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Abstract

In this paper critical values for the Hausman-like and Variance-ratio tests statistics of the null of coin-
tegration are presented. Besides the critical values, which are tabulated using simulation, the asymptotic
distribution of these tests are derived. It is also shown that these tests substain good power against
the independent random walks alternative and that they may do better in small samples than some
residual-based test of the null of cointegration.

Key words: Brownian motion, common dynamic factors, unit root, Monte Carlo simulation,
Wiener process.
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1 Introduction

Several tests of cointegration have been proposed since Granger (1983) introduced the idea of cointegration.

The majority of these tests test the null of no-cointegration against the alternative of cointegration. It is

often argued that cointegration would be a more natural choice, but there are only a few tests for the null

of cointegration (Shin (1993)).

The first objective of this paper is to present the critical values of three tests of the null of cointegration

—and not residuals-based— which were first defined by Fernndez (1993). The first two tests are based on

Hausman’s specification test and the other ones are just ratios of variances of the cointegrating regression

and regression in first differences.

The second objective of this paper is to compare the power of these tests with different tests of the null

of cointegration such as Shin (1993) or Leybourne and McCabe (1993).

The model:

Let (yt,x′
t)

′ be a (k + 1 × 1) vector of observed variables (from t = 1 to T ) related via the following model

yt = β′xt + ut,

xt = xt−1 + ηt,

where ηt ∼ iid(0,Ση) and uncorrelated with {ut}.

Under cointegration {ut} will be a stationary zero mean process with variance σ2; while under the

alternative of no cointegration ut ∼ I(1). As a consequence, the OLS estimator β̂L will be T -consistent

under the null of cointegration but inconsistent under the alternative.

On the other hand, taking differences (i.e. imposing one unit root)

∆yt = β′ηt + u�
t ,

where u�
t ∼ I(0) always, so that standard asymptotics on stationary variables apply now under both the

null and the alternative yielding a
√
T -consistent estimator β̂D in both cases. Following Fernndez (1993)

this regression on differences may then be used as a benchmark for the regression in levels in order to test

for cointegration.
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The statistics:

The so called Hausman test statistic (Hausman (1978), Durbin (1954)) rests on the comparison between two

estimators, both of them consistent under the null but one of them inconsistent under the alternative. The

difference between the two estimates will then have zero probability limit under the null but will diverge

under the alternative (for test consistency).

Accordingly, Fernndez (1993) proposes a testing procedure based on the difference c = β̂D − β̂L between

the OLS estimators obtained from two regressions in levels and in first differences respectively. The test

statistics are:

H1 = c′(V̂D + V̂L)−1c, H2 = c′V̂
−1

D c.

Since V̂L ∼ Op(T 2) while V̂D ∼ Op(T ) both statistics are asymptotically equivalent, but there may be

differnces in small samples.

Alternatively, rather than on direct comparison between both estimators, Fernndez (1993) proposes a

variance-ratio statistic based on comparing some measure of spread for the estimators such as their respective

generalized variances:

J = T
k

√
|V̂L|/|V̂D|.

2 The Asymptotic distributions

The asymptotic distributions of the relevant statistics involved can be illustrated for a very simple model

with k = 1 regressors, i.e. the bivariate random-walk model

yt = βxt + ut; H0 : ut ∼ iid(0, σ2), Ha : ∆ut = at ∼ iid(0, σ2
a),

xt = xt−1 + ηt; ηt ∼ iid(0, σ2
η) and uncorrelated with {ut} or {at} . (1)

The model in (first) differences becomes

∆yt = β∆xt + u�
t ; H0 : u�

t ∼ (0, 2σ2), Ha : u�
t = at,

∆xt = ηt

where {u�
t } is independent of {ηt} but, under the null, it is serially correlated since it follows a (noninvertible)

MA process.

We will discuss now the asymptotic behaviour of the relevant statistics under the null of cointegration.

In what follows all the limits are taken as T → ∞. The sum
∑

is taken to be from t = 1 to T . The functions

W (t), U(t), and A(t) denote standard Wiener processes (Brownian motions) resulting from mapping into
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the interval [1, 0] the integrated processes
∑
ηt,

∑
ut, and

∑
at respectively as T → ∞. The symbol ⇒

denotes weak convergence. (See appendix for demonstrations.)

Proposition 1 In the bivariate random-walk model (1) under the null of cointegration
√
Tc

a∼ N(0, VD +

T−1VL), 1 where VL = σ2

σ2
η
(
∫ 1

0
W (t)2dt)−1 and VD = 2σ2/σ2

η.

Therefore Tc2

VD+T−1VL

a∼ χ2(1) which justifies the proposed Hausman-like test statistic.

Proposition 2 In the bivariate random-walk model (1) under the null of cointegration, for both Hausman-

like statistics

H⇒ 1
2

(
∫
dWd2U)2 ∼ χ2(1)

while under the alternative of no cointegration

T−1H1 ⇒
[( ∫

W 2dt∫
WAdt

)2

+
∫
A2dt

∫
W 2dt

(
∫
WAdt)2

− 1

]−1

= O(1)

T−1H2 ⇒
(∫

WAdt∫
W 2dt

)2

= O(1)

Therefore the limiting distribution of the test statistics H1 and H2 is a standard χ2 distribution with one

degree of freedom, whose critical values are widely available in ordinary statistical tables.

Note that, although asymptotically equivalent under the null, under the alternative H1 and H2 would

not have the same limit distribution. This different asymptotic behaviour under the alternative may have

consequences for test power: indeed as
∫
A2dt

∫
W 2dt > (

∫
WAdt)2 then in the limit T−1H1 < T−1H2

under the alternative and test H2 will be asymptotically more powerful.

Proposition 3 In the bivariate random-walk model (1) under the null of cointegration, the variance-ratio

statistic

J⇒ (2
∫ 1

0

W (t)2dt)−1

while under the alternative of no cointegration

T−1J⇒
[∫

A2dt
∫
W 2dt− (

∫
WAdt)2

(
∫
W 2dt)2

]
= O(1).

Therefore the limiting distribution of the test statistics J is such that (2J)−1 converges to a functional whose

distribution is given in Nabeya and Tanaka (1988, eq. 4.10) (see also Abadir 1992 2).
1Of course the second term in the variance would dissapear asymptotically but it has been left so as to provide a better

aproximation in small samples.
2The same limiting distribution —except for a factor of 2— appears for one of Choi (1992)’s statistics, although, of course,

the finite sample distributions differ substantially.
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In sum, it has been shown that the proposed Hausman-like and variance-ratio test statistics are Op(1)

under the null hypothesis of cointegration but they are Op(T ) under the alternative, which ensures test

consistency. Furthermore it has been shown that under cointegration the Hausman-like statistic tends

asymptotically towards the standard chi-square distribution of one degree of freedom while the variance-

ratio statistic tends towards a non-standard distribution given by

F(J) = 2
√

2
∞∑

j=0

( −1/2
j

)
Φ(−(2j + 1/2)

√
2J)

where Φ(·) is the standard normal distribution.

Asymptotic tests can thus been performed straight away. All this means that the test statistics proposed

may constitute a useful procedure for testing directly the hypothesis of cointegration under the null.

3 Small sample evidence

Critical values:

The critical values of the statistics H1, H2, and J were calculated using simulation. The data generating

process (DGP (1)) used for the Monte Carlo study is the following:

xt = xt−1 + ε1t

yt = xt + ε2t

(
ε1t

ε2t

)
= iid

[(
0
0

)
,

(
1 0
0 1

)]
.

Both series yt, xt are clearly I(1) and are cointegrated with cointegrating vector (1,−1). Using DGP(1)

the fractiles of the limiting distribution of H1, H2, and J were simulated out of 100.000 iterations. The

estimated fractiles are reported in tables 1, 2 and 3.

Power comparisons:

There are many tests for the null of no-cointegration such as augmented Dickey-Fuller, Phillips Ẑα and Ẑt

(Phillips and Outliaris 1990) or Durbin-Hausman tests (Choi 1994). These tests which are generally used to

compare the power of new tests could not be used in our case, because the statistics H1, H2, and J have

the null of cointegration. The offer of tests which used cointegration as the null is not so rich as the offer of
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tests which have cointegration as the alternative. We choose finally the Shin’s residual based test of the null

of cointegration (Shin 1993) for our comparision.

The Shin’s test of cointegration is a residual based test which is an extension of the LM test of univariate

stationarity (Kwiatowski et al. 1992). They use the following components model:

yt = α+ δt+Xt, Xt = γt + vt, γt = γt−1 + ut (2)

where vt is stationary and ut is iid. Then they test the null hypothesis that Xt has no random walk error

component (σ2
u = 0). That means Xt is I(0) under the null.

Shin (1993) considers the following cointegrating regression with some additional terms:

yt = Z ′
tβ +

K∑
j=−K

∆Zt−jπj +Xt (3)

yt = αµ + Z ′
tβµ +

K∑
j=−K

∆Zt−jπµj +Xµt (4)

yt = ατ + δτ t+ Z ′
tβτ +

K∑
j=−K

∆Zt−jπτj +Xτt (5)

where Xt hs the same form as defined in (2), while vt and ut are iid normal. The additive regressors

∆Zt serve to relax the assumption of strict exogeneity of Zt with respect to vt which seems to be too

restrictive in time series modelling. If Sµ, Sµt and Sτt are the partial sum processes of the OLS residuals

(X̂t, X̂µt and X̂τt) from the cointegrating regressions with the additive terms (3), (4) and (5) and s2(l) is a

consistent semiparametric estimator of the long run variance of the regression error, then the test statistics

for cointegration in (3),(4) and (5) are:

C =
∑T

t=1 S
2
t

T 2s2(l)
, Cµ =

∑T
t=1 S

2
µt

T 2s2(l)
, Cτ =

∑T
t=1 S

2
τt

T 2s2(l)
(6)

respectively. The limiting distributions of these statistics are functionals of Brownian motions and the critical

values for C, Cµ and Cτ are calculated via Monte Carlo simulation and are tabulated in Shin (1993).

The DGP(2) for the power comparison is the following univariate model:

xt = xt−1 + ν1t

yt = yt−1 + ν2t
;

(
ν1t

ν2t

)
= iid

[(
0
0

)
,

(
1 0
0 1

)]
.

The power of the test statistics H1, H2 and J are reported in table 4. One thing to note is that the

modified Hausman-like statistic H2 works slightly better than H1. The power of statistic J is the best of

the three statistics considered —at least for DGP(2).
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The power of the statistics C and Cµ for DGP(2) are reported in tables 5 and 6. (Cτ will not work better

as there is no trend in DGP(2).) The three distinct panels in these tables correspond to three different

windows in the estimation of s2(l). We used an estimator of the form:

s2(l) = T−1
T∑

t=1

e2t + 2T−1
l∑

s=1

w(s, l)
T∑

t=s+1

etet−s,

the term w(s, l) corresponding to Barlett spectral window w(s, l) = 1 − s(l + 1)−1 as in Newey and West

(1987), which guarantees the nonnegativity of s2(l). We considered three possible values of l as a function

of T following Schwert (1989): l0 = 0, l4 = 
4(T/100)1/4�, and l12 = 
12(T/100)1/4�.

The power of C and Cµ for l0 is obviously difficult to beat and only J obtains similar performance.

However the selection of the value of l is very critical in practice, as already mentioned in Kwiatowski et

al (1992), and is demostrated with the 2nd and 3rd panel of tables 5 and 6. Thus, for grater l a large number

of observations are needed to reach a reasonable power of the statistics C and Cµ. This is not the case for

statistics H1, H2 and J which, besides, work rather well in smaller samples.

4 Conclusions

In this paper three alternative statistics for testing the null of cointegration are presented. These statistics

use the results of estimation of the cointegrating regeression in levels and in first differences. In spite of their

simplicity, the power of these statistics appears satisfactory, as is shown by power comparisons with other

statistics suggested.

The majority of existing tests of cointegration test the null hypothesis of no cointegration. Combining

these kind of tests with the tests proposed in this paper which have the null of cointegration can lead to

more accurate conclusions.

Appendix

• β̂L under the null:

T (β̂L − β) =
T−1

∑
xtut

T−2
∑
x2

t

=
T−1

∑
(T−1/2xt)(T 1/2ut)

T−1
∑

(T−1/2xt)2

⇒ σ

ση

(∫ 1

0
W (t)dU(t)∫ 1

0
W (t)2dt

)
∼ N(0, VL)

where VL = σ2

σ2
η
(
∫ 1

0
W (t)2dt)−1 —Note that

∫
WdU ∼ N(0,

∫
W 2dt) implies

∫
WdU∫
W 2dt

∼ N(0, [
∫
W 2dt]−1).
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• β̂D under the null: Obviously β̂D is not efficient under the null because u�
t = ∆ut ∼ noninvertible MA(1).

Nevertheless

√
T (β̂D − β) =

T−1/2
∑

(∆xt)u�
t

T−1
∑

(∆xt)2
=
T−1/2

∑
ηtu

�
t

T−1
∑
η2

t

⇒ σ

ση
(
∫ 1

0

dW (t)d2U(t)︸ ︷︷ ︸
N(0,2)

) ∼ N(0, VD)

where VD = 2σ2/σ2
η.

• V̂L under the null:

T 2V̂L =
σ̂2

T−2
∑
x2

t

=
T−1

∑
û2

t

T−1
∑

(T−1/2xt)2

⇒ σ2

σ2
η

(
∫ 1

0

W (t)2dt)−1 = VL

• V̂D under the null:

T V̂D =
σ̂2

�

T−1
∑

(∆xt)2
=
T−1

∑
û�2

t

T−1
∑
η2

t

⇒ 2σ2

σ2
η

= VD

• c = (β̂D − β̂L) under the null: (Of course the second term in the expressions below would dissapear

asymptotically but it has been left so as to provide a better aproximation in small samples.)

√
Tc =

√
T (β̂D − β) −

√
T (β̂L − β)

⇒ σ

ση
(
∫

dWd2U) − σ√
Tση

∫
WdU∫
W 2dt

⇒ σ

ση
(
∫

dWd2U︸ ︷︷ ︸
N(0,2)

− 1√
T

∫
W 2dt

∫
WdU√∫
W 2dt︸ ︷︷ ︸

N(0,1)

) ∼ N(0,
σ2

σ2
η

[
2 +

1
T

(∫
W 2dt

)−1
]
)

• Hausman test statistic under the null: Obviously H1 and H2 would have the same limit distribution.

Indeed for H2 we just drop the second term in the denominator (which is O(T−1)).

H1 =
(
√
Tc)2

(T V̂D) + T−1(T 2V̂L)

⇒ (
√
q
∫

dWd2U)2

2 + 1
T (

∫
W 2dt)−1

⇒ 1
2

(
∫

dWd2U︸ ︷︷ ︸
N(0,2)

)2 ∼ χ2(1)
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• variance ratio test statistic under the null: For any bivariate case (k = 1)

J =
T V̂L

V̂D

=
T 2V̂L

T V̂D

⇒ VL

VD
= (2

∫ 1

0

W (t)2dt)−1 = O(1)

We will turn now to the asymptotic behaviour of our statistics under the alternative of no cointegration.

• β̂L under the alternative:

(β̂L − β) =
T−2

∑
xtut

T−2
∑
x2

t

=
T−1

∑
(T−1/2xt)(T−1/2ut)

T−1
∑

(T−1/2xt)2

⇒ σa

ση

∫ 1

0
W (t)A(t)dt∫ 1

0
W (t)2dt

= 0(1)

Note then that β̂L does not converge in probability to β.

• β̂D under the alternative: Obviously β̂D is efficient under the alternative because u�
t = at. Besides

√
T (β̂D − β) =

T−1/2
∑

(∆xt)u�
t

T−1
∑

(∆xt)2
=
T−1/2

∑
ηtat

T−1
∑
η2

t

⇒ σa

ση

∫ 1

0

dW (t)dA(t)︸ ︷︷ ︸
N(0,1)

∼ N(0, VD)

where VD = σ2
a/σ

2
η

• V̂L under the alternative:

T V̂L =
T−1σ̂2

T−2
∑
x2

t

=
T−2

∑
[ut − (β̂L − β)xt]2

T−2
∑
x2

t

=
T−2

∑
u2

t

T−2
∑
x2

t

− (β̂L − β)2

⇒ σ2
a

σ2
η

(
∫
W 2dt)−2

[∫
A2dt

∫
W 2dt−

(∫
WAdt

)2
]

= 0(1)

• V̂D under the alternative:

TVD =
σ̂2

�

T−1
∑

(∆xt)2
=
T−1

∑
â2

t

T−1
∑
η2

t

⇒ σ2
a

σ2
η

= VD

• c = (β̂D − β̂L) under the alternative:

c = (β̂D − β) − (β̂L − β)

⇒ − σa

ση

√∫
W 2dt

∫
WAdt√∫
W 2dt︸ ︷︷ ︸

N(0,1)

∼ N(0,
σ2

a

σ2
η

[
∫
W 2dt]−1)
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• Hausman test statistic under the alternative:

T−1H1 =
c2

T V̂D + T V̂L

⇒

(∫
WAdt∫
W 2dt

)2

1 +
[∫

A2dt
∫

W 2dt−(
∫

WAdt)2

(
∫

W 2dt)2

]

=

[( ∫
W 2dt∫
WAdt

)2

+
∫
A2dt

∫
W 2dt

(
∫
WAdt)2

− 1

]−1

= O(1)

T−1H2 =
c2

T V̂D

⇒
(∫

WAdt∫
W 2dt

)2

= O(1)

• variance ratio test statistic under the alternative:

T−1J =
T V̂L

T V̂D

⇒
[∫

A2dt
∫
W 2dt− (

∫
WAdt)2

(
∫
W 2dt)2

]
= O(1)
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Table 4: Power of H1, H2 and J Statistics

Statistic H1 Statistic H2 Statistic J
Sample size 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

T = 10 37.8 28.2 12.2 46.1 37.1 22.2 41.9 35.6 23.5
T = 20 53.7 45.5 32.0 61.6 55.2 43.2 59.2 52.3 40.9
T = 30 61.6 54.5 41.7 68.8 63.1 53.1 68.6 61.6 51.0
T = 40 66.3 59.7 48.7 73.4 68.2 59.3 74.4 67.8 57.1
T = 50 69.8 64.1 53.7 76.1 71.7 63.2 78.7 72.7 62.4
T = 100 77.9 73.9 65.9 82.8 79.7 73.4 90.2 85.8 77.0
T = 150 81.5 78.1 71.6 85.6 82.9 78.0 94.8 91.9 84.6
T = 200 84.1 81.4 75.7 87.6 85.5 81.2 96.8 94.5 88.5
T = 250 85.8 83.3 78.1 89.1 87.2 82.9 98.3 96.4 91.7
T = 500 90.1 88.4 84.7 92.6 91.1 88.2 99.7 99.3 97.8

Table 5: Power of C Statistics

l0 l4 l12
Sample size 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

T = 10 44.8 32.9 12.3 23.3 3.7 0.0 1.7 0.0 0.0
T = 20 64.3 54.4 35.5 40.9 26.4 2.8 13.1 0.0 0.0
T = 30 75.6 65.6 48.4 50.4 38.4 15.8 24.4 4.8 0.0
T = 40 82.3 73.3 57.2 50.8 38.5 15.7 29.1 10.9 0.0
T = 50 86.4 78.8 63.2 56.1 44.7 23.6 32.2 15.2 0.0
T = 100 96.6 92.4 81.7 67.3 57.1 39.2 45.4 31.5 7.6
T = 150 98.6 96.7 89.9 77.4 67.7 50.8 52.8 41.0 18.7
T = 200 99.5 98.4 93.6 83.4 74.4 58.3 57.5 46.6 26.0
T = 250 99.7 99.1 96.0 84.1 75.5 59.5 61.2 50.8 31.2
T = 500 99.9 99.9 99.4 95.0 90.1 77.9 75.3 65.0 48.5

Table 6: Power of Cµ Statistics

l0 l4 l12
Sample size 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

T = 10 56.1 42.1 20.8 47.0 27.7 0.0 - - -
T = 20 80.4 69.1 45.3 54.4 40.4 15.9 - - -
T = 30 90.8 83.0 62.4 66.3 51.0 28.5 - - -
T = 40 95.4 89.9 74.2 66.9 51.3 29.1 50.5 33.9 0.4
T = 50 97.2 93.5 81.1 73.6 58.8 35.9 51.3 35.8 4.0
T = 100 99.7 99.2 95.7 86.0 75.7 51.3 59.8 45.3 22.1
T = 150 99.9 99.8 98.8 93.1 86.4 67.2 69.8 54.2 32.4
T = 200 99.9 99.9 99.5 96.5 92.1 77.7 76.5 61.6 38.7
T = 250 100.0 100.0 99.8 96.8 92.8 79.6 80.9 68.1 43.3
T = 500 100.0 100.0 100.0 99.6 98.9 94.3 92.2 84.6 64.7
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