INTRODUCTORY ECONOMETRICS

3rd year LE \& LADE
 LESSON 1

Dr Javier Fernández-Macho
etpfemaj@ehu.es
Dpt. of Econometrics \& Statistics
UPV-EHU

1 Introduction

Introduction: Definitions

ECONOMETRICS

- (plz, do not confuse with economic + tricks !!!)
- etymological:
oíк ω s [oikos], 'household',
and $\nu \varepsilon ́ \mu \omega$ [nemo], 'rules'
hence economics \rightsquigarrow household management
$+\mu \varepsilon \tau \rho \omega$ [metró], 'measure'.
Economy + Measurement
- additive:

Social science which applies
Economic theory, Mathematics and Statistical inference
to the analysis of economic phenomena (Goldberger(1964)).

- utilitarian: The art of the econometrician = define appropriate model + find optimal statistical procedure
\rightsquigarrow econometrician \neq statistician;
$\cdots+$ sound training in economics (Malinvaud(1963)).

1.1 Definitions. Elements of Econometrics

Introduction: Definitions

- plain: application of statistical methods to economic data (Maddala(1977)).
- concise: empirical determination of economic laws (Theil(1971)).
- AFG(2004): Econometrics deals with
- formulation (or specification),
- quantification (or estimation),
- validation (or testing),
of relationships among economic variables.

Introduction: 3 Elements:

- ECONOMIC TH:
in charge of
- (general:) analysis of the economy
- (specific:) relationships among economic variables
- DATA:
to quantify is NOT one of the objectives of Economic Th
- STATISTICS:
provides basic structure of data processing methods for:
- (estimation:)
quantify relationships among variables in an appropriate way.
- (testing:)
validate results in agreement with certain established standards.

Element 1: Economic Th: basic model

- Case: company manager or sales director,
- Interest: to know relationship between their sales and their price.
- basic economic logic: sales as a function of price \rightsquigarrow basic economic model:

$$
\underset{\text { sales }}{V}=f(\underset{\substack{\text { price } \\(-)}}{p})
$$

[^0]
1.2 Concept and example of model: From the economic model to the econometric model.

©) Femândez (EAB-UPVVEHU), June 15, 2008

Element 1: Economic Th: additional vars

- additional economic logic: sales depend on
- conditions of rival firms (e.g. competition price)
- market conditions (e.g. economic cycle)

■ complete Model:

$$
\underset{\text { sales }}{V}=f(\underset{\substack{\text { price } \\(-)}}{p}, \underset{\substack{\text { competition price } \\(+)}}{p c}, \underset{(+)}{c} \underset{(+)}{c})
$$

- NOTE:
proposed economic model \equiv summary of ideas, but nothing new for manager;
they need specific model for their company
\rightsquigarrow how their sales respond to their price.

Element 2: Data:

- specific Information:
manager has information about:
- their sales and their prices (quantitative data)
- prices of the competition (quantitative data)
- cyclical moment (qualitative data)
- e.g.:

dates	Sales	price	comp.p.	cycle
jan 80	1725	12,37	11,23	high
feb 80	1314	11,25	10,75	high
apr 95	1234	13,57	14,5	low
\vdots	\vdots	\vdots	\vdots	\vdots

and all this month after month until December of 2004.

E2: (generic) model + (specific) data?:

- A: assumptions about $f(\bullet)$; e.g.: linear relationship. The model will then be:

$$
V_{t}=\beta_{0}+\beta_{1} p_{t}+\beta_{2} p c_{t}+\beta_{3} c_{t}, \quad t=1980.1, \ldots, 2004.12
$$

- β 's $=$ parameters or coefficients :
e.g. β_{1} answers the question:
how much sales change if price changes in one monetary unit? \rightsquigarrow price policies, production decisions etc. for the company.
- B: indicators:
allocate quantitative values to qualitative variables (like Cycle): e.g. substitute with indicator such as Industrial Production Index.
- specific model for available data:

$$
V_{t}=f\left(p_{t}, p c_{t}, c_{t}\right), \quad t=1980.1, \ldots, 2004.12
$$

where subindex t indicates period or moment of relationship.

- up to now:
- economic model: summary of general ideas about relationship
- data: or specific information on the different variables
- How to put together both elements?...????

©J Femandozez (EA3-UPVVEHU), June 15, 2008

Introductory Econometrics -p. 11/91

E2: Model + data?: random disturbances

- After this the model expresses a quantitative relationship among variables:

- NOTE: . . . different relationship for each month??? ...
- C: disturbance term;
- back to the generic economic model:
\Rightarrow stable behaviour among variables
\Rightarrow "average" behaviour reflected in data
\Rightarrow add term u_{t} to cover up for small discrepancies...

E2: Model+data?: interpretation

- The econometric model will finally be:

$$
V_{t}=\underset{\substack{\text { (important \& systematic "influences") }}}{\beta_{0}+\beta_{1} p_{t}+\beta_{2} p c_{t}+\beta_{3} c_{t}}+\underset{\text { (random disturbance term }}{u_{t}}
$$

- Interpretation of u_{t} :
\Rightarrow effects that affect sales slightly in every period but not explicitly picked up by the model.
\Rightarrow small data discrepancies.
\Rightarrow non systematic effects \equiv more erratic
\Rightarrow random variable with certain probability law
(e.g.: Normal dn).

1.3 The Econometric Model. The Disturbance or Error term.

Element 3: Statistics:

- Model contains a random variable
\rightsquigarrow statistical procedures that guarantee good results:
\Rightarrow to estimate numeric value of the coefficients,
\Rightarrow to test the validity of the relationship,
- the estimated model
- won't be a generic model
- but a specific model for the company
- it will offer the manager
specific information to make decisions.

© J Femanddez (EAB UPVVVEHU), June 15,2008

Basic Characteristics: data notation

More general econometric model with K variables:

- for time series data:

$$
Y_{t}=\beta_{0}+\beta_{1} X_{1 t}+\cdots+\beta_{K} X_{K t}+u_{t}, \quad t=1,2, \ldots, T .
$$

- or, for cross-section data:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\cdots+\beta_{K} X_{K i}+u_{i}, \quad i=1,2, \ldots, N .
$$

- or, for panel data:

$$
Y_{i t}=\beta_{0}+\beta_{1} X_{1 i t}+\cdots+\beta_{K} X_{K i t}+u_{i t}, \quad\left\{\begin{array}{l}
i=1,2, \ldots, N \\
t=1,2, \ldots, T
\end{array}\right.
$$

Basic Characteristics: vars notation

- Y : the variable we want to explain:
dependent \mathbf{v}, explained \mathbf{v}, endogenous \mathbf{v} or regressand.
- $X_{1}, X_{2} \ldots X_{K}$: variables that explain the variable Y : explanatory v , independent v , exogenous v or regressors.
- $\beta_{k},(k=1 \ldots K)$: unknown constants that determine relationship among variables: parameters or intercept \& coefficients.
$\widehat{\beta}_{k}$ is the estimated coefficient.
- u : variable that picks up other non-important effects present in data: random disturbance or error term.

Classification of econometric models

Different approaches:

- looking at type of data:
- Time series model.
- Cross-section model.
- looking at period of observation:
- static M.: Vars measured in same moment.
- dynamic M.: Vars referred to different periods:

$$
\text { e.g. } Y_{t}=\beta_{0}+\beta_{1} X_{1 t}+\beta_{2} X_{1, t-1}+\beta_{3} X_{2, t-1}+u_{t}
$$

- looking at number of relationships:
- Single-equation models:
a single relationship or equation.
- Simultaneous or Multiple-equation models: more than one equation.
etc.
presence of a random disturbance that
- picks up erratic behaviour:

$$
Y_{t}=\underbrace{\beta_{0}+\beta_{1} X_{1 t}+\cdots+\beta_{K} X_{K t}}_{\text {systematic part }}+\underbrace{u_{t}}_{\substack{\text { non-systematic or ran- } \\ \text { dom part }}} t=1,2 \ldots T
$$

- has zero mean:
$E\left(Y_{t}\right)=E\left(\beta_{0}+\beta_{1} X_{1 t}+\cdots+\beta_{K} X_{K t}\right)+E\left(u_{t}\right) \quad t=1,2 \ldots T$.
- hence systematic part \equiv average behaviour of Y.
- other assumptions on u (basic hypothesis, etc.)
\rightsquigarrow probabilistic behaviour in different cases
\rightsquigarrow statistical tools \rightsquigarrow Econometric Methods.

1.4 Stages in the elaboration of the model.
 Uses of the model.

Stages in the elaboration of the model

0. Selection. Outline the theory of interest:

- select the variable to explain: Y.
- select the overall relationship: $Y=f(X)$.

1. Specification. Outline econometric model coherent with theory:
choose the explanatory variables: $X_{1} \ldots X_{K}$.

- choose the functional form: e.g. $f(\cdot) \equiv$ lineal.
- choose the probabilistic behaviour (distribution) of the random disturbance: u, e.g. $u_{t} \sim \operatorname{iid} \mathcal{N}\left(0, \sigma^{2}\right)$.

Stages in the elaboration of the model

2. Estimation. Quantify unknown parameters according to the available information:

- find data for variables:
$Y_{t}, X_{1 t}, \ldots, \ldots, X_{K t} \quad$ for $t=1, \ldots, T$.
- choose the appropriate statistical method, e.g. OLS:

$$
Y_{t}=\widehat{\beta}_{0}+\widehat{\beta}_{1} X_{1 t}+\cdots+\widehat{\beta}_{K} X_{K t}+\widehat{u}_{t}, \quad t=1,2 \ldots T .
$$

3. Validation. Evaluate whether the model represents the initial problem correctly:

- statistical inference on hypotheses.
- model not adequate \rightsquigarrow back to specification phase.

Using the econometric model

The model that has gone thru all the previous stages can then be used for:

- economic analysis:
- interpretation of coefficients,
- hypothesis testing,
- etc.
- prediction:
- time series forecasting:
to forecast (predict) future values of Y.
- in general:
to respond to questions of the type,
what would happen if...?

[^0]: $f(\bullet)$ is a generic function
 (Ec Th: $f(\bullet)=$ inverse fn $\rightsquigarrow \quad$ sales \uparrow if price \downarrow.)

