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Abstract

This paper proposes a new Hausman-like (H) test for the null of cointegration based on the
efficient estimation of a cointegration regression and the subsequent consistent estimation of a
regression in differences without making specific assumptions about the short-run dynamics of
the data generating process. It is shown that, asymptotically, the H statistics are distributed
as a standard chi-squared and are not affected by the inclusion of deterministic components in
the regression, thus offering a simple way of testing for cointegration under the null. Besides,
small sample critical values for these statistics are tabulated using Monte Carlo simulation and
it is shown that these “not residual-based” tests exhibit appropriate size even for quite general
error dynamics and good power against non-cointegrated alternatives. In fact, simulation results
suggest that they perform quite reasonably when compared to some other —residual-based—

tests of the null of cointegration.
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1 Introduction

In recent times —since (Granger 1981, Granger 1983) introduced the notion of cointegrating
relationships— testing for cointegration has acquired a great deal of importance in the empiri-
cal analysis of economic time series. As a result, quite a number of tests have been proposed for

this purpose.

Some of the cointegration tests most widely used in practice are in fact already available unit-
root tests (Dickey-Fuller and augmented Dickey-Fuller tests, Phillips’ Z, and Z; statistics, Choi
(1994)’s DHS, etc.) applied to the residuals from the cointegrating regression —the ‘two-step’
procedure suggested by Engle & Granger (1987). As these statistics are designed to test the presence
of a unit root against a stationary alternative, when used on regression residuals cointegration

appears as the alternative hypothesis rather than the null.

The null of cointegration seems a more natural choice since tests (say residual-based unit root
tests) typically tend to find in favour of the null hypothesis (non-cointegration) unless there is
considerable evidence to the contrary, but until now there have been very few attempts to test the
cointegration hypothesis directly. Phillips & Ouliaris (1990) argue that the source of the difficulties
lies in the failure of conventional asymptotic theory under the null of cointegration. However some
simple ways to overcome this problem have been found within the family of residual-based tests
itself (see e.g. Leybourne & McCabe (1994) and Shin (1994) and our discussion in section 4). Other
related tests include that of Hansen (1992) who derived the large sample distribution of LM tests
for parameter stability against several alternatives in the context of cointegrated regression models.
In particular, testing for intercept stability against the alternative of a random-walk intercept
—while the rest of the coefficients are held constant— would effectively be a test of the null of
cointegration. However, Hansen (1992)’s test was not designed for this purpose and its actual
alternative does not imply an I(1) error process. (See also Quintos & Phillips (1992)). Park (1990)
proposed two statistics for cointegration testing (J1 and J2 statistics for the nulls of cointegration
and non-cointegration respectively). Both tests are based on the addition of some ‘superfluous’
regressors. If the variables in the underlying model are cointegrated, a standard testing procedure
should be able to detect the superfluous nature of the added regressors —as compared to the ‘true’
ones. On the other hand, we would not expect this when the variables under consideration are not

cointegrated and the relationship is itself spurious. Shin (1994) says that this test is rather ad hoc



and indeed it remains unclear how to select the superfluous regressors.

The present paper adds further to this in the sense that it investigates a class of cointegration
tests (under the null) which are not directly based on the residuals but on the estimated regression
coefficients themselves. The statistics can be thought as based on the same simple principle as
Hausman’s specification test: here a regression in first differences being used as a benchmark for

the (cointegrating) regression in levels.

The simplicity of the calculations is the first advantage of these statistics. Their second ad-
vantage is that they are asymptotically distributed as a chi-squared. The third advantage comes
from the fact that the statistics’ behaviour is not affected, at least asymptotically, by the inclusion
of deterministic terms in the cointegrating regression. Finally, the study —through Monte Carlo
simulation— of finite sample properties of these new Hausman-like statistics suggests that their
nominal sizes remain quite unaltered by changes in the error dynamics while enjoying good power

for a wide range of alternatives.

The plan of the paper is as follows. Section 2 presents the new Hausman-like test of cointegration
under the null. Their asymptotic properties are examined in section 3. Finally section 4 presents

critical values in finite samples together with Monte Carlo evidence on size and power comparisons.

2 The test

Consider the (n + k)-dimensional time series (z;,2})" (t = 1...T) generated by the following data

generating process (dgp)

2z = a g(t)+ B x +du +(1-0)v, (1)
(n) (nxd) (d) (n X k) (k) (n) (n)
Ty = Ty—1+ N, Ut = Ug—1 + Uy,

where the elements of vector g(t) are deterministic functions of time (such as time trends), {; =
(vy,m;) follows an (n + k)-dimensional stationary process with zero mean and autocovariance func-
tion (acvf) E(¢:(_s) = C(s), (s = 0,4+1,42,...). In this system the scalar § will be set to 0 if
(z;,27)" is to be cointegrated (the null) in the sense of Engle & Granger (1987) (with 8 # 0) and
d = 1 under the alternative (with 8 = 0 if (2}, })’ represent unrelated generalized random walks or

B # 0 if they are related through their increments).

Let us assume that the acvf of (; is absolutely summable (i.e. Y50 [|C(s)|| < oo, where || - ||
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is the Euclidean norm) and suppose that its spectral density f(-) is nowhere singular in [—m, 7].

Following, say, (Brillinger 1975, p.296), we may then start by conditioning v; on {n;} so that

oo
vi= Y Ysti—s T & (2)
s=—00
where the (n x k) filter {75} is absolutely summable, i.e. Y 5o ||7s] < oo, and & is an n-

dimensional zero-mean stationary process such that F(&n,_,) =0, (s =0,+1,+2,...), Vt. There-
fore, (c.f. Saikkonen (1991)) Im large enough so that s ~ 0 for |s| > m and the sum in (2) may

be truncated at |s| = m.

Under the null of cointegration —§ = 0 in (1)— the distribution of z; conditional on {xy_,, ..., Tr4m}
can then be written as
m
2 = ag(t) + Py + Z VsNt—s + €t (3)
S=—m

where e = 3 sm Vslt—s + & = & (see the appendix). OLS estimation of (3) will produce an
efficient (and superconsistent) estimator of the cointegrating vectors whose limiting distribution
is free of the nuisance parameters «; arising from the short run dynamics of the dgp (Saikkonen

1991).

Alternatively, we notice that the asymptotic covariance matrix of x; and {9i—m, ..., Mtm} iS
block-diagonal (Phillips & Hansen 1988) which suggests estimating the set of nuisance parameters
{7=s...7s} from a regression of the OLS residuals o; from (1) on {n_s = Ax;_s, |s| < m}, (where
A is the difference operator) and then re-estimate (8 from y; = Sx; + £, where the regressand

def =
€ ~ ~
yr = 2z —ag(t) — Z Vs Azt
s=—m
by construction, being & the vector of OLS estimates of coefficients of deterministic components

and {75} the estimates of the nuisance parameters in (3).
Model (1) may thus be rewritten as
Yy = PBre+ (Oup—1 + ), (4)

Axzy = Uz Aup = vy,

where we recall that {4} is a stationary zero-mean process (asymptotically) uncorrelated with the
increments of {z;} at all leads and lags while § takes a zero value whenever the observed multivariate

time series (z;,2})" is cointegrated and takes a value of one otherwise.



Under cointegration (6 = 0) the error term is simply e; ~ I(0), while under the alternative
of no cointegration (6 = 1) the error term becomes (u;—1 + &) ~ I(1). As a consequence, the
OLS estimator 3 from the levels regression (4) will be T-consistent under the null of cointegration

(Stock 1987) but it will have a nondegenerate distribution under the alternative.

On the other hand, taking differences (i.e. imposing one unit root)

Ay = By + <5, (5)

where the error process {e} = 0v;_1 + Ae;} is stationary always so that standard asymptotics
on stationary variables apply yielding a v/T-consistent under the null and an Op(T -1/ 2) estimator
under the alternative (asymptotically biased since F(nv]_;) may not be equal to zero in general.)
This regression in differences may then be used as a benchmark for the regression in levels in
order to test for cointegration. The fact that we are able to reformulate our dgp (1) —through
use of a suitable time domain correction— into regression (4) where the regressors x; are made
strictly exogenous, has important consequences for the applicability of our testing procedure since,
otherwise, the regression in differences would in general be inconsistent under the null and it would
not serve as a benchmark. Alternatively, instrumental variables could be used —as in Phillips &
Hansen (1990). However, the existence of such cannot be taken for granted and a more general

setup is desirable.

The presence of g(t) in equation (1) implies ‘stochastic’ cointegration around some deterministic
function of time. On the other hand, absence of any deterministic component means that there exist
‘deterministic’ cointegration in the sense that deterministic components are also eliminated together
with the stochastic components. However, it is well known that the inclusion of deterministic
components in the cointegration regression causes shifts in the asymptotic distributions of residual-
based tests. This will not be so in our case since the regression in differences (5) —apart of being
free of short-run-dynamics nuisance parameters— is also free, by construction, of deterministic

components and, in consequence, our testing procedure will not be affected by them.

The so called Hausman test statistic (Hausman 1978, Durbin 1954), rests on the comparison
between two estimators, both of them consistent under the null but with different probability
limits under the alternative. The standardized difference between the two estimates will then have
zero probability limit under the null but will diverge under the alternative (for test consistency).

Accordingly a testing procedure based on the difference ¢ = vec(ﬁd— Bl) between the OLS estimators

4



Table 1: Computation of the Hausman-like test statistics.

m
1. OLS regression: z¢ = ag(t) + Bzt + E YsAxi_g + £ to obtain estimates &, ,@l, \71, estimates of nuisance parameters

s=—m

{3_s---F0---7s}, and the residual covariance matrix V. = Var(e).

m
2. calculate y; defined as yy = z¢ — ag(t) — Z FsAzi—g
s=—m

alternatively. . .

(a) OLS regression: z; = ag(t) + Bzt + vt to obtain estimates & and residuals {7 }
m
(b) OLS regression: o3 = E vsAzi—s + £¢ to obtain estimates of nuisance parameters {y—s -+ 0 Js}

sS=—m

m
(c) calculate y; defined as y; = z¢ — ag(t) — Z Fs Az
S=—m
(d) OLS regression of y; on x; (in levels): y; = Bxt + ¢ to obtain the estimates B1, Vi and the residuals covariance
matrix Ve = Var(e)
and then. ..

3. OLS regression of Ay; on Az (in differences): Ay; = Bnt + ¢} to obtain the estimates B4 and V; with Var(e*) = DV.D'
_1’ 1= j7
where D is the (T — 1) x T matrix whose (i, j)-th element is d;; = 1, i=j5-1,
0, otherwise.

4. calculate the difference ¢ = vec(B4 — 3;) and the H statistics from (6).

obtained from a regression in first differences and a regression in levels can be proposed. The test
statistics are:

Hl = c’(Vd + Vl)*lc, H2 = c’Vd_lc, (6)

where V; and V; are consistent estimates of the covariance matrices of Bd and Bl respectively. Since
V) is O, (T~2) while Vy is O, (T 1) both statistics are asymptotically equivalent. Table 1 summarizes

the steps involved in the process of calculating the statistics.

Note also that H2 may be reinterpreted as the typical chi-squared statistic for testing whether
Bd is significantly different from true §. In order to evaluate the statistic, the unknown (3 is replaced
by Bl whose faster consistency rate ensures that the asymptotic distribution remains unaltered. The

addition of V; in the denominator of H1 may help provide a better approximation in small samples.



3 The asymptotic distributions

With respect to the error process {e;} in the levels regression (4), let C.(s) = E(e:e,_,) denote its
acvf following the same convention as before for process {(;}. It will be convenient to identify the

respective variances (at s = 0) as

Y, X
— . _ v nv —
Y. =C.(0); L= [ SIS ] = C(0).

Let us also define the covariance matrix V; as the (nT' x nT") Toeplitz matrix formed by (n x n)
blocks with C.(]i — j|) in the (7, j)’th position. As usual, all limits apply as 7' — oo, > runs from
t =1 to T unless otherwise stated and the integral [ B refers to the Lebesgue measure in the (0, 1]
interval: fol B(r)dr. Finally, it should be mentioned that “®” is the Kronecker product and vec(A)
is the nm column vector obtained by stacking the columns of an (n x m) matrix A one underneath

the other.

As in Park & Phillips (1988) we require that the partial sums of {(;} satisfy a multivariate

invariance principle
TN G = B(r), re(0,1]

where “=" means weak convergence of the associated probability measures and B(r) = (B,(r)’, By(r)")’

denotes an (n + k)-variate Brownian motion with covariance matrix

12 o Q,
_ . — — v 771} —
Q Tlgréo\/ar(T ;:1 Ct) l Q. O 1 27 f¢(0)

where B(r) and 2 have been partitioned conformably with (;. Note that 2 > 0 since we may recall

that the spectral density is nonsingular within (—m, 7).

Similarly, the partial sums of {g;} in (4) will be such that

L77]
T7Y2N" ey = B.(r), 1€ (0,1]
t=1

where B.(r) = B, — Q;WQ; 1B, is a k-variate Brownian motion (uncorrelated by construction with

B,, —and therefore independent of) with covariance matrix (Saikkonen 1991, p.11)

Q. =Q, — 9,0, = 27£2(0)

where f.(-) is the error spectral density in (3) which is related to the spectral density of (; through
the expression fo(-) = fu() = fyu(-) fo () ' fiu(-) (Brillinger 1975, p.296).
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Since 2 is nonsingular, we have also that 2. > 0. Note that €, > 0 rules out multicointegration

(Granger & Lee 1989) and that €2, > 0 rules out cointegration among the regressors.

Proposition 1 In the multivariate regression model (1) under the null of cointegration
VTe & N(0,Vy),

TV e 2 xP(nk), T (Va+T V) le & x(nk),

where V; = (E;1®In)R(E;1®In) ,and V; = ([ M(B,)'M(B,))1®Q. , with R = plim T-}(N'D®
I)WAD'N®I,), N =(n,...,nr—1) and M(B) stands for ‘standard’; ‘demeaned’ or ‘detrended’
Brownian motion depending on whether g(t) =0, 1 or (1,t); that is, depending on whether there
are no deterministic components in the cointegrating regression, it is a regression with a constant

or it is a regression with a linear trend (see the appendix).

This proposition justifies the two suggested Hausman-like test statistics. Obviously, the effect
of correcting the asymptotic variance of ¢ adding the 771V} term disappears asymptotically but it

nevertheless may provide a better approximation in small samples.

Proposition 2 In the multivariate regression model (1) under the null of cointegration, for both
Hausman-like statistics
H1,H2 % x%(nk)

while under the alternative of no cointegration

T7'H1 =0,(1)  T7'H2=0,(1)

Note that, although asymptotically equivalent under the null, under the alternative H1 and
H2 would not have the same limit distribution. This different asymptotic behaviour under the
alternative may have consequences for test power: indeed in the limit 77'H1 < T-'H2 and test

H2 will be asymptotically more powerful.

In sum, it has been shown that the proposed Hausman-like test statistics are O,(1) under
the null hypothesis of cointegration but they are O,(T") under the alternative, which ensures test
consistency. Furthermore it has been shown that under cointegration the Hausman-like statistic
tends asymptotically towards the standard chi-square distribution. Asymptotic tests can thus been
performed straight away. All this means that the test statistics proposed may constitute a useful

procedure for testing directly the hypothesis of cointegration under the null.
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4 Small sample evidence

Critical values:

Tables 2 and 3 give single equation critical values of the statistics H1 and H2 calculated via Monte
Carlo simulation. The data generating process (DGP(1)) was regression model (1) with § = 0,
git) =0, 081 =... = =1and ¢ ~ iidNV (0, [11) . All series y;, T1¢ ... xR thus generated are
clearly I(1) and they are cointegrated with cointegrating vector (1,—1,...,—1).

Using DGP(1) the fractiles of the small sample distribution of H1 and H2 for k = 1 to 4 regres-
sors and different sample sizes from 7" = 10 to 500 were approximated out of 100,000 replications

using the random number generator available with the RATS statistical package version 4.10.

It may be worth noticing how the finite sample distributions approach their corresponding
asymptotic x? distribution as T — 0o (see also figures 1 and 2). This approach —from below—
is very smooth for H1, but not quite so for H2 due to a sort of adjustment process as a result
of the term T~1'V; —which is not insignificant in small samples— having been dropped from its

denominator while the numerator is the same.

Size and power comparisons:

Quite a few residual tests for the null of no-cointegration are already available such as the augmented
Dickey-Fuller, Phillips Z, and Z; (Phillips & Ouliaris 1990) or Durbin-Hausman tests (Choi 1994).
Such tests are generally used as a benchmark to compare the power of new tests but due to the
different nature of the null and alternative hypothesis of these test respect to H1 and H2 simulation-
based comparisons are not straightforward. On the other hand, as mentioned in the introduction,
the offer of tests which used cointegration as the null is not so rich as the offer of tests which have
cointegration as the alternative. Finally, we chose Leybourne & McCabe (1994) and Shin (1994)

residual-based tests of the null of cointegration for the comparison.

Leybourne & McCabe (1994)’s residual-based LBI test of cointegration is obtained as an exten-
sion of their previous LBI test for coefficient constancy (see Leybourne & McCabe (1989)) while
Shin (1994)’s C test is a residual-based test obtained as an extension of an LM test of univariate
stationarity (Kwiatkowski, Phillips, Schmidt & Shin 1992). It is easy to see that both pairs of

proposals are actually identical except for some minor detail. They all use the same stochastic



components model which —apart of a deterministic trend component and additional regressors as

in (3)— can be written as follows (following Leybourne & McCabe (1994))
Y = Qp + Bz + e, O = 01 + Uy, (7)

where ¢; is stationary and v, is iid(0, 02) and independent of £; while g = . Then they test the
null hypothesis that «; is not a random walk (¢2 = 0). That means {y; = oy +&;} is I1(0) under the
null while it is /(1) under the alternative. (In a related issue Shephard (1993) and Fernandez-Macho
(1993) investigate the small sample properties of respectively time domain and spectral estimates

of the signal-to-noise ratio of {p}.)

If {S;} denotes the partial sum process of the OLS residuals from the cointegrating regression
and s2(¢) is a consistent semiparametric estimator of the long-run variance of the regression error,
then their test statistic for cointegration is

_ X S

¢= T2s2(0)

The limiting distribution of this statistic is a functional of Brownian motion and its critical
values are calculated via Monte Carlo simulation and tabulated in Shin (1994). We may note that
(Leybourne & McCabe 1994)’s LBI cointegration test in fact has the same form: the only difference
being that in the estimation of the residual long-run variance

T ¢ T

s2(0) =171 Z el + 2771 Z w(s, ) Z etei—s,

t=1 s=1 t=s+1
they use a rectangular lag window (w(s,f) = 1 if |s| < £ and 0 otherwise) while the former uses a
Barlett’s triangular lag window (w(s,¢) = 1 — s(¢ + 1)~ if |s| < £ and 0 otherwise) as in Newey
& West (1987), which guarantees the nonnegativity of s2(¢). In this case using ¢ as a function of
T was suggested by Kwiatkowski et al. (1992) following Schwert (1989): ¢; = |j(7//100)/*|, with
j =0,4,12. Similarly for LBI, we used j = 0,2,4. We note that Andrews (1991)’s recommendation
on the lag truncation parameter always gives a large value of ¢ for highly autocorrelated errors
(¢ > 0.8 say), in which case the power of these tests is very poor. In practice the selection of the
value of ¢ is rather critical, as already mentioned in Kwiatkowski et al. (1992) and Shin (1994).

This will be quite apparent also in what follows.

Table 4 provides some evidence on the size and power of cointegration tests H1, H2, C and LBI

in finite samples. It has been obtained from Monte Carlo simulation using 5,000 replications of
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sample size = 100 from a bivariate regression model (1) with 5 =1 and

e = 0.45m—1+¢e14 4+ 0.3be1 41 €1t . 1 0.5
DGP(2 ’ ~ 0 . 8
(2) { vy = (1 —=0)pvi_1 + e + 5962,15_1 ( €9t ) A [ ’ < 05 1 )] ( )

This setup allows for quite general behaviour. It turns out that the regressor {x;} follows an
ARIMA(1,1,1) process while the error term follows either a stationary AR(1) if § = 0 or an
IMA(1,1) if 6 = 1. Besides, z; is not exogenous because 7, and v; exhibit nonzero correlations (at
different lags). The parameter values chosen for the regressor generating process and the regressor-
error correlation are high enough to offer a clear departure from both purely random errors and

strictly exogenous regressors.

The two I(1) series z; and z; generated by DGP(2) with § = 0 are cointegrated as long as
|¢| < 1. Therefore (1 —¢) can be taken as a measure of how far we are from H,, : non-cointegration.
We chose ¢ € {0.2,0.4,0.6,0.8,1} so that the evolution of the tests’ size can be observed as the

alternative is being approached. (Note that, as ¢ — 1, {v;} becomes a random walk.)

On the other hand, with 6 = 1, both z:, x; generated by DGP(2) are also I(1) but they are not
cointegrated as long as 6 # —1. Therefore (1 4+ 6) can be taken as a measure of how far we are
from Hy : cointegration. We chose 6 € {0,+0.2,40.4, 0.6, £0.8, £1} so that the evolution of the
tests’ power can be observed as the null is being approached (note that, as § — —1, {u;} collapses
to white noise) as well as when it gets farther away (positive values). Note also that ¢ = § = 0 and
# = —§ = —1 are identical cases within Hg while case § = 0 with § = 1 is equivalent to case ¢ =1

with § = 0 within H,. Figure 3 shows graphically all the cases involved in the comparisons.

As far as test size is concerned, the results reported indicate that in the presence of moderately
autocorrelated errors (0 < ¢ < 0.6 say) all tests —except C({y) and C(¢4): they suffer too soon
from a serious overrejection problem which renders them rather useless in practice— maintain size
distortions well within reasonable levels, although, as expected, for highly autocorrelated errors
(in the range of ¢ = 0.8 and higher) they will reject more often than their nominal size would
indicate. This size distortion is perhaps not too severe (about twice as much at the 10% and 5%
levels) for a sample of T'= 100. C(¢12) and LBI merit particular mention since they seem to reject
too seldom at the 5% and 1% levels even when error autocorrelation is low. This is, probably, less
due to a deficiency of the tests than to their use of tabulated critical values from the asymptotic
distributions. However, for the very same reason, we might expect higher overrejection values than

as reported in table 4 if the true small sample critical values were used.
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The last two columns of table 4 correspond to the case ¢ = 1 (which falls just outside the
cointegration region) and the case §# = 1 (the farthest away alternative considered). In fact {y;}
and {z;} are two random walk processes which are correlated (through 7;); they represent the
interesting practical case in which variables are related through their changes but not through their
levels —in the sense that a meaningful relationship in levels does not exist. The results presented
clearly favour H1 and H2: ruling out C({y) and C(¢4) because of their extreme overrejection levels
under the null, we can observe that the Hausman-like statistics are more powerful. For example,
for samples of size T = 100 at the 5% significance level, H2 will reject between 68% and 72% of
the times the (wrong) null hypothesis of a levels relationship in favour of a (true) relationship in
changes. In the same circumstance C(¢12) managed just 29% rejections (20% for § = 1) and LBI(¢4)
about 40%.!

Figure 4 shows graphically the respective size and power of the tests involved in our comparison
for all the cases considered 2. As far as test power is concerned, we may notice how —unlike C(f12)
or LBI— the H statistics are rather sensitive to changes in the error dynamics under the alternative
and will be so inasmuch as the variance of the (stationary) errors from the regression in differences
used as benchmark does not account for all the ‘long-run’ variance of errors from the spurious levels
regression. It is interesting to note that the power of H statistics is in direct relationship with the
‘distance’ from Hj: the farther we are from it (as § — +1) the larger the power and viceversa (as
6 — —1). Although such behaviour is of course very reasonable, the drop in power in the latter case
seems rather sharp and it may cause the H test to be slightly less powerful than say LBI for values
of 0 close to —1. On the whole, however, the Hausman-like test statistic exhibits a very satisfactory
behaviour: it is much more powerful for a wide range of alternatives considered without rejecting

more often than it should under the null.

Finally, table 5 presents evidence of the tests’ power in the independent random walks case. It
has been obtained from simulations using 20, 000 replications of different sample sizes from 7" = 10

to 500 from the following

Zt = Z—1+ v Vg

DGP(B){ U= Tt ( ' ) = 11N (0, I).

'In a similar experiment conducted with an exogenous random walk regressor and ¢ = 1 —also for samples of
size T' = 100 at the 5% significance level— H2 rejected about 80% of the time the (wrong) null hypothesis of a levels
relationship in favour of a (true) relationship in changes, while C(l12) and LBI managed just 31% and 47% rejections
respectively. (Results and details available from the authors on request).

2For C statistics the figure graphs the cases with m = 5 additional regressors; values of other parameters as in
figure.

11



Power for test statistics H1 and H2 is reported in the first two blocks of table 5. As expected,
H2 works slightly better than H1 in this respect.

The selection of the value of ¢ is again shown to be very critical. Thus, for greater ¢ a large
number of observations are needed to reach a reasonable power of statistic C. Indeed, power of
C(¢12) is rather low for small to moderate sample sizes. (The ‘high’ power exhibited by C(¢y) is
rather deceptive since its real sizes are in fact several times the nominal ones as shown in table 4

for T'=100. The same is true, to a smaller degree, for C(¢4).)

The H statistics are again superior as far as power against the random walks alternative is
concerned, this is especially so for small to moderate sample sizes: for T = 50 for instance, H2
rejected, at the 5% nominal level, nearly 61% of the cases as against just about 19% for LBI(¢4)
and a mere 15% for C(¢12).

In sum, the H test has a standard (x?) asymptotic distribution and shows higher power for an
ample range of alternatives. Besides, the nominal size remains quite unaltered by changes in the
error dynamics. Therefore, we are inclined to suggest that the H test may be a useful tool when

testing the null hypothesis of cointegration.
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Appendix

Let &, and 7; be the OLS estimators of deterministic components coefficients and nuisance param-
eters obtained from (3), let 3; be the OLS estimator obtained from the levels regression (4), and

let 34 be the OLS estimator obtained from the differences regression (5).
Correspondingly, the estimators of the variances of 3, and Bd are respectively
Vi = (X'X)'®Q.
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Vi = (AX)(AX) '@ L)R(AX)(AX) ' ®I,)
where €. is a consistent estimator of the ‘long run variance’ matrix Q. = 27 f.(0) and
R=((AX)D @ I,)Vo(D'(AX) ® I,,)
where V. is a consistent estimator of the variance-covariance matrix of {et}. and X' = (21,...,27).

First of all we want model (1) to be rewritten as (4) where the regressors are strictly exogenous.
If vs = 0 for |s| > m we have that e, = &, and the error term in (3) is uncorrelated with {n;} at all
leads and lags so that the regressors in x; are strictly exogenous. In general, of course, we cannot
assume that v, = 0 for |s| > m fixed; so that, following Saikkonen (1991), in order to work out
the asymptotic distribution of our test statistics we will require m — oo with T" at a suitable rate
such that m3/T — 0 and T1/22|5|>m lvs]] — O specify upper and lower rate bounds for m (see

also Said & Dickey (1984).) O

Following the convention established by Park & Phillips (1988), it will be convenient to define

functionals of Brownian motion such as

= (/ dBM’)(/ MM, ho(B, M, ) = (/ BM' + 77)(/ MM,

B(r), if g(t) =0,
M(B)=4q B*(r)=B(r) - [ B, if g(t) =1,
B**(r)=B(r)+ (6r —4) [ B+ (6 —12r) [ sB, if g(t) = (1,1),
and
1-[[B'(f BB’) '] if g(t) =1,
P(B) = 1—3r—[(B g{ ’,)(fBB’ SfSstB’) Y(B(r) —3r [ sB)
2

r— L ((JsB' =11 B)(J BB - [ B B)|(B(r) - | B) ifg(t) = (L,0).

Also we will make use of the following lemma, adapted from (Park & Phillips 1988, lemma 2.1),

about weak convergence results of sample moments of (g(t), z,e¢).

Lemma 1 T7%2Y 2, = [B,, T°?Yte, = [rB,, T2Y a2, = [ BBy, T332 tey =
JrdB., T"'Y x4} = [ B,dBL..

The following lemma expresses in a concise form the limiting distributions of the least squares

estimators in (3)
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Lemma 2 Let &, 3 and 7, be the OLS estimators obtained from (3). Then under the null

Results (a) and (b) were first obtained by Phillips & Durlauf (1986) and Park & Phillips (1988)
(See also (Shin 1994, lemma 1)). The order of probability in (c) was obtained by Saikkonen (1991).

diag(T"?, T3/?)(& — a) = ho(Be, P(By,)),
TB-06)= ho(Be, M(By)),
Ly S G =) = 0,(1).

m
s=—m

diag(T ™"/, T?)(a@ — @) = ha(Bu, P(By)),
= 0p(1)

(B = B) = ha(By, M(By),0),
= Op(1),

m

mil/Z Z (:Ys - "Ys) = Op(l)

j=—m

Proof: Write (3) in compact form for g(t) = (1,¢):

where

and

Zt = ﬂ*l';; + &+ 5Ut71,
*/

xt = (g(t)lv ZC;, 771€+m> cee 777£—m>

ﬁ* = (aa/BaPY—mr"ame)'

Under the null (6 = 0), we may define the scale matrix

L = diag(T~Y2, 7732 77 1, 1721, ..., T7'21).

As (g1 — &) = op(T_l/ 2) (Saikkonen 1991, lemma A5) it can be shown that applying lemma 1

L7NB" = B7) = (LY ajay'L) ML) wie)) = Qp ' Que

where
1 T2t T32% 0
0, — T2t T332 T2t 0
* T3 2, T2 te, T2 a2 0
0 0 T nn!
/By 0
~ Q= b JrB, 0
*= | [B, [rB, [ByB, 0
0 0 0oV
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N /
Que = |[T7V3 6173016, 77 Y 6a, T2 3 |
/
= Que = {Ba(l),/rng,/dBaB,’ow}

where 0" = (Nmy -+« s Mom)s Vyy = Emin;’) and Ceyy = plim 7723 &ni, and it is understood
that the terms corresponding to g(t) are deleted when not applicable. After inverting matrix @,

and rearranging we obtain the results given.
Under the alternative (6 = 1), we define the scale matrices

Ly = diag(Tl/QvT_1/27Ik7[ka'"7Ik)

Ly = diag(T=32,17°2 172, T7'I,...,T7'L}),
and applying lemma 1

LyNB" = B7) = (L2 Y jay'La) " (Lo Y wjuy) = Q7' Qua

where @, is as before and

Quu = [Tﬁ?’/Q > g, T2 > tug, T2y way, T Utﬁfl},

/
= Qe = {/Bv,/er,/Bqu’?,/BvdB,’?,...,/BUdBT’?}

again in the understanding that the terms corresponding to g(t) are deleted when not applicable.

Inverting matrix @, in each case and rearranging leads us to the results given. O

Lemma 3 the OLS estimators of 3 in (3) and in (4) are asymptotically equivalent under the null,

but differ under the alternative by an amount of Op(1).

Proof: Trivially under the null since from & 2, and s EN vs, we have that y, = 2z, — ag(t) —

m

S VsT—s N ze —ag(t) — Y0 Ysnxi—s = Pt + £, and the first part of the lemma follows.

Indeed, transforming the regression equation in such a way as (4) amounts to —apart of cor-
recting second order bias— demeaning and detrending the variables, and we know that its effect

carries through in exactly the same fashion to the asymptotics.

Under the alternative, from lemma 2, T=1/2(&y — ag) = O,(1), TV?(@1 — 1) = Op(1), and

m

(s —s) = Op(ml/z), and we have that y, = 2z, — ag(t) — >0 AsMi—s = PBay + (uf + &)
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where

m
uf = up-1 — (@ —a)g(t) = Y (s = s)m-s.
s=—m
Then
T2 Z zouf = T2 Z zpul_ —T73/? Z T2 (69 — o) — T2 Z tay T2 (61 — o)’
m
- Z 2 Zwtnt s ’78)

S=—m

BB,

which defines ), implicitly, and the lemma follows. Also

T2y ujui = T2) (w1 — (& —a)g(t))(uj_y — g(t)’(d - a)’)
= T2 wqup ; — Z w—1g(t))(@ — @) — (6 — )T 7[> g(t)u;_,]
(& — )T Zg (& —a)
= /BUB; + TTp.

where m, =3 — [ B, — [ B, — [rB, — [rB),. 0

The following lemma establishes the asymptotic distributions of the OLS levels regression esti-

mator and its variance

Lemma 4 Under the null of cointegration

T3 —-B8) ~ N(O,W),
™V, = V,

where V; = ([ M(B,)M(B,))~! @ Q. ; while under the alternative

(Bl—ﬂ) = ha(By, M(By), mp)

TV = ([ MB)MB)) @6,

where O, = ([ ByBy, + ) — ha(By, M(By), mp) (| M (By) B, + m7,,), so that (3 is a T-consistent

estimator under the null but there is a stochastic asymptotic bias under the alternative.
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Proof: writing model (4) in matrix form
Y =X3 +0U"+FE
where Y/ = (y1...yr); X' = (z1...27); UY = (uj ... u}); E' = (e1...e7); we obtain
TG —6) = ((TTWU'X+T'EX)(T2Xx'X)™h

= Tha(By, M(By), my) + ho(By, M(B,)).

Under the null (§ = 0)

= ([ ABM(B,))( [ M(B)M(B,)) ™ = ho(Be, M(By)) ~ NO. ([ M(B)M(B,)) a0,

The normal distribution is reached because M (B,) is a vector process independent of B, (Park &

Phillips 1988, lemma 5.1).
On the other hand,
T, = (T72X'X) ' 2 Q. = (/ M(B,))M(B,))™'® Q.
so that V converges to V; at a very fast rate.

Under the alternative (§ = 1) T(3; — 3) diverges but

(Bl - ﬁ) = ha<B’U7M(B7I)77T77v) =0
= Op(l)

so that (3; is inconsistent, as well as its variance estimator

TV, = (T72X'X) e T71Q,

T, — T 20Y0*
= TV - (B - BT *X'X(B - B)
= (/BUB;HU) ~ ha(Bo, M(By), o) /M VB, +1,) = O,
which leads to the last result in the lemma. O

Next lemma establishes the asymptotic distributions of the OLS differences regression estimator

and its variance
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Lemma 5 Under the null of cointegration

T2 (B - B) A N(O, V),
TVd = Vy

where Vg = (3,1 © I,)R(X, ' @ I,) with R = plim T~'(N'D ® I,)Vo(D'N © I,,); while under the

alternative

(Bd_ﬁ) 5 Cnv(l)zq;l

Op(1)
v, L v,
= 0p(1)

with R = plim T~Y(N' ® I,,)V,(N ® I,),

so that ﬁAd is a v/T-consistent estimator under the null but, in general, there is a nonstochastic
asymptotic bias under the alternative, in sharp contrast with the stochastic nature of the bias in

the levels regression.
Proof: writing model (5) in matrix form
DY = N§'+6DU* + DE

where DU = (Auj...Au}) and Auf = v — (&1 — 1) — 2ot (Fs — Vs)Ani—s. The OLS

estimator takes the the form

(34— B) = (BU"D'N + E'D'N)(N'N)~! (9)

Under the null (§ = 0) we are interested in the form of the limiting distribution of
vee(TV2E'D'N) =T V3(N'D ® I,,)e (10)

where € = vecE' = (¢],...,¢/)’. We note that E(e¢’) = V. defined in section 3 as the (nT x nT)
covariance matrix of process {e;}.
Let us define € = V5_1/26, where V, = 51/2(%1/2)’. Then
() = Ve (VY = Ly
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so that & ~iid(0,1). Let us further define the (kn x Tn) matrix N’ = (N'D ® In)Vgl/2 with
plim T7'N'N = R = plim T"Y(N'D ® I,)V.(D'N & I,,),
and E(Ny&;) = 0,Vt. Therefore, applying Mann-Wald theorem

plim T7'N's=0, T 2N’z L N(0,R).

Substituting in (10) we get
vee(T~V2E'D'N) =T '/2N'e £ N(0, R).
Finally, let plim 7-!N'N =%, > 0 in (9). We may the write
VT(Ba—8) “N(,(£," @ L)R(E, ' ® I,)).
On the other hand,
TV; = [(TT'N'N) '@ LT 'R(T™'N'N)"' @ I,,]
TR = (I"'N'D®I,)V.(T"'D'N ® I,,)
where f/; 2, V.. Hence TR 5 R and TVd 2, V.

Under the alternative (§ = 1) and (9) becomes

A~

(B4 — B) = [(DU* + DE)'N](N'N)~!

where
T_l Z Ut(AU%H + A(—:;) _ T—l Z 77t711’:_1 N T—3/2 Z ntTl/Q(&l B al),
- Z (T_l Z ntAUtfs)(ﬁ’s - '73)/ + 7! Z ntAEQ

= E(mvi_y) = Cpo(1),
(Note that the bias coming from the inconsistency of &; or 4, disappears asymptotically). Therefore

(Bd - ﬂ) & Cm)(l)zgl = @d-

On the other hand
TV = (7NN @ LT RITTIN'N) T @ 1)
T'R = (T7Y2N' @ L,)V,(T"V?N' @ I,,)
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where V, 5 Vy, the covariance matrix of process v;. Hence T'R R and TVd EN Vy. O

Proof of proposition 1:

VTe = Vec\/f(ﬁd -B) - Tﬁl/QVeCT(Bl - B)

- VTvec(Bs— )
— _T-1/2 N
(=T [ T8 — 5) ] '

From lemmas 4 and 5 VT(35 — 3) <~ N(0,Vy) , T(6; — B) <~ N(0,V;) . Therefore, their joint
distribution is also gaussian. Let Cy denote the asymptotic covariance matrix of /T (Bd — ) and

T(B; — ). Then we may write

VT(Bi—B) | a Va C
s (e )

and hence the limiting distribution of V/Tc has zero mean and variance
_ Va C} 1 —1/2 1
(1 - 1/2)<Cdl Vcl”><—T—1/2>:Vd_T P(Cu+Cy)+T 'V
where the last two terms disappear asymptotically and the proposition follows. O

Proof of proposition 2: Under the null, from lemmas 4 and 5 and proposition 1 the result

follows trivially.

Under the alternative, from lemmas 4 and 5 and defining O, = 64 — ©,

¢ = vee(fyg — B) — vee(B — B) = vecO,.

Since ©; is a stochastic matrix but 4 is a matrix of constants, we have that Pr(0; = 04) =0
and plim ¢ # 0 almost surely. In fact, it also follows that under the alternative ¢ will have the same
asymptotic distribution as —Bl except for a shift in the mean of value vec®,4. Then from lemma 5,
TVy 5 (271 ® I,)R(S; ! @ 1,); therefore

T7H2 = TV e=d(TVy) 'e= (vecO5, ') R(vecO 5,
= Op(l)a
and from lemma 4, TV, 2 ([ M(B,)M(B,))~* ® ©,,; therefore

T'H1 = TN (Vg+ V) te=dTV+TV) e
= (vecO,) (5, @ L) R(S,' @ I,) + (/ M(B,)M(B,)") ' ® 6, B vecO,.
= 0,(1).
As [ MM’ >0 and ©, > 0 we also have that plim 7-'H1 < plim T-!H?2. )
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Figure 1: Empirical Distributions of Hausman-like Test Statistics (m=1).
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Table 4: Empirical Size and Power of Cointegration Tests (T=100)

Hy: Cointegration H,: No Cointegration

Stat. m Sig. level ¢=02 ¢=04 =06 o¢=08 ¢=1.0 0=1.0
10% 8.76 9.00 9.24 11.52 70.20 72.56

H1 5% 4.52 4.26 4.78 6.10 65.20 67.16
1% 0.92 0.92 1.18 1.70 55.18 57.94

10% 8.74 9.00 9.24 11.78 73.36 75.98

H2 5% 4.48 4.32 4.84 6.38 68.64 71.48
1% 0.90 0.96 1.16 1.92 59.62 63.06

10% 16.04 27.98 45.78 70.44 95.72 96.00

C(4p) 0 5% 9.02 18.22 33.64 58.38 91.54 92.06
1% 2.64 6.84 17.62 38.94 80.58 81.34

10% 11.06 13.92 18.70 30.32 66.96 66.56

C(4y) 0 5% 5.26 6.62 10.26 20.22 58.04 57.14
1% 0.62 1.28 2.50 6.32 40.14 39.46

10% 10.92 11.86 13.36 17.92 46.02 45.40

C(l2) 0 5% 3.88 4.50 5.66 8.62 33.20 32.02
1% 0.10 0.20 0.26 0.80 9.02 7.98

10% 15.00 25.12 40.24 64.08 94.04 91.14

C(4p) 5 5% 8.48 16.36 29.52 52.66 88.28 84.44
1% 2.64 6.46 14.68 34.22 75.88 70.44

10% 9.70 11.92 16.06 27.36 62.74 56.40

C(4y) 5 5% 4.76 6.20 9.06 17.66 52.72 46.14
1% 0.94 1.24 2.38 6.50 35.52 27.66

10% 9.44 10.04 12.04 16.82 42.80 34.24

C(l2) 5 5% 3.64 3.94 5.24 8.22 29.60 20.18
1% 0.08 0.16 0.30 0.48 7.26 0.48

10% 9.42 10.16 13.40 25.74 66.32 66.22

LBI(¢2) 5% 4.22 4.90 6.82 15.64 57.32 57.24
1% 0.50 0.5 1.02 4.50 38.88 38.70

10% 10.56 9.56 9.98 16.04 52.60 52.30

LBI(¢4) 5% 4.62 4.08 4.38 7.72 40.80 40.46
1% 0.48 0.36 0.28 1.06 18.94 18.76
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Table 5: Power of the statistics against independent random walks

Sample size

Stat.  Sig. level 10 20 30 40 50 100 150 200 250 500

10% 26.9 439 525 578 61.8 724 76.7 80.0 824 87.3

H1 5% 179 351 445 503 548 672 723 763 79.1 85.0
1% 6.3 204 305 3v.1 427 574 645 69.3 727 80.2
10% 31.0 494 579 63.1 66.5 76.1 800 829 849 89.1
H2 5% 23.2 413 506 564 60.7 71.8 763 79.7 82.1 872

1% 106 278 383 44.8 496 63.2 69.2 73.6 76.7 83.2

10% 44.8 643 756 823 864 96.6 98.6 995 99.7 99.9
C(4p) 5% 329 544 656 733 788 924 96.7 984 99.1 99.9
1% 123 355 484 572 63.2 817 89.9 93.6 960 994

10% 23.3 409 504 508 56.1 671 774 834 841 95.0

C(Ly) 5% 37 264 384 385 44.7 57.1 67.7 744 755 90.1
1% 00 28 158 157 23.6 39.2 50.8 583 59.5 T77.9
10% 1.7 131 244 29.1 322 454 528 57.5 612 753
C(l12) 5% 00 00 48 109 152 315 41.0 46.6 50.8 65.0
1% 00 00 00 00 00 76 187 260 31.2 485
10% 202 383 485 56.3 61.5 66.2 768 83.0 87.4 96.5
LBI(t;) 5% 3.0 241 30.7 447 513 562 67.0 739 79.7 92.6
1% 02 21 144 240 318 381 50.3 57.9 63.8 819
10% 76 249 358 341 404 521 62.1 687 69.3 85.7
LBI(¢,) 5% 1.9 7.8 209 192 267 405 51.5 58.7 59.3 77.6
1% 06 01 05 01 39 185 323 412 41.8 61.3
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