimator of Error variance is always biased.
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2.7b Multicollinearity
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Perfect Multicollinearity

Extreme case:
m exact linear combination:
* Z}{f:() )\kat = 07 A 7é 03 XOt = 13
X | X =N+ 200 N X,
k#1
. ;'Xi,Xj | COI’I'(XZ',Xj) =1,
* JX, | aux regres X; on {Xk}kK, \ d RZ=1.
k#7
® Problem:
¢ rk X < K+1, (X isn't of full rank)
¢ ~ det(X)=0
¢~ HX'X)!

* ”
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Perfect Multicollinearity: example
mlet X, =2Xy Vit
Xyt =04+2X1; +0- Xop +0- X34 +0- X + -+ + 0 - Xy,

® N0 error? = aux regres X, on {Xk}kK L~ R? = 1!
k#4

AN

®m Model specification:
Yy = Bo + B1 X1 + BoXop + B3 X3 + BaXuy + - +ug, t = 1,27,
Xag = 2Xqy,
® and substituting in model:

Y, = Bo + 51 X1e + foXor + B3 X + Ba(2X14) + - -+ + wy,
= Fo+ (1 +204) X1¢ + foXot + F3 X35t + -+ uy
———
BY

® now we have one less parameter to estimate.
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Multicollinearity: counterexample

Y: = Bo + B1 X1t + BoXor + B3 X3 + -+ ue

m Just K parameters remain to be estimated,

but 6, and 5, cannot be estimated separately:

+ we can just estimate a linear combination of them:
B = B1 + 204,
# j.e. combined effect of X;; and X4 on Y;!!
m (Exercise: Try it yourself with X5, — 3X5, = 10, Vt.)
m multicollinearity = linear relationships

but. .. what if relationship isn’t linear? e.g.:

Y = Bo + B1 X1t + B X3P +uy

. X is of full column rank ~»  no problem.
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Perfect Multicollinearity: consequences

® some parameters cannot be estimated separately.
® some estimates are just |.c. of parameters.

m R? is correct:
correctly picks up proportion of Y; explained by the regression.

m Predictions of Y are still valid.
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2.7c Imperfect Multicollinearity
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Imperfect Multicollinearity

m Problem:

Yy = Bo + 1 X1¢ + BoXor + B3 X3 + BaXyy + -+ up, t =1,2..., T,
Xy = 2X44 + vy,

vy = gap between X4 and 2 X, ,
® approximate relationship:
] auxiliary regression Xy onrest ~ R?~ 1.
] it's a matter of degree (z’z not diagonal
~ correlated variables)
m Note: whenever perfect/imperfect is not specified
we mean imperfect mc.
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Multicollinearity: Symptoms

m Typical symptom:
¢ high R?
(relevant group of regressors)
+ but “t” ratios not significant
(inability to separate effects of regressors).

m more formally:

2

Var(3*) = o?(a'z) "t = %Var(X*)f1

0_2

TVar(X;)(1—-R3)’

= Var(ﬁk) =

m so that, in the previous example X4 ~ 2X14:
¢ Corr(Xy, X1) 1
. R2 and R? 17
. denominator |
* variances ]
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Multicollinearity: Consequences

m Some coefficients aren’t significant, even if their variables
have an important effect on dependent variable.
m Nevertheless, Gauss-Markov
= linear, unbiased and of minimum variance estimators,
then it isn’t possible to find a Better LUE.
m R? is correct:
correctly picks up proportion of Y;
explained by the regression.

m Predictions of Y are still valid.
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= O\l

Multicollinearity: How to detect Multicollinearity: Some solutions

Multicollinearity is not an easy problem to solve.

m Small changes in data Nevertheless, from
= important changes in estimates 2

~ g
s S V _ ,
(they can even affect their signs) ar(3x) TVar (%) (1~ )

m Coefficient estimations

not individually significant. it turns that:
] Regressors are J0|nt|y Significant. T T: Increase number of observations 7' . .
Also, differences among regressors may increase.

Var(X) 1: e.g. study about consumption function:
= high R2. - §amp|e c.>f families «~ all possible rents.
Var(X) 1: Additional information.
e.g. impose restrictions suggested by Ec. Th.

o2 | New relevant regressor not yet included.
It would also avoid serious bias problems.
R? |: Eliminate variables that may produce multicollinearity.
(Take care of omitting some relevant regressor though).

m High coefficient of determination R?.
® Auxiliary regressions among regressors
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GLRM under linear restrictions (1)

® previous chapter objectives:
+ Econometric model (GLRM), characteristics and basic

assumptions. . .
. * but...no knowledge about model parameters.
2.8 The Least-Squares Estimator un der # Least Squares Method for parameter estimation (OLS).
Restrictions. + Properties of resulting estimators.

m present chapter objectives:

# a priori information about parameter values (or I.c.) ...

+ given by
= economic theory,
= other empirical work,
= OWn experience, etc.

+ Non-Restricted Model = Ordinary LS.

+ Restricted Model = Restricted LS.

+ Check, given the estimated model, if they are compatible
with available data.
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GLRM under linear restrictions: examples

m production function with constant returns to scale: Gk + 6, = 1.
m product demands as function of price: 5 = —1 (say).

® in GLRM: let us assume that 8o =0 and 233 = 6, — 1 :
+ Full model:

Yy =00+ 51X+ + BreX ke + ug, With o =0 and 265 + 1 = Sy;

+ Alternative transformed model:
Y = Bo+ 51 X1 +0Xop + 83 X3 + (283 + 1) Xge + - -+ B Xiee +uy
Yi— Xy = Bo + b1 X1e + B3( Xzt +2Xu) + - + B XKoo + uy
Vi = Bo+ 01 X1 + 032 + -+ B Xkt + ue
where YV," =Y, — Xy, and Z; = X3 + 2X 4 .
# This transformed model:
= can be estimated by OLS:
5o, 51, B3, 05, - .., Bk , together with 5, =0and 84y =203 + 1.
= has new endogenous variable Y;* (not always so: e.g. if 5, = 0 alone)
and new explanatory variable Z;.
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GLRM under linear restrictions (2)

® The “transformation” method is good for simple cases only.
m In general, ¢ (nonredundant) linear restrictions among

parameters:
Bo
1 [fo o ¢ o G o
Bz | =
g \¢ © ¢ o e o
Br
+ for given matrix R and vector r,
R B= r
(g x K+1) (g x1)

+ example of non-valid case (why?):

B3 =0, 20:4+30s=1, [1—=204=3, 060s=2-402+03
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GLRM under linear restrictions (2cont)

m Write previous example 5, = 0 and 265 = 04 — 1
(¢ = 2 restrictions) as in general formula:

Bo
0010 0 0 ...0 Zl (o
0002 -10 ...0 2 )
R Br .
(2 x K41) (2x1)
(K+1 x 1)

® In general, we write GLRM subject to ¢ linear restrictions as:

Yy = X B+t u
(T'x1) (TxKH)(K+lx1) (Tx1)
R Ry i

(g x K41) (K+1 x 1) (gx1)
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Estimation: restricted least squares (RLS).

m Typical optimization exercise:
m/}n(u/u) where uw=Y — X3,
subjectto R = .
m L agrangian:
L(B,\) =v'u—2)N(RB—7)

Iél}){lL(ﬁ,)\).

m First derivatives:

OL(B,N) _ Lo
g = 2 X 2R

OL(B,A) s

T— 2(Rd 7'),
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Estimation: restricted least squares (RLS) (cont)

m 1st.o.c. ~» normal equations:

X'ip+R'N=0, )
RpBr=r, ®)

where BR and \ are values of 0, A that satisfy 1st.o.c. and
residuals b
ur =Y — X fBg. (6)
m Solving forBR: (see notes)
Br=PB+A(r—RB) = (I - AR) B + Ar ()

where A = (X'X)'R'[R(X'X)"'R']71.
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RLS estimation: characteristics

m Expression (7): BR = ﬁ+ A(r — RB) ~

*

*

the restricted estimate BR can be obtained as a function of
the (not restricted) ordinary estimate: 3
RG~r = (g (restricted) ~ 3 (not restricted) .

m Normal equations (4): X' g + R'N=0~

L 4
4

*
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satisfy the restrictions (obvious).

X'up #0,i.e.

= sum of restricted residuals not zero,

= restricted residuals not orthogonal to explanatory
variables,

= then, restricted residuals not orthogonal to fitted f’R.

TSS # RSSy + ESSp

(compare with ordinary case and with transformed

equation: R2 ?27?).
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Properties of the RLS estimator (1)

Expression (7): Br = (I — AR) B+ Ar  ~

. Linear: RLS estimator (3 is l.c. of OLS estimator /3, which is linear , then
Br is linear also .

biased, ifRB#T,

. Bias: RLS estimator 3 is
fr {unbiased, if R3 =rtrue

Demo:

E(Br) = (I — AR)E(B) + Ar = (I — AR) B+ Ar = 3 + A(r — Rf).

. Covariance Matrix: Var(3g) = (I — AR)Var(j) = 0*(I — AR)(X'X)""
Demo: (see notes)
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Properties of the RLS estimator (2)

4. Smaller variance than OLS estimators,

even if restrictions aren’t true:

Demao:

Var(Br) = Var() — AR Var(3)
= Var(@ — (psd matrix).

5. surprising result (apparently):
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less “uncertainty” about parameters
~~ greater precision in estimation. ..

... but towards an erroneous result (biased)
if restriction isn't true.
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Multicollinearity vs restrictions

Must clearly distinguish two different cases:
m linear relationships among regressors
(i.e. multicollinearity):
eg. Xy =2Xy
= missing information for individual estimates.
m |inear relationships among coefficients:

eg. Ba=20
= extra information about parameters
~+ estimators with smaller variance.

m respective models to estimate:
Y: = Bo+ (B1 + 284) X1t + foXot + + -+ - + uy,
——
BY o N
: => ﬂik bUt /51, “84 ?

Y: = 0o+ B1(Xae + 2Xup) + faXor + + -+ + ue,
—

Xy ~ ~ ~
" = [ and [, = 2 (1
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