EVOLUCION E IMPACTO SOCIO-ECONOMICO
 DEL AEROPUERTO DE VITORIA-GASTEIZ

F. Javier Fernández Macho
Xabier Galarraga Aldanondo
Pilar González Casimiro
Parmeeta Bhogal Sohanpal

EVOLUCION E IMPACTO SOCIO-ECONOMICO DEL AEROPUERTO DE VITORIA-GASTEIZ

EVOLUCION E IMPACTO SOCIO-ECONOMICO DEL AEROPUERTO DE VITORIA-GASTEIZ

F. Javier Fernández Macho
Xabier Galarraga Aldanondo
Pilar González Casimiro
Parmeeta Bhogal Sohanpal

Instituto de Economía Pública.
Universidad del País Vasco-Euskal Herriko Unibertsitatea.

Evolución e impacto socio-economico del aeropuerto de Vitoria-Gasteiz/ [autores] F. Javier Fernández Macho, [et al.]; presentación de M. Carmen Gallastegui- Bilbao : Instituto de Economía Pública, Universidad del País Vasco / Euskal Herriko Unibertsitatea, 1999. - xx, 176 p. ; 24 cm .
D.L. BI-2517-99

ISBN: 84-931253-0-X
I. Fernández Macho, F. Javier, II. Galarraga Aldanondo, Xabier, III. González Casimiro, Pilar, IV. Bhogal Sohanpal, Parmeeta, V. Gallastegui, M. Carmen.

1. Aeropuertos, 2. Impactos Económicos
$338.47(460.155)$
© (1999) Instituto de Economía Pública
I.S.S.N.: 1575-8613
I.S.B.N.: 84-931253-0-X

Depósito Legal/Lege gordailua: BI-2517-99
Impresión/Imprimaketa: Lankopi, S.L.
Bilbao (Bizkaia)

Índice General

Presentación xvii
Agradecimientos xix
1 Introducción 1
1.1 Plan de trabajo 3
1.2 Resultados 4
2 Metodología 11
2.1 Impactos económicos de la actividad aeroportuaria 14
2.1.1 Impactos directos 15
2.1.2 Impactos indirectos 15
2.1.3 Impactos inducidos 16
2.2 Impactos geoespaciales 25
2.2.1 Sistemas de información geográfica 25
2.2.2 Metodología 26
2.3 Evolución de las principales magnitudes 28
2.3.1 Efectos diarios 31
2.4 Efectos cualitativos 32
3 Impacto económico del aeropuerto de Vitoria-Gasteiz 35
3.1 Impacto económico del aeropuerto 40
3.1.1 Impactos directos 41
3.1.2 Impactos indirectos 48
3.2 Impactos inducidos 54
3.2.1 Evolución dinámica de los multiplicadores de im- pacto 55
3.2.2 Impactos inducidos del aeropuerto de Vitoria-Gasteiz 59
3.3 Apéndices 65
3.3.1 Construcción de la matriz ampliada 65
3.3.2 TABLAS 69
4 Impactos geoespaciales del aeropuerto de Vitoria-Gasteiz 79
4.1 Impactos económicos por comarcas y sectores 80
4.2 Impactos económicos distribuidos por municipios 84
5 Aeropuerto de Vitoria-Gasteiz: Evolución de las prin- cipales magnitudes durante la década de los 90 93
5.1 Tendencias y predicciones 94
5.1.1 número de pasajeros 96
5.1.2 tráfico de aeronaves 104
5.1.3 movimiento de mercancias 113
5.2 Efectos diarios 121
5.2.1 número de pasajeros 123
5.2.2 tráfico de aeronaves 129
5.2.3 movimiento de mercancias 131
5.3 Conclusiones 137
6 Efectos cualitativos 143
6.1 Rasgos tipológicos de los pasajeros 144
6.2 La imagen que transmite el aeropuerto 161

Índice de Figuras

1.1 Evolución de los multiplicadores de impacto 6
2.1 Tendencia y crecimiento subyacente 29
2.2 Componente estacional 29
2.3 Componente transitorio 29
3.1 Evaluación de los impactos directos 49
3.2 Distribución de los no residentes por motivos de viaje 50
3.3 Gasto medio de los no residentes por día 52
3.4 Impacto económico total: producción 62
3.5 Impacto económico total: renta 63
3.6 Impacto total: empleo 63
4.1 ALAVA: impactos sobre la producción 81
4.2 ALAVA: impactos sobre la renta 82
4.3 ALAVA: impactos sobre el empleo 82
4.4 Producción: impactos comarcales por sectores 83
4.5 Renta: impactos comarcales por sectores 85
4.6 Empleo: impactos comarcales por sectores 85
4.7 ALAVA: impactos sobre la producción por municipios 86
4.8 ALAVA: impactos sobre la renta por municipios 87
4.9 ALAVA: impactos sobre el empleo por municipios 88
4.10 Impactos sobre la producción por municipios 90
4.11 Impactos sobre la renta por municipios 91
4.12 Impactos sobre el empleo por municipios 91
5.1 Ajustes: pasajeros de líneas aéreas 95
5.2 Pasajeros en vuelos nacionales regulares y charter 99
5.3 Pasajeros en vuelos nacionales 99
5.4 Pasajeros en vuelos internacionales 100
5.5 Aeropuerto de Vitoria-Gasteiz: número de pasajeros 105
5.6 Pasajeros en el aeropuerto de Vitoria-Gasteiz: tasas CAT (en \%) 105
5.7 Aeronaves en vuelos nacionales regulares y charter 108
5.8 Aeronaves en vuelos nacionales 108
5.9 Aeronaves en vuelos internacionales 110
5.10 Aeropuerto de Vitoria-Gasteiz: tráfico no comercial 110
5.11 Aeropuerto de Vitoria-Gasteiz: nivel de ocupación en aeronaves 112
5.12 Aeropuerto de Vitoria-Gasteiz: tráfico de aeronaves 114
5.13 Aeronaves en el aeropuerto de Vitoria-Gasteiz: tasas CAT (en \%) 114
5.14 Mercancias en vuelos charter 116
5.15 Mercancias en vuelos nacionales 116
5.16 Mercancias en vuelos internacionales 117
5.17 Aeropuerto de Vitoria-Gasteiz: movimiento de mercancias 120
5.18 Mercancias en el aeropuerto de Vitoria-Gasteiz: tasas CAT (en \%) 120
5.19 Pasajeros diarios en vuelos nacionales regulares 125
5.20 Pasajeros diarios en vuelos charter 125
5.21 Pasajeros regulares en el aeropuerto de Vitoria-Gasteiz: factores diarios 126
5.22 Pasajeros charter en el aeropuerto de Vitoria-Gasteiz: factores diarios 128
5.23 Aeronaves diarias en vuelos comerciales 130
5.24 Tráfico diario no comercial 130
5.25 Aeronaves comerciales en el aeropuerto de Vitoria-Gasteiz: factores diarios 132
5.26 Aeronaves no comerciales en el aeropuerto de Vitoria- Gasteiz: factores diarios 133
5.27 Mercancias diarias en vuelos nacionales 134
5.28 Mercancias diarias en vuelos internacionales 134
5.29 Mercancias en vuelos nacionales en el aeropuerto de Vitoria-Gasteiz: factores diarios 136
Índice de Figuras xi
5.30 Mercancias en vuelos internacionales en el aeropuerto de Vitoria-Gasteiz: factores diarios 138
6.1 Distribución de los pasajeros por edad 146
6.2 Modo de acceso al aeropuerto 150
6.3 Isocronas de tiempo de acceso al aropuerto 153
6.4 Estancia en hotel de lujo 157
6.5 Tipología de los usuarios del avión 160
6.6 Tipología del usuario del avión desde Vitoria-Gasteiz 160
6.7 No satisfechos con el número de vuelos 164
6.8 Importancia del aeropuerto (por motivos laborales) 169

Índice de Tablas

2.1 Tabla input-output 19
3.1 Resultados de las empresas que han respondido 36
3.2 Distribución por etapas de la muestra 40
3.3 Distribución del volumen de pasajeros 40
3.4 Impactos directos: organismos oficiales 42
3.5 Impactos directos: Aena 43
3.6 Impactos directos: líneas aéreas y soporte aviación 44
3.7 Impactos directos: transporte aéreo de mercancias 45
3.8 Impactos directos: concesionarios 45
3.9 Impactos directos: transporte terrestre 46
3.10 Impactos directos: total 48
3.11 Gastos de los no residentes por motivo de viaje 51
3.12 Impactos indirectos: pasajeros no residentes 53
3.13 Datos medios por empresa 53
3.14 Datos medios por empleado y empresa 54
3.15 Impactos indirectos: agencias de viajes 54
3.16 Impactos indirectos: total 55
3.17 Multiplicadores de impacto. Cuatro sectores 58
3.18 Clasificación de los impactos por actividad 60
3.19 Impacto económico total 61
3.20 Cuenta de rentas de las familias 65
3.21 Sectores de las TIO de la CAPV 70
3.22 Coeficientes renta y empleo 72
3.23 Impactos directos e inducidos 74
3.24 Impactos indirectos e inducidos 76
5.1 Aeropuerto de Vitoria-Gasteiz: series estadísticas men- suales 94
5.2 Pasajeros: componentes en mayo 1996 97
5.3 Pasajeros: vacaciones y vuelos charter 102
5.4 Aeronaves: componentes en mayo 1996 106
5.5 Mercancias: componentes en mayo 1996 115
5.6 Aeropuerto de Vitoria-Gasteiz: series estadísticas diarias 121
5.7 Pasajeros: efectos diarios y de calendario en mayo 1996 124
5.8 Aeronaves: efectos diarios y de calendario en mayo 1996 129
5.9 Mercancias: efectos diarios en mayo 1996 135
5.10 Aeropuerto de Vitoria-Gasteiz: detalle de predicciones 137
5.11 Aeropuerto de Vitoria-Gasteiz: previsión de impactos 141
6.1 Sexo de pasajeros según tipo (\%) 145
6.2 Edad de pasajeros según tipo (\%) 145
6.3 Situación laboral de pasajeros según tipo (\%) 147
6.4 Lugar de residencia de los pasajeros 147
6.5 Forma de viajar según tipología de pasajero 148
6.6 Relación con los acompañantes (\%) 148
6.7 Modo de acceso al aeropuerto (\%) 149
6.8 Tiempo empleado para llegar al aeropuerto 151
6.9 Procedencia del pasajero al embarcar 152
6.10 Motivo del viaje 155
6.11 Tipo de alojamiento 156
6.12 Frecuencia de los viajes en avión 159
6.13 Frecuencia de los viajes en avión desde Vitoria-Gasteiz 161
6.14 Satisfacción con las prestaciones del aeropuerto 162
6.15 Satisfacción con los servicios del aeropuerto (\%) 163
6.16 Deficiencias o irregularidades del aeropuerto (\%) 166
6.17 ¿Realizaría este viaje de no existir este aeropuerto? 168
6.18 Importancia del aeropuerto para la ciudad 168

Equipo de trabajo:

F. Javier Fernández Macho. Catedrático de Econometría Xabier Galarraga Aldanondo. Profesor de Análisis Económico Pilar González Casimiro. Profesora de Econometría Parmeeta Bhogal Sohanpal. Geógrafa

Presentación

El Instituto de Economía Pública, desde su fundación, ha tenido como objetivo la realización de trabajos aplicados que pudieran servir de puente entre la investigación académica y los problemas y retos a los que se enfrenta la economía vasca. Para la consecución de este objetivo se ha realizado, por parte de los investigadores permanentes y colaboradores del IEP, un ingente esfuerzo que se ha materializado en numerosos trabajos llevados a cabo tanto para el sector privado como para el sector público.

En el proceso se han cubierto númerosas áreas: El Ahorro, El Endeudamiento Público, La Regulación del Sector Eléctrico, Evaluación del Fraude, Financiación de los Entes Locales, Impacto de las Inversiones Públicas, Política Pesquera Comunitaria y un largo etcétera.

Los estudios realizados han sido de utilidad para las instituciones que se han acercado al IEP en busca de asesoramiento y análisis lo cual constituye un logro importante.

Hay sin embargo otra dimensión en estos trabajos que todavía está por conseguir y que se refiere a la difusión tanto de sus resultados como de la metodología utilizada en los mismos. Y es precisamente la consecución de esta difusión, que consideramos imprescindible, la que
ha motivado al IEP a publicar la Serie de Monografías en Economía Pública que ahora se presenta. Esperamos que esta iniciativa sea de utilidad para la profesión y para todos los que estén interesados en algunos de los temas analizados.

M Carmen Gallastegui Catedrática de Fundamentos del Análisis Económico.

Bilbao, a 11 de noviembre de 1999.

Agradecimientos

Mediante estas líneas, tanto el Instituto de Economía Pública como el equipo técnico encargado de la realización del presente trabajo desean expresar su agradecimiento a todo el personal de Aena que ha participado y colaborado con sus comentarios.

Igualmente, queremos resaltar la colaboración del aeropuerto de Vitoria-Gasteiz al facilitarnos gran parte de la información estadística de base sin la cual no habría sido posible la realización de este estudio.

Por último, agradecemos al Departamento de Ordenación del Territorio de la Diputación Foral de Alava su gentileza al facilitarnos la utilización del mapa digital del territorio histórico de Alava y sus municipios en soporte CAD, a partir del cual se crearon los gráficos y cartografía GIS presentes en este trabajo.

F Javier Fernández Macho
Bilbao, a 4 de febrero de 1998.

Capítulo 1

Introducción

El objetivo principal del presente trabajo consiste en valorar los impactos sobre la producción, la renta y el empleo imputables al aeropuerto de Vitoria-Gasteiz dentro de su área de influencia.

Las aportaciones metodológicas que hasta el momento han surgido han sido diversas y ricas en un intento común de calcular el significado económico de los aeropuertos en sus entornos territoriales respectivos. Por ello nuestro esfuerzo, sin descuidar ciertos aspectos metodológicos, centrará preferentemente su atención en destacar aquellos elementos distintivos del caso que nos ocupa.

En el presente trabajo, se pretende ofrecer una información, preferentemente cuantificada y basada en encuestas $a d-h o c$, sobre la incidencia económica de todo tipo de actividades del aeropuerto en su territorio de influencia. Los estudios de impacto de estas repercusiones económicas son diversos pero la mayor parte de ellos distingue entre los efectos directos, indirectos e inducidos, que serán definidos más adelante. Este es el caso del más conocido de ellos, y el que ha marcado la pauta en los estudios recientes al respecto (ACI (EUROPE) 1993).

De esta forma, liberado en cierto sentido de las servidumbres de interpretación y depuración de una enorme maraña de datos, el Instituto de Economía Pública ha dispuesto de una magnífica ocasión para utilizar sofisticadas técnicas de análisis de datos, tanto longitudinales como espaciales, aprovechando los últimos avances de las Tablas InputOutput de la CAPV más recientes (en lo sucesivo TIO) para estimar cierto tipo de impactos, así como para ofrecer información cualitativa inédita basada en encuestas respecto a los hábitos y el perfil de los viajeros o incluso a las características del transporte, en particular de mercancias. Se analiza, además, la distribución geoespacial de dichos impactos. Mencionaremos, no obstante, que, como ocurre en este tipo de análisis, ha habido que superar dificultades interpretativas de resultados, trampas de duplicación y de sobreestimación de los mismos y, en fin, complementariedad y ajuste de los datos de campo, sobre todo en el apartado correspondiente a la información de las empresas.

1.1 Plan de trabajo

El trabajo ha sido desarrollado en 6 capítulos. Las cuestiones metodológicas son tratadas en el capítulo 2, incluyendo en su estructura ciertas aportaciones inéditas en estudios precedentes tales como la obtención de la evolución histórica de los multiplicadores de impacto, la utilización de técnicas de predicción propias del análisis de series temporales moderno en la obtención de un "indicador" de la evolución futura de los impactos y la utilización de técnicas propias del análisis geoespacial y los sistemas de información geográfica con el fin de obtener una distribución territorial de los impactos estimados dentro del entorno natural del aeropuerto.

Esto es, la estructura metodológica que se propone queda como sigue:

- Obtención de los impactos directos e indirectos,
- Obtención de multiplicadores de impacto a partir de las Tablas Input Output,
- Análisis de su evolución histórica a partir de las Cuentas Económicas,
- Obtención de los impactos inducidos,
- Distribución geoespacial de los impactos totales,
- Evolución de las principales magnitudes del aeropuerto,
- Extrapolación a la evolución futura de los impactos dentro del entorno natural del aeropuerto.

Los impactos cuantitativos directos e indirectos han sido calculados en el capítulo 3. Completando estos resultados, a continuación se calculan los multiplicadores sectoriales de impacto y se estiman los efectos inducidos por los impactos directos e indirectos.

En el capítulo 4, analizamos los efectos geoespaciales, esto es, la distribución territorial de dichos impactos, teniendo en cuenta el enfoque metodológico ampliamente explicado en el capítulo 2.

El capítulo 5 ofrece como indicador o proxi de la futura evolución de los impactos del aeropuerto, un análisis de la predicción de las principales magnitudes del aeropuerto apuntando tendencias y crecimientos
subyacentes en el tráfico de aeronaves, y en los movimientos de mercancias y, en fin de pasajeros. La ruptura en la estructura del tráfico aéreo, detectada fundamentalmente a partir de 1995, que se analiza con detalle en este capítulo, supone cierta dosis de dificultad para la aplicación de técnicas habituales de predicción, y de eliminación de estacionalidad en las series.

Por último, en el capítulo 6, los resultados de la encuesta de base, realizada en tres oleadas sucesivas, nos permiten deducir cierto tipo de conclusiones sobre el comportamiento y las características del viajero medio del aeropuerto alavés, así como otros aspectos sobre ordenación del territorio de influencia.

1.2 Resultados

Las actividades económicas que genera el servicio de transporte de viajeros y mercancias desde el aeropuerto constituyen los impactos directos. A lo largo del año 1995, el impacto directo inicial sobre la producción así definido, arrojó una cifra de 1.921 millones de pesetas, habiéndose creado en su conjunto 343 empleos equivalentes.

Cuando las actividades económicas tienen un origen total o parcial en la existencia del aeropuerto, aunque se manifiesten físicamente fuera de su recinto, las calificamos como impactos indirectos. Pues bien, el valor de estos efectos indirectos iniciales sobre la producción asciendieron en ese año a 1.165 millones de pesetas creando un número de 6 empleos equivalentes.

La tabla siguiente ofrece un resumen de los impactos iniciales tanto directos e indirectos así como los multiplicadores medios y los efectos inducidos obtenidos en este estudio:

IMPACTO		DIRECTO	INDIRECTO	TOTAL
Producción	Inicial	1921	1165	3086
	Inducido	2093	1206	3299
	Total	4014	2371	6385
	multiplicador	2,09	2,04	2,07
RENTA	Inicial	1343	344	1687
	Inducido	956	331	1288
	Total	2299	675	2975
EmpleO	multiplicador	1,71	1,96	1,76
(no. empleos)	Inicial	343	6	349
	Inducido	150	216	366
	Total	493	222	715

El impacto económico total del aeropuerto de Vitoria-Gasteiz durante el año 1995 ascendería así a 6.385 millones de pesetas, siendo capaz de generar un empleo de 715 personas. En cuanto a los impactos totales sobre la renta, estos ascienden en total a 2.975 millones de pesetas. Nótese que, aunque en cifras absolutas el montante de este impacto no sea muy grande, el multiplicador medio de la renta sí lo es: 1,76 . La suave evolución de los multiplicadores de impacto puede apreciarse en la figura 1.1. ${ }^{1}$

Aunque los resultados del aeropuerto de Vitoria en cuanto a impactos económicos no son muy espectaculares en términos absolutos, hay que tener en cuenta el tamaño y las características particulares del mismo. En general, se observa que para el aeropuerto de Vitoria los impactos generados por las actividades directas en el propio aeropuerto son mayores que los impactos indirectos, no sólo en su valor inicial sino también en los efectos inducidos que se expanden a lo largo del conjunto de la economía alavesa. De hecho, se comprueba que el multiplicador de los impactos directos es también mayor que el de los indirectos. Este resultado es consistente con las características de un aeropuerto como el de Vitoria-Gasteiz de poco tráfico de pasajeros y poco turismo, que son los que suelen generar la mayoría de los

[^0]Figura 1.1: Evolución De los multiplicadores de impacto

ALAVA: IMPACTOS SOBRE LA PRODUCCIÓN POR MUNICIPIOS

impactos indirectos.
Haciendo un análisis detallado de los impactos del aeropuerto por ramas de actividad económica observamos que las que más contribuyen son las de Comercio y hostelería, Transporte y comunicaciones y Otros servicios comerciales; como se puede observar, todas ellas relacionadas con el sector Servicios, que es, por otra parte, el más dinámico en la economía alavesa.

Desde una perspectiva de distribución territorial de los impactos, resulta evidente el dominio de Vitoria-Gasteiz, que acapara en torno a un 90% de los impactos generados (lo que representa 5.696 millones y 639 empleos) seguida a mucha distancia por los municipios de Llodio (191 millones y 20 empleos) y Amurrio (89 millones y 11 empleos).

En cuanto a la estructura sectorial del impacto sobre la producción, puede apreciarse que para cada una de las seis comarcas en que se divide el territorio de Alava, y dentro del dominio general de la Llanada Alavesa, los sectores más fuertes son los del Comercio, Trans-

año	mercancias	Impactos s/ Prod (mill. pts)	POR CAD s/ Renta (mill. pts)	$\begin{array}{r} \hline 10.000 \mathrm{Tm} \\ \text { s/Empleo } \\ \text { (número) } \end{array}$
1995	12.248 Tm	5.213	2.429	584
		Impactos Previstos		
año	mercancias	$\begin{gathered} \text { s/ Prod } \\ \text { (mill. pts) } \end{gathered}$	s/ Renta (mill. pts)	$\underset{\text { (número) }}{\text { s/Empleo }}$
1996	21.077 Tm	10.987	5.120	1.231
1997	33.302 Tm	17.360	8.089	1.945
1998	52.617 Tm	27.429	12.781	3.071

porte, Bancos y Seguros, y Otros servicios. No obstante, merece la pena destacar como incluso los dos sectores con menor impacto en la comarca de la Llanada Alavesa (Agricultura e Industria Química) obtienen ahí impactos ligeramente superiores a comarcas donde estos sectores son fundamentales para la economía local (e.g. Agricultura en la Rioja Alavesa o Industria Química en la Cantábrica Alavesa). Por último, en cuanto al empleo, el impacto que en la Llanada Alavesa obtiene el sector Transporte es sensiblemente mayor al de cualquier otro, mientras que el sector en el que existe un menor impacto en todas las comarcas es el de la Energía seguido por el de la Industria química.

El aeropuerto de Vitoria-Gasteiz está apostando fuertemente por un cambio de estructura en la que los vuelos extracomunitarios y, en menor medida, nacionales destinados ambos al transporte de distintos tipos de mercancias han venido a sustituir a los vuelos, charter sobre todo, que antes solían destinarse al transporte de pasajeros. Así, el transporte de pasajeros pasa a tener un papel secundario, manteniéndose justo en niveles aceptables para cubrir las necesidades de la comarca de Vitoria-Gasteiz y su entorno. Más concretamente, hemos podido constatar que el número de pasajeros muestra un claro y continuado decrecimiento de su tendencia a largo plazo. Para mayo de 1996 dicho nivel se ha estimado en torno a los 12.378 pasajeros mensuales, muy lejos ya de los niveles de años anteriores, experimentando un moderado pero constante decrecimiento en torno al -12% anual. En cuanto al tráfico de mercancias, su nivel al final de la muestra (ma-

Mercancias en el aeropuerto de Vitoria-Gasteiz

yo de 1996) se ha estimado en torno a las 1.670 Tm mensuales (en contraste con las 30 Tm a comienzos de 1990) con un fuerte incremento subyacente del 58% anual. Si, además, tenemos en cuenta los impactos económicos mencionados anteriormente, observaremos que por cada 10.000 Tm de crecimiento anual se generan 584 empleos entre directos e inducidos y un incremento del impacto económico sobre la producción de unos 5200 millones de ptas. Esto implicaría que, de mantenerse las actuales proporciones y tasas de crecimiento observadas, el impacto estimado durante el año 1998 rondaría los 27.000 millones de ptas., siendo de unos 3000 el total de empleos, entre directos e inducidos, que se imputarían a la actividad del aeropuerto de Vitoria-Gasteiz.

En cuanto a los rasgos tipológicos de los usuarios del aeropuerto de Vitoria-Gasteiz, un pasajero que, hipotéticamente, utilizase este aeropuerto cumpliría probablemente con algunas de las características que mencionaremos. De una edad comprendida entre 26 y 45 años (55% de los pasajeros), es laboralmente activo y trabaja (casi el 72% de los viajeros de los distintos vuelos), reside en Alava (casi la mitad - 46% del total de usuarios), viaja solo y casi siempre por motivos de trabajo (aproximadamente el 50%) y acude habitualmente al aeropuerto bien en coche privado (un 34% de los viajeros), bien en taxi (cerca de un 29%). Por último, ese mismo viajero tipo tarda, como media, del orden de 15 a 29 minutos en llegar al aeropuerto desde su punto de origen. En lo referente a la estancia en Vitoria/Alava, un 41% de los usuarios del aeropuerto lo hicieron en hoteles de lujo frente a un 12% en casas particulares. No obstante, cerca de un 28% no pernoctó. Por otro lado, el 95% de los pasajeros, tanto residentes como no residentes, quedaron satisfechos con las prestaciones del aeropuerto. Finalmente, es interesante señalar que la identificación de los vitorianos/alaveses con su aeropuerto muestra una importancia decisiva tanto desde un punto de vista práctico como sentimental.
Nivel de satisfacción con las prestaciones del aeropuerto

	Residentes	No Residentes
Satisfecho	95%	$94,8 \%$
Regular	$3,2 \%$	3%
Insatisfecho	$1,5 \%$	$1,5 \%$
NS/NC	$0,3 \%$	$0,7 \%$

Capítulo 2

Metodología

El objetivo del presente trabajo es calcular los efectos sobre la producción, el empleo y la renta regionales originados por un incremento de la producción regional. En otras palabras, cuantificar los impactos económicos que tienen su origen en el aumento de la demanda final de la producción de bienes y servicios debido a las actividades económicas que generan los aeropuertos en su entorno regional. Obviamente, el estudio de tales impactos no estaría completo sin un análisis posterior de la evolución de las principales magnitudes del aeropuerto durante los últimos años así como su predicción a corto-medio plazo, con el fín de ofrecer una intuición de la evolución futura de los impactos del aeropuerto.

En cuanto a los impactos propiamente dichos, seguiremos la metodología ACI (EUROPE) (1993) ${ }^{1}$, ya utilizada en otros estudios que nos han precedido, y que distingue claramente entre efectos directos, indirectos e inducidos, cuando se trata de cuantificar los impactos económicos a los que en los sucesivos epígrafes nos referiremos.

Sin embargo, antes de explicar con más detalle las distintas etapas de este estudio, quisieramos señalar algunas cuestiones. En primer lugar, no dedicaremos excesiva atención a la interpretación conceptual de los estudios de impacto hasta ahora realizados, por entender que se trata de un tema amplia y bien tratado. En segundo lugar, hemos optado por aplicar nuestros esfuerzos a la explicación de nuevos métodos de análisis de la evolución de las magnitudes fundamentales de los aeropuertos, en este caso el de Vitoria-Gasteiz, pero con amplias posibilidades, entendemos, para otras situaciones más complejas, y también al aprovechamiento del potencial analítico de unas Tablas Input Output en permanente actualización. Y, por último, es nuestra intención dedicar una parte del trabajo a aspectos que genéricamente podemos calificar como cualitativos aunque habría que precisar que su interpretación tenderá a basarse, en la medida de lo posible, en los resultados de la encuesta de campo.

El ámbito de aplicación de las TIO condiciona el área de influencia de los impactos económicos, en este caso el País Vasco, aunque la información directa complemente para Alava estos resultados. En relación al año base, las últimas TIO son de 1994, aunque los datos de tráfico de pasajeros y mercancías se refieran al período 95-96 y la encuesta

[^1]de base se realizó asimismo entre los meses de abril-diciembre del mismo año. No representan, por lo tanto años de particular bonanza o depresión económica, susceptibles de distorsionar los resultados.

Adoptamos el criterio en este estudio de incluir solamente los efectos que no se hubieran dado, si el aeropuerto, no hubiese existido, esto de forma estricta. También distinguiremos entre los pasajeros que visitarían la región aún cuando no existiese el aeropuerto, de aquellos otros que, por otro modo de transporte, se acercarían a la misma. En consonancia con lo mencionado, habría que incluir en nuestro análisis solamente el efecto económico del primer grupo. Sin embargo, a pesar de ello, será raro que sea efectivo desde el punto de vista del coste el desarrollar un escenario base o modelo en el que se represente a la economía de la región sin el aeropuerto. Para Wilburn Smith Associates (1988) la dificultad, practicamente insuperable a un costo razonable, aconseja analizar el impacto tal y como se produce sin distinguir efectos achacables a un escenario sin instalación aeroportuaria. El estudio ACI (EUROPE) (1993) es de la misma opinión.

Existen metodologías alternativas, como el modelo de impacto económico ADL (Arthur D."active@prefix ~"active@char~ Little International 1993), y el método simplista o del aeropuerto por el aeropuerto. Nosotros hemos optado por adoptar básicamente el criterio empleado de aplicación del método del impacto diferencial que presenta los problemas de la adicionalidad (lo que es estrictamente imputable a la mera existencia de aeropuerto), y del desplazamiento o transparencia (qué parte de la actividad es estrictamente nueva y qué porción de la misma representa un mero desplazamiento espacial o sectorial). Presuponemos que si los trabajadores del aeropuerto no trabajasen en el mismo, estarían en desempleo o parados. Nos inclinamos, por lo tanto, por seguir el esquema, en lo básico, del impacto tal como se produce aproximándonos en la medida que la información existente nos lo permita, al criterio del impacto diferencial.

2.1 Impactos económicos de la actividad aeroportuaria

El enfoque metodológico seguido por U.S. Department of Tansportation F.A.A. (1986) y ACI (EUROPE) (1993), entre otros, tiene desde luego varias dificultades, a pesar de haberse utilizado profusamente en estudios empíricos, para algunos sobreestima los efectos directos e indirectos, para otros utiliza incorrectamente los multiplicadores. ¿Es adecuado imputar a los aeropuertos los efectos indirectos, especialmente los gastos que los pasajeros llevan a cabo fuera del ámbito de los mismos?

Los pasajeros o visitantes, no vendrían si el aeropuerto no existiese, y por lo tanto no podrian computarse estos impactos indirectos. Estricto sensu el volumen de negocios de las agencias de viajes y los del transporte de mercancias situados fuera del aeropuerto no pueden considerarse como generados por el aeropuerto sino propiciados por él (García"active@prefix ~"active@char~ Linaza, Martín"active@prefix ~"active@char~ Reyes y Otero"active@prefix ~"active@char~ Moreno 1996). Los gastos de las tripulaciones, de los pasajeros no residentes, constituyen un incremento de la demanda final que genera el aeropuerto pero que él no satisface. Este es el argumento para incluirlo a caballo entre los efectos directos e indirectos. En cualquier caso al ser de cuantía pequeña, su inclusión es irrelevante, por ello casi todo el mundo lo incluye en impactos indirectos.

Los impactos indirectos y los indirectos inducidos son considerados por algunos analistas como un indicador de la importancia estratégica del aeropuerto en la economía local ya que según esta opinión no sería correcto añadir efectos directos e indirectos por ser ambos de naturaleza diferente.

En este estudio vamos a calcular los impactos económicos sobre la producción, el empleo y la renta en el ámbito regional.

Los impactos directos e indirectos son los incrementos en la demanda final para los distintos sectores productivos generados por la actividad aeroportuaria. Agregando todos los impactos directos e indirectos sectoriales obtenemos todo el impacto directo e indirecto sobre la producción regional. El hecho de que no todos los sectores productivos tengan la misma capacidad de generar renta dentro de la región
hace que, precisamente, se considere necesario estimar especificamente los impactos sobre la renta.

2.1.1 Impactos directos

Los impactos directos tratan de recoger el efecto en la región (Alava o País Vasco) de las actividades económicas derivadas de la provisión del servicio de transporte de viajeros y de mercancías a través del aeropuerto. Incluyen gastos de líneas aéreas (pasajeros, mercancías), catering, handling, servicios seguridad aeropuerto, concesiones, restaurantes alquiler de coches, transporte terrestre de viajeros, mantenimiento de aeronaves, aparcamientos, organismos públicos relacionados con el funcionamiento del aeropuerto, etc.

Para distinguir los efectos directos de los indirectos es preciso tener en cuenta la ubicación en la que se producen los impactos. Así, impactos directos son los que tienen su origen en las actividades económicas dentro del aeropuerto (empresas y administraciones). Se pagan sueldos y salarios, se generan empleos y se actúa sobre la renta regional. Se trata, por lo tanto, de actividades que no se hubieran producido de no existir el aeropuerto. Lo que se denomina en la literatura como el cálculo del efecto, tal como se produce.

De los gastos producidos por las actividades que hemos mencionado sólo se consideran las partes relevantes para la economía de la zona, por eso es pertinente distinguir entre gastos e inversiones si se trata de bienes y servicios de la región o importados.

La información recogida afecta al total de la población, es decir, al total de las tiendas, actividades y organismos. Los procedimientos de cuantificación, trabajo de campo, y estimación adicional y complementaria se explican con detalle en el capítulo 3 . Se ha acudido también en este estudio a otras fuentes de información disponibles, citadas en dicho capítulo.

2.1.2 Impactos indirectos

Los impactos indirectos son aquellos que se generan fuera del aeropuerto pero tienen su origen en la existencia y en las actividades de empresas y personas del mismo, al menos parcialmente. Entre otros, corresponden a dicha categoría, los gastos de personas no residentes
(pasajeros), tripulaciones que pernoctan, los de agencias de viajes que desde fuera del aeropuerto operan en el ámbito regional y local, los gastos en transporte de superfície de los pasajeros residentes en su acercamiento a la terminal aérea. Por lo tanto, se caracterizarán como impactos indirectos, las actividades de hoteles, restaurantes, tiendas y negocios en relación con el aeropuerto, transporte terrestre, ocio, etc. Lo mismo que para los impactos directos hay que distinguir entre gastos, compra de bienes (productos) y servicios de la propia región y los que vienen de fuera de la región.

Se plantea un problema, frecuentemente aludido en la literatura, y es el de la consideración de los gastos de aquellas personas que hubiesen viajado a la región por otro modo alternativo de transporte, de no haber existido el aeropuerto. La forma habitual de encarar esta dificultad es preguntando a los propios viajeros si hubiesen acudido a la región si no existiese el aeropuerto.

2.1.3 Impactos inducidos

A la hora de evaluar el impacto económico del aeropuerto en su entorno hay que tener en cuenta que cada uno de los incrementos de producción ocasionados por las actividades directas e indirectas del aeropuerto se expande por el conjunto de la economía regional generando nuevos incrementos de producción, renta y empleo en los distintos sectores económicos. Estos efectos multiplicadores o de arrastre de la economía se denominan efectos inducidos. Cada impacto directo lleva asociado su correspondiente efecto inducido, así como todos y cada uno de los impactos económicos indirectos.

El período de tiempo en que se producen los efectos inducidos es díficil de evaluar. Nosotros nos centraremos en determinar la cuantía de los distintos efectos inducidos detectados en el o los años de análisis.

Modelo Input-Output

La literatura recoge diferentes métodos para evaluar los impactos económicos inducidos que van desde los más simples como el método del aeropuerto por el aeropuerto hasta la especificación de modelos econométricos. En nuestra opinión, la técnica más adecuada se basa en la formulación de modelos que exploten la información sobre las relaciones económicas
recogida en las tablas input-output (TIO).
Los modelos input-output suponen una descripción altamente detallada de todas las relaciones que se producen entre los diferentes sectores de actividad económica de una región y entre ésta y el resto de las economías con las que realiza intercambios. La primera versión del modelo de Leontieff (1951) era un modelo descriptivo de interdependencia totalmente cerrado. Es decir, ninguna variable era exógena al sistema: todas las producciones estaban interrelacionadas entre sí y, por consiguiente, todas eran endógenas. Las producciones incluyen todos los bienes y servicios posibles así como los factores primarios, capital y trabajo. Es de señalar que en el caso de los factores primarios, los agentes productores no son empresas sino familias, y los consumos productivos o inputs son los bienes y servicios que compran estas familias.

Para que el modelo input-output sea operativo es necesario exogeneizar algunas de las producciones. En el modelo input-output abierto se hacen exógenos los siguientes elementos:

1. Demanda Final

Usos de bienes y servicios para el consumo de familias o de las Administraciones Públicas, para la inversión o el consumo diferido en el tiempo o para el comercio exterior.
2. Valor Añadido o Inputs Primarios

Viene dado por las Rentas de trabajo y capital, es decir, por la suma de los sueldos y salarios pagados al factor trabajo más el excedente de explotación para el factor capital.

El modelo abierto se puede escribir como sigue:

$$
\begin{gather*}
{\left[\begin{array}{c}
q_{1} \\
q_{2} \\
\cdot \\
\cdot \\
q_{N}
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 N} \\
x_{21} & x_{22} & \ldots & x_{2 N} \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
x_{N 1} & x_{N 2} & \ldots & x_{N N}
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
\cdot \\
\cdot \\
1
\end{array}\right]+\left[\begin{array}{c}
D F_{1} \\
D F_{2} \\
\cdot \\
\cdot \\
D F_{N}
\end{array}\right]} \\
q=X i+D F \tag{2.1}
\end{gather*}
$$

donde:

- q_{i} : producción total del sector i-ésimo.
- $x_{i j}$: flujo que el sector i suministra al sector j. La matriz \mathbf{X} de orden $(N \times N)$ recibe el nombre de matriz de transacciones interindustriales.
- i : vector de unos.
- N : número de sectores productivos.
- $D F_{i}$: elemento del vector de demanda final que nos proporciona las ventas del sector i-ésimo al consumo privado o público, la formación bruta de capital y las exportaciones menos los consumos intermedios importados.

La tabla input-output 2.1 corresponde a esta formulación del modelo input-output y en ella se puede observar que la matriz \mathbf{X} del modelo (2.1) nos proporciona las relaciones de compraventa entre sectores industriales:

- por columnas: las compras de cada sector a todos los demás.
- por filas: las ventas de cada sector a todos los demás.

Las relaciones económicas entre los sectores establecidas por dicha tabla input-output son:

1. Agregando en sentido horizontal, se obtiene la producción total de cada uno de los sectores:

$$
q_{i}=x_{i}^{\prime} i+D F_{i}
$$

2. En sentido vertical, sin embargo, lo que se agrega son inputs intermedios y valores añadidos, que tambien proporcionan la producción total.
3. En la matriz X la suma de las filas de los consumos intermedios es igual que la suma de las columnas de inputs intermedios.
4. La suma de las demandas finales es igual a la suma de los inputs primarios.

Tabla 2.1: Tabla input-output

	Sectores productivos	Consumo Intermedio	Demanda Final			Empleos Totales
	$\begin{array}{lllll}S_{1} & S_{2} & \ldots & S_{N}\end{array}$		$\begin{array}{\|l} \text { Consumo } \\ \text { Privado } \end{array}$	Consumo Formac. Público Bruta Capital	Export.	
$\begin{aligned} & S_{1} \\ & S_{2} \\ & \ldots \\ & S_{N} \end{aligned}$	$\begin{array}{cccc} x_{11} & x_{12} & \ldots & x_{1 N} \\ x_{21} & x_{22} & \ldots & x_{2 N} \\ \ldots & \ldots & \ldots & \ldots \\ x_{N 1} & x_{N 2} & \ldots & x_{N N} \end{array}$	$\begin{gathered} C I_{1} \\ C I_{2} \\ \ldots \\ C I_{N} \end{gathered}$		$\begin{gathered} D F_{1} \\ D F_{2} \\ \ldots \\ D F_{N} \end{gathered}$		$\begin{aligned} & Q_{1} \\ & Q_{2} \\ & \ldots \\ & Q_{N} \end{aligned}$
Input Intermedio	$\begin{array}{lllll}I I_{1} & I I_{2} & \ldots & I I_{N}\end{array}$	$C I=I I$		DF		Q
Remun. Asal. Exc.Br.Explot. Imp - Subven. VAB (apsf) Importaciones Inputs Pri- marios	$I P_{1} \quad I P_{2} \ldots \ldots . I P_{N}$			$\mathrm{IP}=\mathrm{DF}$		
Recurisos Totales	$Q_{1} \quad Q_{2} \quad \ldots . Q_{N}$					Q

A partir de las TIO es muy sencillo calcular indicadores que recojan los efectos de arrastre inducidos en la producción económica global a través de todas las relaciones intersectoriales ante incrementos exógenos en la demanda.

Definamos los coeficientes técnicos como sigue:

$$
a_{i j}=\frac{x_{i j}}{q_{j}}
$$

El modelo (2.1) se puede escribir como:

$$
\begin{gather*}
{\left[\begin{array}{c}
q_{1} \\
q_{2} \\
\cdot \\
\cdot \\
q_{N}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 N} \\
a_{21} & a_{22} & \ldots & a_{2 N} \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
a_{N 1} & a_{N 2} & \ldots & a_{N N}
\end{array}\right]\left[\begin{array}{c}
q_{1} \\
q_{2} \\
\cdot \\
\cdot \\
q_{N}
\end{array}\right]+\left[\begin{array}{c}
D F_{1} \\
D F_{2} \\
\cdot \\
\cdot \\
D F_{N}
\end{array}\right]} \\
q=A q+D F \tag{2.2}
\end{gather*}
$$

donde $A=\left[a_{i j}\right]$, denominada matriz de coeficientes técnicos es de la forma:

$$
A=X[\operatorname{diag}(q)]^{-1}
$$

Cada uno de los coeficientes técnicos $a_{i j}$ nos mide la proporción de la producción del sector j que proviene del sector i. Siempre hay que tener en cuenta que la interpretación de estos coeficientes depende de si los leemos por filas o por columnas. La matriz A, de la misma forma que la matriz \mathbf{X}, nos proporciona relaciones de compraventa entre los sectores: por filas, las compras y por columnas, las ventas.

A partir del modelo (2.2) la solución para el vector de productos sectoriales es:

$$
\begin{gather*}
q=[I-A]^{-1} D F \\
B=[I-A]^{-1}=I+A+A^{2}+A^{3}+\ldots \tag{2.3}
\end{gather*}
$$

A la matriz $B=[I-A]^{-1}=\left[b_{i j}\right]$ se le denomina matriz inversa de Leontieff o matriz tecnológica.

Los coeficientes de esta matriz B recogen el efecto multiplicador en el conjunto de la economía de un incremento en la demanda final. De hecho cada coeficiente $b_{i j}$ se interpreta en términos económicos como la cantidad adicional producida por el sector i si la demanda final del
sector j se incrementa en una unidad. En particular $b_{i i}>1$, dado que recogerá el efecto directo del incremento en la demanda sobre la producción de su propio sector más los efectos inducidos por necesidades adcionales de otros sectores. La matriz B se conoce tradicionalmente como la matriz de los multiplicadores de producción.

Los multiplicadores de renta y de empleo se pueden obtener directamente a partir de la matriz B de una forma sencilla.

1. Multiplicadores de Renta:

$$
M R=r B
$$

donde r es un vector de coeficientes de renta que se definen para cada sector como:

$$
\begin{equation*}
r_{i}=\frac{R_{i}}{q_{i}} \tag{2.4}
\end{equation*}
$$

siendo R_{i} la renta doméstica generada en la producción del sector i-ésimo y cuyo cálculo se presenta en el apéndice 3.3.1.

Cada producto $\left[r_{i} b_{i j}\right.$] se interpreta como la renta adicional generada en el sector i si la demanda final del sector j se incrementa en una unidad.

Mediante estos multiplicadores se puede calcular facilmente el impacto inducido sobre la renta regional por la actividad económica del aeropuerto. Este impacto nos recoge, la parte del impacto sobre la producción que repercute sobre las rentas de la región. Por lo tanto, este impacto excluye las importaciones y otros componentes del valor de la producción que no forman parte de las remuneraciones a los factores productivos de la región.
2. Multiplicadores de Empleo:

$$
M E=\ell B
$$

donde ℓ es un vector de coeficientes sectoriales de empleo que se definen para cada sector como:

$$
\begin{equation*}
\ell_{i}=\frac{L_{i}}{q_{i}} \tag{2.5}
\end{equation*}
$$

siendo L_{i} el empleo del sector i-ésimo.

De forma que el término $\left[\ell_{i} b_{i j}\right]$ se interpreta como el empleo total requerido en el sector i-ésimo para que el sector j produzca una unidad más de output para la demanda final.

Los multiplicadores de producción, renta y empleo obtenidos a partir del modelo (2.1) se denominan en la literatura Multiplicadores de Impacto tipo I.

Modelo ampliado con el sector familias

Con los multiplicadores de tipo I que se obtienen a partir de la matriz tecnológica $B(2.3)$ se mide el impacto que tiene sobre la economía de una región un incremento en la demanda final de algún sector productivo. Con estos multiplicadores cuantificamos tanto el impacto directo como inducido ya que tenemos en cuenta no sólo el efecto directo de un incremento en la demanda sobre la producción del sector sino tambien los efectos inducidos por las necesidades de otros sectores (el mismo razonamiento se aplica a los efectos indirectos). Pero, sin embargo, no tienen en cuenta el siguiente efecto: un aumento en la demanda final de un sector supone un aumento en la producción del sistema y, por tanto, un incremento de renta. Estos aumentos iniciales de renta producidos por cambios en la demanda final tienen efectos adicionales en los consumos de las economías domésticas lo que provocará un aumento adicional en la demanda final. Este proceso de interacción consumo-renta se produce en fases sucesivas hasta la desaparición de los efectos provocados por el cambio inicial en la demanda final.

Para construir un tipo de multiplicadores que tenga en cuenta estos efectos, es preciso ampliar la matriz de transacciones interindustriales \mathbf{X} del modelo (2.1) para incluir al sector de las economías domésticas como si fuera un sector productivo. De esta forma, la matriz \mathbf{X} va a tener una fila y una columna más. Si se trata al sector familias como otro sector productivo cualquiera su columna y fila de la matriz de transacciones industriales recogerán los siguientes conceptos:

- Columna: flujo del sector productivo i-ésimo (suministrador) para satisfacer las necesidades del sector familias.
- Fila: flujo del sector productivo i-ésimo que revierte en el sector familias.

Por lo tanto, la columna del sector $N+1$ estaría formada por el Consumo Familiar, que desaparecería de la Demanda final (veáse la tabla 2.1). Por otro lado, cada elemento de la fila se obtendría calculando la renta doméstica directamente generada al obtener el producto del sector i, R_{i} (veáse apéndice 3.3.1).

El modelo input-output ampliado con la inclusión del sector familias queda como sigue:

$$
\begin{aligned}
q & =X i+C F+(D F-C F) \\
q_{f} & =R^{\prime} i+R E
\end{aligned}
$$

donde:

- $C F$: el consumo familiar interior
- q_{f} : la renta total de las familias
- $R^{\prime}=\left[R_{i}\right]^{\prime}$: vector de rentas domésticas generadas al obtener la producción de cada uno de los sectores
- RE: las rentas recibidas del exterior, que supondremos que son cero.

Este modelo ampliado se puede escribir matricialmente como:

$$
\begin{gather*}
{\left[\begin{array}{c}
q \\
q_{f}
\end{array}\right]=X^{*}\left[\begin{array}{c}
q \\
q_{f}
\end{array}\right]+\left[\begin{array}{c}
D F-C F \\
R E
\end{array}\right]} \\
q^{*}=X^{*} i^{*}+D F^{*} \tag{2.6}
\end{gather*}
$$

La nueva matriz de transacciones interindustriales con $N+1$ sectores es:

$$
X^{*}=\left[\begin{array}{c|c}
\mathrm{X} & \\
\hline \mathrm{R}^{\prime} & 0
\end{array}\right]
$$

y la matriz de coeficientes técnicos ampliada a $N+1$ sectores es:

$$
A^{*}=\left[\begin{array}{c|c}
\mathrm{A} & \mathrm{cf} \\
& \\
\hline r^{\prime} & 0
\end{array}\right]
$$

donde los elementos de los vectores columna y fila $c f$ y r^{\prime} vienen dados por:

$$
c f=\left[c f_{i}=\frac{C F_{i}}{q_{F}}\right] \quad r=\left[r_{i}=\frac{R_{i}}{q_{i}}\right]^{\prime}
$$

Estos elementos de la matriz A^{*} relacionados con el sector familias se pueden interpretar económicamente como:

- $c f_{i}$: necesidades directas del producto i para la obtención de una unidad final de consumo privado.
- r_{i} : renta doméstica directamente generada al obtener una unidad de producción del sector i.

Resolviendo el modelo (2.6) para la demanda final queda:

$$
\begin{aligned}
q^{*} & =A^{*} q^{*}+D F^{*} \\
q^{*} & =\left[I_{N+1}-A^{*}\right]^{-1} D F^{*}
\end{aligned}
$$

donde la matriz tecnologica ampliada a $N+1$ sectores es:

$$
\begin{gather*}
B^{*}=\left[I_{n+1}-A^{*}\right]^{-1}=\left[b_{i j}^{*}\right] \\
B^{*}=\left[\begin{array}{c|c}
B^{p} & \mathrm{~s} \\
\hline b^{f} & \mathrm{v}
\end{array}\right] \tag{2.7}
\end{gather*}
$$

La interpretación económica de los elementos relevantes de esta matriz, desde el punto de vista de los multiplicadores de impacto, es la siguiente:

- $b_{i j}^{p}$: cantidad adicional final producida por el sector i-ésimo si la demanda final del sector j aumenta en una unidad.
- b_{j}^{f} : renta adicional final generada si la demanda final del sector j se aumenta en una unidad.

En base a la nueva matriz tecnológica construida endogeneizando el sector familias como si fuera un sector productivo más, B^{*}, podemos obtener los multiplicadores de impacto para la producción, la renta y el empleo conocidos en la literatura por el nombre de Multiplicadores de Impacto tipo II.

- Producción

La submatriz B^{p} formada por las primeras N filas y N columnas de la matriz B^{*} nos proporciona los multiplicadores tipo II de la producción.

$$
\begin{equation*}
M P=B^{p} \tag{2.8}
\end{equation*}
$$

- Renta

Los multiplicadores de renta tipo II vienen dados directamente por la fila $N+1$ de la matriz tecnológica ampliada por el sector familias, b^{f}.

$$
\begin{equation*}
M R=b^{f} \tag{2.9}
\end{equation*}
$$

- Empleo

Los multiplicadores tipo II de empleo se obtienen directamente a través de la matriz B^{p}, como sigue:

$$
\begin{equation*}
M E=\ell B^{p} \tag{2.10}
\end{equation*}
$$

donde ℓ viene dado por (2.5).
En este trabajo vamos a utilizar únicamente los multiplicadores tipo II para calcular los efectos inducidos generados por los impactos directos e indirectos del aeropuerto de Vitoria-Gasteiz, por lo que a partir de ahora siempre que hablemos de multiplicadores nos estaremos refiriendo a los multiplicadores de tipo II sin tener que denominarlos explícitamente de esta forma.

2.2 Impactos geoespaciales

2.2.1 Sistemas de información geográfica

Formalmente, un sistema de información geográfica (comúnmente conocido como GIS según sus siglas en inglés) ha venido a ser definido como "un sistema de 'hardware', 'software' y procedimientos elaborados para facilitar la obtención, gestión, manipulación, análisis, modelado, representación y salida de datos espacialmente referenciados para resolver problemas complejos de planificación y gestión" (NCGIA 1990). Dicho de otra forma, un GIS es un sistema informático que utiliza
información situacional - una dirección, un código postal, un distrito del censo, coordenadas del latitud y la longitud, etc.- para trazar mapas que, conteniendo un vector de datos asociados a cada uno de sus puntos, permiten un mejor análisis de dicha información. Es, por tanto, un sistema dinámico que permite seleccionar cualquier criterio susceptible de ser representado en un mapa, analizando rápidamente y de una manera más intuitiva cómo los diferentes factores afectan a nuestro modelo.

Una vez constituida la base de datos GIS, no sólo tenemos la ventaja de poder visualizar como se distribuyen los efectos tanto a lo largo del territorio en cuestión como de los diferentes sectores de la economía, sino también tenemos la posibilidad de
agregar/desagregar los datos según el nivel que nos interese (municipio, comarcas, provincias, etc.),
actualizar los datos para analizar la evolución temporal,
comparar dos situaciones temporales distintas, etc.
Desde punto de vista socioeconómico, la posibilidades de aplicar un GIS son muy extensas y diversas; solamente tenemos que pensar en toda la extensa gama de información económica recogida en bases de datos tradicionales y que puede ahora ser localizada geográficamente para ver el enorme potencial de esta herramienta. En el caso de los impactos económicos generados por aeropuerto de Vitoria-Gasteiz sobre su entorno natural hemos utilizado un GIS para distribuir geográficamente estos impactos sobre el territorio alavés.

2.2.2 Metodología

Dados los distintos impactos económicos -sobre produción, renta o empleo- generados por el aeropuerto para el conjunto de la economía alavesa, nos interesa ahora ver la distribución geográfica de los mismos con más detalle. En primer lugar contamos con un mapa de Alava por zonas (municipios) en formato digital al que, con un programa GIS, podemos asignar los valores de una variable distribuidora de caracter económico, la cual se considera como un indicador o proxi del peso relativo de cada zona en el conjunto del territorio bajo estudio. Las
zonas (municipios) de dicho mapa base son susceptibles de ser convenientemente agregadas para obtener, si así se requiere, una distribución comarcal, funcional, etc.

En nuestro caso, se ha utilizado como variable distribuidora la población de 16 y más años ocupada según la rama de actividad, según el último censo de la población (EUSTAT 1993b). De esta forma, hemos utilizado el número de personas activas en cada sector como indicador del peso relativo de este sector en la economía del municipio y, agregando toda la población activa del municipio, como indice de su participación en la economía de la provincia. Aquí tenemos que comentar que también sería interesante contrastar y/o confirmar la distribución resultante, con los datos de la producción de cada sector de la economía en cada municipio. Desafortunadamente, esta información es difícilmente obtenible a nivel municipal, por lo que el nivel de empleo generado por cada sector puede considerarse como el único indicador disponible de los niveles de actividad de dicho sector en ese municipio.

El siguiente paso consiste en tener en cuenta los resultados obtenidos en el capítulo 3, de tal manera que podamos distribuir los efectos económicos, tanto directos e indirectos como inducidos. Así para cada sector (utilizando la clasificación de la actividad económica a un dígito CNAE), los efectos directos e indirectos se han asignado exclusivamente al municipio de Vitoría-Gasteiz (o a la comarca de la Llanada Alavesa en su caso) por ser esta la localidad donde se situa el aeropuerto alavés, mientras que los efectos inducidos se han repartido por todos los municipios del territorio, calculando el peso que tiene un sector en un municipio, según el criterio previamente citado. Por último, para el análisis tanto a nivel municipal como comarcal, se han sumado la totalidad de los efectos de los distinto sectores, obteniéndose así el nivel de participación de cada zona en la economía alavesa.

En cuanto a los mapas de de los impactos sobre la producción y renta, se han dividido los resultados por rangos naturales determinados mediante un algoritmo basado en la diferencia mínima entre los valores de los datos, el promedio de los valores de datos es minimizado sobre una base por rango, lo que reduce errores y permite obtener una representación más real de los datos.

En cuanto al mapa de los impactos sobre el empleo, se ha utilizado la técnica más sencilla de densidad de puntos. En este caso se ha asignado el valor de un punto igual a un empleo, obteniéndose así la
densidad de empleos generados en el territorio histórico de Alava.

2.3 Evolución de las principales magnitudes

A modo de ilustración, el gráfico de la figura 2.1 (línea de puntos) muestra un ejemplo de serie temporal correspondiente al número de pasajeros (en miles) contabilizados mensualmente por las líneas aéreas internacionales en torno a la decada de los 50. Esta serie histórica presenta la estructura temporal típica de muchas variables socio-económicas que cuenta como rasgos visuales más sobresalientes una tendencia o evolución general a largo plazo y un esquema estacional que, de forma aproximada, se repite cada año. No obstante, estos componentes no son directamente observables en la práctica. Los datos observados se refieren a una composición de señales, contaminados además con perturbaciones más o menos irregulares que será preciso eliminar. Necesitamos, por tanto, modelos y técnicas estadísticas que nos ayuden a extraer cada componente de interés por separado.

Por supuesto, tales modelos habrán de estar en consonancia con la evolución de los componentes de interés que deseamos extraer. Así, por ejemplo, la figura 2.1 (trazo continuo) ilustra el componente de tendencia a largo plazo de la serie de Pasajeros de Líneas Aéreas. Una tendencia de este tipo puede generarse mediante un proceso de la forma

$$
m_{t}=m_{t-r}+b_{t-1} / 100+\varepsilon_{t}, \quad t=1 \ldots T
$$

donde r, en general, es el número de observaciones en el año, y la tasa de crecimiento anual subyacente en $\%$ (trazo discontinuo de la figura 2.1) $\left\{b_{t}\right\}$ sigue un proceso tal que

$$
b_{t}=b_{t-1}+\zeta_{t}, \quad t=1 \ldots T
$$

mientras que $\left\{\varepsilon_{t}\right\}$ y $\left\{\zeta_{t}\right\}$ representan sendas perturbaciones aleatorias que siguen procesos $A R M A(0, r-1)$ independientes entre sí.

La característica esencial de esta formulación es que implica una aproximación local a una tendencia lineal (en logaritmos) muy acorde con procesos evolutivos típicos en series socioeconómicas en los que la tasa de crecimiento anual cambia lentamente a lo largo del tiempo

Un ejemplo: Pasajeros de líneas aéreas

Figura 2.1: Tendencia y crecimiento subyacente

Figura 2.2: Componente estacional

Figura 2.3: Componente transitorio

-de acuerdo a un mecanismo $A R I M A(0,1, r-1)$ en nuestro casoacomodándose a la evolución de largo plazo de la serie observada. Estas tasas anuales (de un mes o periodo con respecto del mismo mes o periodo del año anterior y debidamente centradas: línea discontinua de la figura 2.1) son mucho menos volátiles que las tasas más básicas (de un mes o periodo respecto del inmediato anterior) por lo que resultan de mayor utilidad a la hora de analizar el comportamiento a mediolargo plazo de la serie, identificándose, de hecho, con el crecimiento subyacente o CAT sugerido en Fernández Macho (1991).

La figura 2.2 muestra la evolución de la pauta estacional de los Pasajeros de Líneas Aéreas a lo largo del tiempo. Este comportamiento estacional puede generarse a su vez mediante un proceso de la forma

$$
s_{t}=-\left[\sum_{j=1}^{r-1} s_{t-j}\right]+\omega_{t}, \quad t=1 \ldots T
$$

donde $\left\{\omega_{t}\right\}$ es una nueva perturbación aleatoria serialmente incorrelacionada e independiente de las $\left\{\varepsilon_{t}\right\}$ y $\left\{\zeta_{t}\right\}$ anteriores. De esta manera la pauta estacional no es fija sino que puede variar lentamente de acuerdo con un mecanismo que asegura que la suma de efectos estacionales a lo largo de un año se cancelan entre sí.

Por último, la figura 2.3 presenta la parte de la serie observada no explicada por los componentes sistemáticos anteriores. Es, por tanto, el resultado de influencias aleatorias $\left\{u_{t}\right\}$ que sólo tienen un efecto a corto plazo o transitorio sobre la serie -tal y como el generado mediante un proceso ARMA estacionario de orden bajo- e independiente, por supuesto, de las tres perturbaciones aleatorias anteriores.

Los gráficos 2.1, 2.2 y 2.3 ya mencionados ilustran así una descomposición de la serie de Pasajeros de Líneas Aéreas en componentes de interés. De hecho, el producto de sus antilogaritmos reproduce exactamente los datos originales de la figura 2.1. No es de extrañar, por tanto, que en el análisis de series temporales económicas sea práctica habitual el considerar las series de datos como si fueran el resultado de combinar adecuadamente dichos componentes elementales no observables. Esto es, si $\left\{Y_{t}\right\}$ denota la serie bajo estudio, observada r veces al año, un modelo que refleje sus características más esenciales puede expresarse como

$$
\begin{equation*}
\log Y_{t}=m_{t}+s_{t}+c^{\prime} D_{t}+u_{t}, \quad t=1,2 \ldots T \tag{2.11}
\end{equation*}
$$

$$
\begin{aligned}
m_{t} & =m_{t-r}+b_{t-1}+\varepsilon_{t} \\
b_{t} & =b_{t-1}+\zeta_{t} \\
s_{t} & =-\left[\sum_{j=1}^{r-1} s_{t-j}\right]+\omega_{t}
\end{aligned}
$$

donde $\left\{m_{t}\right\}$ es la tendencia, una función del tiempo relativamente suave, $\left\{b_{t}\right\}$ es el crecimiento anual subyacente, $\left\{s_{t}\right\}$ es la estacionalidad, una función periódica del tiempo de periodo fijo igual a un año, y $\left\{u_{t}\right\}$ es una perturbación que recoge movimientos irregulares de la serie. Por último, hemos contemplado la posibilidad de capturar intervenciones exógenas sobre la serie (actuaciones del gobierno, huelgas, errores, etc.) en cuestión mediante la incorporación al modelo de una combinación $c^{\prime} D_{t}$ de variables ficticias, tales que cada una de ellas toma valor uno en los periodos de tiempo en que la intervención sea efectiva y cero en los demás periodos.

Dado que el modelo (2.11) formula de forma explícita los procesos que generan los componentes no observables, tenemos que dicho modelo pertenece a la clase de modelos de espacio de los estados, de forma que tenemos a nuestra disposición un conjunto de técnicas estadísticas que nos permiten una óptima extracción de dichos componentes (Fernández"active@prefix ~"active@char~ Macho 1991).

2.3.1 Efectos diarios

Hasta aquí, hemos supuesto que los datos disponibles se referían a un número r de observaciones realizadas regularmente dentro del año, típicamente $r=12$, de modo que las observaciones son mensuales. No obstante el mismo argumento puede seguirse con observaciones realizadas regularmente dentro de periodos distintos al año. En general, tendremos r observaciones por ciclo, donde ciclo es la unidad de tiempo relevante en el análisis del fenómeno bajo estudio (p.ej., un siglo, una decada, una semana, un segundo, etc.). En aquellas ocasiones en las que los datos han sido obtenidos con una frecuencia superior a la mensual es posible, por tanto, obtener información sobre otros componentes asociados a esas frecuencias más altas. En particular la disponibilidad de datos diarios nos permite extraer el efecto asociado a un día de la semana concreto, lo cual resulta de gran interés a la hora de analizar el tráfico aeroportuario.

Afortunadamente, esta variación de frecuencia ni dificulta el análisis ni duplica el número de técnicas a utilizar, ya que, a todos los efectos prácticos, la extracción del componente de interés puede realizarse con un modelo idéntico al modelo (2.11) anterior excepto que ahora $r=7$, de modo que $\left\{s_{t}\right\}$-la estacionalidad o función periódica del tiempo de periodo fijo igual a una semana- recoge los efectos diarios.

2.4 Efectos cualitativos

Una vez definida y calculada la cuantía de los impactos económicos, trataremos de adelantar algunas conclusiones sobre los efectos cualitativos del aeropuerto. Al hablar de impactos cualitativos corremos el riesgo de utilizar metodologías y conceptos total y absolutamente dispares. Ahora bien, a pesar de que nuestra contribución pueda quedar indudablemente a caballo entre la declaración de intenciones, la descripción gratuita, o el comentario más o menos laudatorio, en nuestro caso resulta justificado, sin embargo, hacer un esfuerzo especial dadas las características específicas del aeropuerto de Vitoria-Gasteiz.

El aeropuerto de Vitoria se está orientando de forma clara hacia la captación de mercancias, lo que contribuye al interés de un análisis de la relación existente entre el aeropuerto y las infraestructuras de transporte y comunicaciones de la región. A este respecto, también es preciso mencionar la meritoria labor llevada a cabo por VIA (Vitoria International Airport. Promoción del Aeropuerto de Vitoria, S.A.) que, auspiciada por la Cámara de Comercio de Industria de Alava junto con el Gobierno Vasco, la Diputación Foral de Alava, el Ayuntamiento de Vitoria y Aena, ha desarrollado un papel crucial en la adaptación del aeropuerto de Vitoria-Gasteiz hacia el intercambio de mercancias (especialmente perecederas: véase el capitulo 5). Dicha sociedad, participada también por otros entes e instituciones, asesora además tanto a la Cámara de Comercio alavesa como a la Diputación Foral en la elaboración del Plan Director (Master Plan) del Parque Industrial Multimodal.

Nuestro estudio cualitativo se enfocará básicamente desde la perspectiva del propio usuario de las instalaciones aeroportuarias. Nos interesa resaltar el papel del aeropuerto de Vitoria, no ya como agente dinamizador de actividades relacionadas con la riqueza colectiva e
individual, sino como medio de satisfacer necesidades personales para los miembros de una colectividad y como elemento vertebrador del territorio. Posiblemente, la repercusión cualitativa derivada de la percepción que tiene la población residente de los servicios aeroportuarios y la valoración que hacen de los mismos, tiene un valor tan importante como la riqueza que genera en su ámbito territorial. En primer lugar, dedicaremos nuestra atención a analizar la tipología sociológica del pasajero, el modo de acceso al aeropuerto, las características de los viajeros y de la estancia, y, en segundo lugar, a tratar de medir el grado de satisfacción del usuario con el aeropuerto y su imagen asociada, así como la importancia del aeropuerto para la ciudad de Vitoria-Gasteiz.

Capítulo 3

Impacto económico del aeropuerto de Vitoria-Gasteiz

La obtención de los datos necesarios para calcular tanto los impactos directos como los indirectos ha requerido un trabajo de campo, basado en la realización de encuestas a las empresas sitas en el aeropuerto y a las agencias de viajes, por un lado, y, por otro, a los pasajeros.

Empresas y Entidades

El método empleado para recabar datos de las diferentes empresas y entidades relacionadas con el aeropuerto de Vitoria-Gasteiz, y que han servido como núcleo de información central para evaluar los impactos económicos directos se basó en un fichero inicial de cuarenta y siete empresas u organismos, clasificados en diferentes epígrafes. A ellos Aena remitió previamente una carta de presentación, en la que se informaba de la elaboración de un trabajo y se solicitaba su colaboración con el fin de disponer de unos datos fidedignos.

Tabla 3.1: Resultados de las empresas que han respondido

Entidades	Responden Datos de Personal		Responden Gastos e Ingresos	
	Abs.	$\%$	Abs.	$\%$
1. Organismos Oficiales 2. Líneas Aéreas y Soportes de la Aviación	5	100	2	40
3. Transporte de Mercancías-Aduanas	7	100	7	78
4. Concesiones Ajenas al Transporte	5	83	3	50
5. Transporte Terrestre de Viajeros	4	80	3	60
TOTAL	30	93	19	59

Como puede apreciarse en la tabla 3.1, el nivel de respuestas en lo referente a datos relacionados con el empleo fue realmente satisfactorio, con un 93% de las empresas-organismos que respondieron a los mismos.

Sin embargo, no ocurre lo mismo con los datos económicos, donde el nivel de respuestas alcanzó escasamente al 60%. Particularmente arduos de conseguir, fueron los datos de las agencias de viajes o touroperadores, con un nivel de respuestas particularmente bajo, en torno a un 34%, tanto para los datos económicos como para la generación de empleo.

Con el fin de contrastar los datos aportados directamente por las empresas, y/o complementar las lagunas y carencias observadas en algunos servicios técnicos, se acudió a fuentes de información paralelas que permiteron validar las respuestas obtenidas. Así, dependiendo de factores tales como el sector de actividad de la empresa, el ámbito de influencia, el tamaño de la entidad, etc., se utilizaron unos y otros resortes de información, como más adelante veremos. Así, por ejemplo, las ventas declaradas por las empresas ubicadas en el aeropuerto cuyos clientes son habitualmente los pasajeros (restaurantes, tiendas, etc.) se contrastaron con los gastos efectuados por los pasajeros en el aeropuerto y por ellos declarados en las encuestas.

Para el resto de las empresas y organismos, las fuentes que nos sirvieron como contraste de información, ampliación y, en su caso, estimación de datos fueron básicamente:

- Registro Mercantil.
- Cámara de Comercio e Industria de Alava.
- Renta Nacional de España y su distribución provincial BBV.
- Actualidad Económica: las mayores empresas españolas.
- Encuesta Agencias de Viajes. INE.
- Encuesta de Salarios en la Industria y en los Servicios INE.
- Convenio Salarial Provincial. BOE. Sindicato ELA-STV.
- Encuesta de Comercio Interior. INE.
- Economía Vasca 1994 y años sucesivos. Caja Laboral Popular.
- Aeropuerto de Vitoria-Gasteiz (Aena).

Usuarios del aeropuerto

El soporte básico de recogida de información sobre los pasajeros ha sido la encuesta dirigida a los mismos en su doble vertiente de residentes y no-residentes. La elaboración de los cuestionarios ha seguido las líneas habituales en este tipo de estudios, adaptándolas a las características específicas del aeropuerto de Vitoria e incluyendo, en particular, algunos apartados con vistas al análisis cualitativo.

Una vez perfilado un primer cuestionario provisional, se realizó una encuesta piloto, durante el mes de abril de 1996, a una muestra de pasajeros en la misma sala de espera de Foronda. Este paso previo, permitió evaluar y depurar diferentes elementos del cuestionario en relación al diseño, contenido y formulación de las preguntas, sirviendo además para detectar dificultades en la elección de la muestra, cálculo de proporciones de pasajeros según la tipología estandarizada y sobre todo establecer unas directrices concretas para el cómputo del apartado de gastos.

Asimismo, esta posibilidad de estandarización de algunos datos (precio de un viaje en taxi hasta el aeropuerto, costo de una habitación del hotel según categoría y temporada) junto con la combinación de preguntas filtro resultó ser un elemento muy válido en el proceso de codificación y validación de las encuestas, posibilitando el contraste de datos. Por tanto, toda esta labor preliminar permitió que solamente dieciseis encuestas del total de las realizadas (la mayor parte de la primera oleada) tuvieran que ser anuladas fundamentalmente por falta de consistencia interna en los datos.

Además de lo ya indicado, la realización de la encuesta piloto permitió establecer, entre otros, los siguientes criterios.

- Número de encuestados necesarios según tipología de vuelo.
- Duración del cuestionario.
- Número factible de encuestas a realizar por vuelo.
- Momento y lugar para efectuar la exploración. (Sala de espera, sala de embarque).
- Mejora en el diseño, contenido y formulación de preguntas, en los cuestionarios.
- Detección de las primeras dificultades en relación a la obtención de datos económicos.
- Eliminación de preguntas no procedentes o poco relevantes.

El número final de encuestas realizadas fue de 1.065 , cifra que puede considerarse importante, sobre todo dado el carácter relativamente exiguo del transporte aéreo de pasajeros donde la cifra de salidas o embarques al año se sitúa en torno a los 72.830 pasajeros. Tomada esta cifra en su conjunto, y sin considerar otro tipo de factores, supone que con un nivel de confianza del 95 por 100 el margen de error con el que se trabaja no sobrepasa el $\pm 3,04 \%$.

Hay que tener en cuenta que cualquier criterio de selección del tamaño óptimo de la muestra debe de contar con las particularidades del caso que nos ocupa, como es la escasa diversidad de la demanda en los vuelos regulares (se repiten frecuentemente los mismos pasajeros) derivado del limitado número de viajeros que parten desde VitoriaGasteiz en vuelo regular. Por término medio puede situarse entre los $90-110$ el número de pasajeros que toman diariamente los vuelos regulares. No obstante, a éstos habría que añadir los vuelos charter.

De cualquier forma, en la distribución muestral se han considerado estos factores estableciendo tres oleadas de encuestas diferentes y en distintas épocas del año, con el fin de evitar y atenuar la estacionalidad que pudiera afectar al número de pasajeros. En este sentido, la primera oleada de encuestas se realizó durante el mes de abril, considerándolo como mes medio del año a todos los efectos; se repitió la labor muestral en junio-julio para detectar las posibles distorsiones, ajustando la muestra durante la última oleada efectuada en el mes de noviembre.

Como puede comprobarse, la variable tipológica se ha reclasificado conforme a una triple estandarización, destacando la figura del pasajero limítrofe, definido como aquel pasajero no-residente en Alava pero sí en las provincias colindantes (Burgos, Navarra, Gipuzkoa, Bizkaia y La Rioja.), que manteniendo unas pautas de comportamiento en relación al gasto similares a los residentes, no pernocta en territorio alavés (no gasta en Alava), y únicamente accede al aeropuerto de Vitoria-Gasteiz para tomar, en la gran mayoría de los casos, un vuelo charter.

Como más característicos de este grupo mencionaríamos al pasajero de la tercera edad, que desde pueblos limítrofes de Alava accede en

Tabla 3.2: Distribución por etapas de la muestra

Tipo de Residente	Oleadas							
	Primera		Segunda		Tercera		Total	
	Abs	$\%$	Abs	$\%$	Abs	$\%$	Abs	$\%$
Residente	218	44,6	234	50,0	51	47,2	503	47,2
No Residente	120	24,5	116	24,8	34	31,5	270	25,4
Limítrofes	151	30,9	118	25,2	23	21,3	292	27,4

Tabla 3.3: Distribución del volumen de pasajeros

Tipo de pasajero	\% s/Muestra	Total pasajeros embarcados
Residente	47,2	34.376
No residente	25,4	18.499
Limítrofes	27,4	19.955
TOTAL	100,0	72.830

autobus discrecional al aeropuerto, donde el gasto, si lo hay, se produce únicamente en las dependencias del aeropuerto. Por tanto, este tipo de pasajero se comporta en relación al gasto, como si fuera residente pero sin serlo.

3.1 Impacto económico del aeropuerto

En este apartado se ha realizado una estimación exclusivamente cuantitativa, sobre el impacto que tienen las actividades del aeropuerto y sus implicaciones económicas en la zona de influencia, según la metodología básica expuesta en el capítulo 2.

Tal y como se ha explicado en el citado capítulo metodológico, el impacto económico se determina como la suma de los efectos generados por actividades sitas en el propio aeropuerto (directos) más los efectos indirectos, básicamente generados por los visitantes no-residentes. Por último, se ha estimado el efecto arrastre de ambos impactos (directos e
indirectos) a través de los efectos inducidos mediante los denominados 'multiplicadores.

A la hora de estimar los impactos económicos sobre la producción hay que distinguir entre las empresas "locales" y las "no locales". Las empresas locales son aquellas que tienen su sede en la CAPV. El impacto de la actividad de estas empresas sobre la región se calcula a través de los volumenes de ventas en el aeropuerto . Las empresas no locales son las que como Aena, por ejemplo, tienen su sede fuera de la región objeto del estudio. Su impacto sobre la producción de la CAPV vendrá dado, por una parte, por sus gastos (compras de bienes y servicios) en la región, dado que tales gastos se entienden como "exportaciones" de bienes y servicios producidos en la región por empresas que trabajan en la misma y, por lo tanto, suponen un incremento en la demanda final regional. Por otra parte, tambien computaremos como producción regional los salarios satisfechos por estas empresas.

3.1.1 Impactos directos

Son los generados por cualquier tipo de actividad económica situada en el propio aeropuerto; se trata de evaluar el impacto de actividades económicas que no se producirían si no existiera el aeropuerto. En el caso de Vitoria-Gasteiz, se han incluido dentro de los impactos directos a los organismos oficiales, actividades de Aena, líneas aéreas y actividades soporte de la aviación, transporte aéreo de mercancías, concesionarios del aeropuerto, y transporte terrestre de pasajeros, incluido taxis.

En todos los casos, se ha tratado de calcular magnitudes económicas tales como el importe de sueldos y salarios del personal, así como el resto de costes operativos de cada actividad. Se han obtenido estos resultados mediante una encuesta a la totalidad de las empresas situadas en el aeropuerto, que ha sido completada con datos relativos a las cuentas de resultados de dichas empresas obtenidas del Registro Mercantil y en su defecto mediante la aplicación de determinados ratios medios de sectores provenientes de diversas fuentes estadísticas del INE y de otros Organismos Oficiales. Asimismo, se han consultado datos referidos a convenios colectivos, etc. para la estimación de los costes de personal en aquellos casos en los que en las que no se ha facilitado este dato de forma directa. Para el personal, la estimación
se ha realizado sobre el número de trabajadores equivalentes en proporciones de una jornada completa, para aquellos casos de dedicación parcial.

A continuación se analiza detalladamente y por grupos la evaluación económica del impacto estimado en cada una de las actividades, así como las fuentes y formas de cálculo utilizadas en cada caso.

Organismos oficiales

Para la evaluación económica del impacto de los organismos oficiales que operan en el aeropuerto se ha seguido el criterio habitual en la elaboración de este tipo de estudios que es a su vez el criterio utilizado en la Contabilidad Nacional y que consiste en cuantificar el importe de los sueldos y salarios del personal que efectivamente desarrolla su actividad en el aeropuerto.

La relación de organismos oficiales que operan en el aeropuerto de Vitoria-Gasteiz es la que figura en el cuadro adjunto, así como el personal equivalente asignado a cada organismo.

Tabla 3.4: Impactos directos: organismos oficiales

Tipo de Organismo	Empleos Equival.	Impacto Económico
Inst. Nacional Metereología	6,00	22,800
Aduana	1,33	4,446
Sanidad Exterior	1,50	5,485
Guardia Civil	25,00	69,084
Cuerpo Nacional Policia	10,00	27,692
Total Organismos Oficiales	$\mathbf{4 4}$	$\mathbf{1 2 9 , 5 0 8}$

El cálculo del importe de los sueldos y salarios se ha fijado teniendo en cuenta la composición y categoría de las plantillas de cada organismo y cuando hemos carecido de información directa acudiendo a las retribuciones medias de los empleados públicos (es el caso de los Cuerpos de Seguridad) y a categorías-grado de las dotaciones del aeropuerto.

Así determinado, el impacto económico de dichas actividades alcanza los 129.508 .412 ptas., con un total de 44 personas prestando servicios en el aeropuerto, como aparece desglosado en la tabla 3.4.

Actividades de Aena

En este apartado recogemos el impacto económico producido por la propia actividad aeroportuaria. Se han incluido los gastos en sueldos y salarios del personal así como los costes operativos de la actividad, eliminando los ingresos por canones dado que éstos se incluyen en la actividad del resto de empresas concesionarias y soporte de la aviación que se desarrollan en posteriores apartados.

Tabla 3.5: Impactos directos: Aena

| Tipo de
 Entidad | Empleos
 Equival. | Sueldos
 Salarios | Costes
 Operat. | Impacto
 Económico |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total
 Actividades
 Aena | | | | |

Los datos base para el cálculo del impacto económico se han obtenido directamente de las cuentas de explotación de Aena, considerando como costes operativos todos los incluidos en el subgrupo 62 del Plan General de Contabilidad; es decir, gastos en arrendamientos, gastos en reparaciones mantenimiento y conservación, servicios de profesionales, transportes, seguros, etc. Calculado de esta forma, el impacto se evaluae en 782.439.706 ptas. afectando a un total de 164 empleos (véase la tabla 3.5).

Líneas aéreas y actividades soporte de la aviación

La tabla adjunta 3.6 resume los resultados sobre las empresas de este tipo que operan en el aeropuerto. Han sido elaborados atendiendo a las cuentas de explotación facilitadas por las propias empresas a través de las encuestas; en su defecto, se ha estimado un porcentaje de la actividad general de la empresa según datos de las cuentas de
explotación del Registro Mercantil en aquellas sociedades que operan en un ambito más extenso que el aeropuerto alavés.

Tabla 3.6: Impactos directos: líneas aéreas y soporte aviación

Tipo de Entidad	Empleos Equival.	Sueldos Salarios	Costes Operat.	Impacto Económico
Líneas aéreas	15	32,239	29,470	61,709
Soporte a la aviación Catering	28,5	148,933	78,222	227,156
otros servicios				
Total Actividades	$\mathbf{5 6 , 5}$	$\mathbf{2 1 6 , 3 7 5}$	$\mathbf{1 2 4 , 1 6 6}$	$\mathbf{3 0 5 , 3 3 9}$

(*)Nota: Incluye el servicio de restaurante del aeropuerto
El importe de los sueldos y salarios cuando no se ha declarado se ha calculado en base a datos de convenios colectivos en función de plantillas y categorías, y siempre sobre el número de trabajadores equivalentes según jornadas y tiempos de dedicación a actividades relacionadas con el aeropuerto.

Se han incluido en este grupo datos agregados tanto de líneas aéreas como de empresas de handling, catering y otras actividades soporte de la aviación, además de los gastos operativos del Aeroclub. En total el impacto económico de este tipo de actividades es de 305,339 millones de pesetas con un total de 57 empleos equivalentes.

Empresas relacionadas con el transporte aéreo de mercancías

Estimamos las actividades aeroportuarias de empresas relacionadas tanto con el transporte de mercancías como con el servicio de aduanas dado que el transporte de viajeros desde el punto de vista de las empresas ya se ha analizado en otro apartado y, desde el punto de vista de los visitantes se imputa a los impactos indirectos.

Siguiendo idénticos criterios de cálculo de las principales magnitudes económicas que en anteriores epígrafes -es decir, información directa completada y complementada con datos del Registro Mercantil y en su defecto estimaciones en base a ratios medios del sector y retribuciones medias- se ha computado el efecto económico de las empresas del sector, arrojando un importe de 277,854 millones de pese-

Tabla 3.7: Impactos directos: transporte aéreo de mercancias

Tipo de Entidad	Empleos Equival.	Sueldos Salarios	Costes Operat.	Impacto Económico
Transporte de				
Mercancías	45	113,540	160,849	274,390
Aduanas	4	12,804	3,464	3,464
Total Tpte.				
Mercancías-Aduana	$\mathbf{4 9}$	$\mathbf{1 2 6 , 3 4 5}$	$\mathbf{1 6 4 , 3 1 3}$	$\mathbf{2 7 7 , 8 5 4}$

Tabla 3.8: Impactos directos: concesionarios

Tipo de Entidad	Empleos Equival.	Sueldos Salarios	Costes Operat.	Impacto Económico
Bancos y tiendas	1	2,610	3,880	3,880
Seguridad y otros	12	23,295	21,526	44,822
Total Concesiones	$\mathbf{1 3}$	$\mathbf{2 5 , 9 0 5}$	$\mathbf{2 5 , 4 0 6}$	$\mathbf{4 8 , 7 0 2}$

tas, con unos empleos directos de 49 trabajadores equivalentes (véase la tabla 3.7).

Cabe indicar que entre DHL, Decoexa y EAT representan prácticamente el 86% del impacto económico total de esta categoría.

Concesionarios del aeropuerto

En la tabla 3.8 adjunta se han incluido todas aquellas concesiones que operan en el aeropuerto con la estimación del impacto económico que tiene cada uno de ellos. En algún que otro caso, se ha podido contrastar la información indirectamente a través del gasto declarado por los pasajeros en la encuesta realizada para las estimaciones de los efectos indirectos.

Las cifras obtenidas en conjunto son las siguientes: 48.702.414 ptas. de impacto económico con un impacto en el empleo de 13 personas.

Tabla 3.9: Impactos directos: transporte terrestre

Tipo de Entidad	Empleos Equival.	Sueldos Salarios	Costes Operat.	Impacto Económico
Rent a car	1,2	2,381	2,725	5,107
Transporte Terrestre	4,5	9,745	60,244	60,244
Taxis	10			50,297
Total Transporte				
Terrestre Vía	$\mathbf{1 5 , 7}$	$\mathbf{1 2 , 1 2 6}$	$\mathbf{6 2 , 9 7 0}$	$\mathbf{1 1 5 , 6 4 8}$

Transporte terrestre de viajeros

En este epígrafe se incluye el impacto económico de determinadas empresas relacionadas con el transporte de viajeros por carretera, como son los servicios de alquiler de coches y las líneas de autobuses al aeropuerto. Los servicios de taxi se estiman más adelante en este mismo apartado por procedimientos indirectos. En algunos casos hemos optado, una vez más, por estimar el impacto asignando un determinado porcentaje a las principales magnitudes económicas de las empresas teniendo en cuenta la actividad porcentual que cada una de ellas lleva a cabo en el aeropuerto.

En el caso de los servicios de taxi, resulta algo más compleja la estimación del impacto económico por cuanto es más difícil la asignación de personal equivalente y el cálculo de los costes. Por ello se ha procedido a la estimación del valor económico del volumen de desplazamientos con origen y destino en el aeropuerto. Mediante los datos obtenidos de la encuesta se conoce que el 28% de los pasajeros que parte del aeropuerto han llegado a él utilizando dicho servício lo que implica un total de 20.392 usuarios/año y, por lo tanto, una media diaria de 56 viajes con ese destino. Por otra parte, mediante observación y conteo directo se han fijado un total de 50 viajes como media diaria de taxis que acuden al aeropuerto a recoger pasajeros, con lo que pueden establecerse una media diaria de 106 viajes cuyo origen o destino es Foronda. Estimando un coste medio por viaje de 1.300 ptas., podemos fijar en torno a 50.297 .000 ptas./año el impacto económico de la actividad del servicio de taxis originado por la existencia de la instalación. Para el cálculo de los empleos teóricos en el sector del taxi se ha optado
por computar los correspondientes al impacto económico de la actividad global, estimándose en torno a los 10 trabajadores equivalentes a ese volumen de actividad.

Teniendo en cuenta todas las partidas incluidas en este apartado, el impacto económico del conjunto de servicios de transporte terrestre de viajeros puede cifrarse en 115,648 millones de pesetas, afectando directamente a 16 empleos (véase la tabla 3.9).

Inversiones

Para estimar las inversiones realizadas en el aeropuerto de Vitoria, se han tomado las empresas más significativas, partiendo de las respuestas emitidas sobre la inversión realizada en un año concreto, proveniente o bien de empresas que inician su andadura el año del análisis o bien de otras circunstancias, y ha optado por calcular la inversión nueva como media de los últimos tres años.

Las empresas y organismos que han invertido en el aerpuerto de Vitoria de acuerdo con este criterio han sido: Aena, Iberia, Air Nostrum, DECOEXA, EAT y D.H.L.

No obstante, es preciso tener en cuenta que algunos de los elementos contabilizados como inversiones en maquinaria, como pueden ser la adquisición por parte de Iberia de plataformas y tractores, se utilizan conjuntamente con otros aeropuertos de acuerdo con las necesidades puntuales que cada uno de ellos tenga. Lógicamente los hemos imputado a Foronda.

La inversión anual estimada se cifra en 261,507 millones. Es muy probable que esta cifra quede muy corta en los próximos años si se cumplen las fundadas expectativas de que nuevas compañías de servicios de mercancías comiencen a operar desde el aeropuerto alavés.

Impacto directo total

El impacto directo total correspondiente al conjunto de actividades analizadas se recoge en la tabla 3.10 adjunta en la que se observa como la estimación del impacto directo total debido a la existencia del aeropuerto puede fijarse en $1.920,998$ millones de pesetas, afectando a un total de 343 empleos equivalentes.

Tabla 3.10: Impactos directos: total

Tipo de Entidad-Empresas	Empleos Equival.	Impacto Económico
Organismos Oficiales	44	129,508
Aena	164	782,440
Lineas Aéreas y Soporte	57	305,339
Tpte.Mercancías-Aduanas	49	277,854
Concesiones Aeropuertos	13	48,702
Transporte Terrestre Viajeros	16	115,648
Inversiones		261,507
Total Impacto Directo	$\mathbf{3 4 3}$	$\mathbf{1 . 9 2 0 , 9 9 8}$

La actividad de Aena es la de mayor impacto económico representando el 40,73\% del volumen total, seguido de las líneas aéreas y soporte de la aviación con una cuota del 16%, entre ambas representan prácticamente dos terceras partes del impacto directo total del aeropuerto (véase la figura 3.1).

3.1.2 Impactos indirectos

Como impactos indirectos se han recogido las valoraciones económicas de todas aquellas actividades que aunque se generan físicamente fuera del propio aeropuerto tienen su origen total o parcial en la existencia del mismo. Se han considerado básicamente como tales los gastos efectuados por los visitantes no residentes en la adquisición de bienes y servicios efectuados fuera de las instalaciones del aeropuerto ya que las realizadas dentro están indirectamente recogidas en la actividad de las empresas allí instaladas.

Además de este gasto realizado por los visitantes no-residentes, se han incluido como impactos indirectos los gastos efectuados en VitoriaGasteiz por las pernoctaciones del personal de vuelo, la actividad de las agencias de viaje en relación al aeropuerto, así como el suministro de carburante de las aeronaves.

Figura 3.1: Evaluación de los impactos directos

Gasto de los visitantes no residentes

Para calcular el volumen de gastos efectuados por los visitantes no residentes se ha llevado a cabo una amplia encuesta -cuyas características técnicas se han desarrollado al comienzo de este capítulo- sobre la cifra base de los 72.830 pasajeros que salieron del aeropuerto de Foronda en 1995. Según los datos de la encuesta, un $25,4 \%$ del total son no residentes por lo que la estructura y composición por tipo de pasajero -que se describe en la tabla 3.11- muestra un total de 18.499 pasajeros no residentes sobre cuyos gastos centraremos nuestro análisis.

Teniendo en cuenta los motivos del viaje, es evidentemente mayoritario el desplazamiento por cuestiones relacionadas con los negocios o asuntos de trabajo. Así lo hacen casi el 82% de los visitantes lo que en términos absolutos suponen un total de 15.151 pasajeros al año (véase la tabla 3.11).

Según los datos obtenidos de la encuesta y que se encuentran recogidos en la tabla 3.11, el promedio de duración de la estancia en Vitoria-Gasteiz es de 3,2 días por visitante, aunque dicha duración depende lógicamente del motivo de la visita. En el caso de motivo trabajo-negocio, que, como se ha dicho, constituye la inmensa ma-

Figura 3.2: Distribución de los no residentes por motivos de viaje

yoría de los desplazamientos, los días medios de estancia son de 2,1 , siendo los viajes por motivos familiares los que registran una estancia media más elevada.

En la última columna de la tabla 3.11 se encuentra el gasto medio por visitante no residente y día que hemos obtenido de los datos de la encuesta y que asciende a 12.238 ptas/día, de las que aproximadamente la mitad corresponden a alojamiento: 6.079 ptas/día por término medio (véase la figura 3.3).

Tomando como referencia los días medios de estancia por tipo de viaje y teniendo en cuenta el gasto medio también por tipo de viaje, se ha estimado en 724.450 .438 ptas. el impacto total indirecto producido por los visitantes no residentes (véase la tabla 3.12).

El motivo laboral es la principal causa del movimiento de pasajeros y consecuentemente el que mayor volumen de negocio genera en el territorio alavés, y básicamente sobre la ciudad de Vitoria-Gasteiz. Los cuatrocientos millones de gasto anual producido por estos visitantes laborales suponen prácticamente el 56% del impacto indirecto derivado

Tabla 3.11: Gastos de los no residentes por motivo de viaje

Motivo del viaje	$\begin{gathered} \% \mathrm{~s} / \\ \text { muestra } \end{gathered}$	Total No Resident.	$\begin{gathered} \text { Días } \\ \text { medios } \end{gathered}$	Gasto medio (ptas.)
Trabajo y/o Negoc.	81,9	15.151	2,1	12757
Placer y/o Viaje	9,6	1.776	8,3	7903
Congresos	2,2	407	5,2	21809
Familiar	4,8	888	9,3	9746
Salud	1,1	203	7	3167
Estudios	0,4	74	2	12500
Total	100	18499	3,2	12238

de las actividades de este grupo de no residentes. Los viajes motivados por placer o turismo constituyen la segunda fuente de ingresos en una proporción próxima al 16% (véase la tabla 3.12).

Agencias de viajes

En este apartado y en vista de las dificultades de la encuesta directa, se ha optado por referenciar las principales magnitudes económicas de las agencias de viaje a datos medios por empleado equivalente, utilizando los ratios medios del sector obtenido de una encuesta elaborada por el INE para el conjunto del Estado. Se ha distinguido entre agencias mayoristas, minoristas o ambas combinadas.

Estos datos-base se reflejan en la tablas 3.13 y 3.14. Así estimados estos efectos se ha calculado la cifra de 362.431 .065 pts , con un efecto sobre el empleo de algo más de 6 personas, como impacto imputable a las agencias de viajes.

Figura 3.3: Gasto medio de los no residentes por día (ptas.)

Suministro de carburante

En el caso del suministro de carburante para aeronaves, se ha considerado como efecto económico -siguiendo los criterios habitualmente utilizados para este tipo de valoraciones económicas- el valor añadido generado por ese consumo. El problema que se plantea es el de la cuantificación de ese valor añadido; en informes parecidos se ha tomado un valor medio entre las cifras que proporciona la Contabilidad Nacional -que cifra en el 14% el ratio Valor añadido/ producción- y las que se obtienen del Informe del BBV sobre la Renta Nacional que sitúan este ratio en el 11%. El ratio que finalmente se ha considerado como más adecuado en este informe ha sido tomar el valor medio de ambas ponderaciones, es decir situarlo en el $12,5 \%$ del valor económico del total de litros de gasolina y sobre keroseno consumidos en el año en el aeropuerto.

Según datos suministrados, el consumo anual de Keroseno puede cifrarse en 18 millones de litros y 60.000 litros de gasolina para aviación. Teniendo en cuenta el coste medio del litro de combustible (30 ptas./litro según fuentes de absoluta solvencia en el sector), el valor económico de dichos suministros supone un total de 545.112 .000 ptas.,

Tabla 3.12: Impactos indirectos: pasajeros no residentes

Tipo de Gasto	Gasto Medio (pesetas)	Gasto Total (millones)
Alojamientos	6079	359,856
Restaurante-bar	4460	264,017
Compras varias	599	35,458
Transporte	1086	64,287
Otros (ocio)	14	0,829
Total Impacto		$\mathbf{7 2 4 , 4 5 0}$

Tabla 3.13: Datos medios por empresa

Tipo Agencia	Facturación	Personal	Gastos Operat.
Mayorista	$2.001,580$	109,893	1,765
May-minorista	$1.402,454$	132,373	$1.228,394$
Minorista	141,624	5,263	123,772

por lo que la estimación del valor añadido con el criterio antes señalado puede estimarse en 68,139 millones de pesetas.

Pernoctaciones del personal de vuelo

En este apartado, se han tenido en cuenta las pernoctaciones en la ciudad de Vitoria-Gasteiz de las tripulaciones tanto de aeronaves de pasajeros como de mercancías. Se ha distinguido entre las compañías que retribuyen dietas a su personal de vuelo por gastos y las que pagan esos gastos, preferentemente si son habituales en la plaza, mediante convenio con los hoteles.

Partiendo así de las cifras de pernoctaciones aportadas por cada compañía en las encuestas $a d$-hoc, se ha estimado un volumen total de gasto por este concepto de 10.125 .000 ptas./año. Como se puede observar esta es una cifra exigua que señala con toda claridad el limitadísimo número de compañías cuyo personal pernocta en Vitoria-Gasteiz.

Tabla 3.14: Datos medios por empleado y empresa

Tipo Agencia	Facturación	Personal	Gastos Operat.
Mayorista	61,398	3,370	54,157
May-minorista	34,973	3,301	30,633
Minorista	83,308	3,096	72,807

Tabla 3.15: Impactos indirectos: agencias de viajes

Agencias de Viaje	Empleos Equival.	Sueldos Salarios	Costes Operat.	Impacto Económico
Totales	$\mathbf{6 , 3}$	$\mathbf{2 1 , 2 3 7}$	$\mathbf{3 4 1 , 1 9 3}$	$\mathbf{3 6 2 , 4 3 1}$

Impacto indirecto total

Resumiendo, el impacto directo total se ha estimado (véase la tabla 3.16) en $1.165,145$ millones de pesetas, habiéndose generado únicamente seis empleos equivalentes.

3.2 Impactos inducidos

Una vez calculados los impactos económicos directos e indirectos generados por el aeropuerto de Vitoria-Gasteiz, obtendremos los impactos inducidos sobre la producción, la renta y el empleo utilizando los multiplicadores derivados en el capítulo 2 que se basan en el modelo input-output.

El EUSTAT (Instituto Vasco de Estadística) construye las TIO para la Comunidad Autonóma Vasca desde el año 1980. Estas tablas están diseñadas para setenta y tres sectores industriales presentándose también los datos agregados para veintidos y cuatro sectores (véase la tabla 3.21 del apéndice 3.3.2). Los datos disponibles hasta la fecha incluyen las TIO de los años 1980, 1985, 1990 así como las actualizaciones para 1992, 1993 y 1994. Como se ha explicado en el capítulo 2, para obtener los multiplicadores de empleo es preciso contar con datos sobre la distribución de empleo por sectores. Estos datos los propor-

Tabla 3.16: Impactos indirectos: total

Tipo de Entidad-Empresas	Empleos Equival.	Impacto Económico
Visitantes	-	724,450
Agencias de Viaje	6	362,431
Suministro Carburantes	-	68,139
Pernoctaciones personal vuelo	-	10,125
Total Impacto Indirecto	$\mathbf{6}$	$\mathbf{1 . 1 6 5 , 1 4 5}$

ciona EUSTAT como información complementaria a las TIO. La única diferencia es que la distribución sectorial del empleo se hace sólo a setenta y uno sectores porque los sectores de Agricultura, Ganadería y Silvicultura aparecen agregados.

3.2.1 Evolución dinámica de los multiplicadores de impacto

Sabemos que es díficil evaluar el periodo de tiempo en que se producen los efectos inducidos correspondientes a impactos directos e indirectos producidos en un año determinado. Por otro lado, la construcción y actualización de las TIO de una economía regional supone un trabajo muy complejo que hace que no siempre podamos contar con las tablas correspondientes al año que pueda ser más apropiado para nuestro análisis. El procedimiento habitual en la práctica consiste en trabajar con las TIO más recientes y suponer que los coeficientes técnicos de producción se mantienen constantes para el periodo sometido a estudio.

En el caso de la Comunidad Autonóma Vasca, el EUSTAT ha publicado las TIO realizadas en el año 1990 para la CAPV así como sus correspondientes actualizaciones para los años 1992, 1993 y 1994. Contar con estos datos nos va a permitir examinar la evolución dinámica de los multiplicadores de impacto en los últimos años que va a ser reflejo de la evolución económica de la CAPV y nos indicará si todos los sectores evolucionan de la misma forma o, si por el contrario, hay sectores que van perdiendo capacidad de arrastre dentro del conjun-
to del sistema económico, mientras otros van tomando su lugar como trenes de la economía. Dado que los datos sobre los impactos directos e indirectos con los que contamos son los correspondientes a los años 1995-96, este análisis nos permitirá evaluar la importancia de los sesgos que se pueden producir al cuantificar los impactos económicos inducidos con las TIO que no corresponden exactamente al año en que han tenido lugar los impactos.

Los multiplicadores de producción están recogidos en la matriz tecnológica B^{p} dada por (2.7). Cada elemento de esta matriz indica el incremento de producción del secto i-ésimo necesario para satisfacer un incremento de una unidad en la demanda final del sector j. En consecuencia podemos definir el multiplicador de impacto económico global del sector j como:

$$
M P_{j}=\sum_{i=1}^{N} b_{i j}^{p}
$$

es decir, la suma de los elementos de una columna de la matriz B^{p}. Este multiplicador nos indica la producción necesaria de todos los sectores de la economía para satisfacer un incremento de una unidad en la demanda final del sector j. Estos multiplicadores de impacto económico nos dan, por lo tanto, una idea de la capacidad de arrastre sobre el resto de la economía de un incremento en la demanda final del sector j.

Los multiplicadores globales para la renta y el empleo se derivan de la misma manera que en el capítulo 2 multiplicando cada elemento de la matriz B^{p}, respectivamente,por los coeficientes de renta r_{i} dados por (2.4) y por los coeficientes de empleo ℓ_{i} dados por (2.5). Es decir, el multiplicador de renta global del sector j viene dado por:

$$
M R_{j}=\sum_{i=1}^{n} r_{i} b_{i j}
$$

y nos recoge la renta total generada en la economía ante aumentos unitarios en el sector j-ésimo.

El multiplicador de empleo global del sector j recoge el empleo total generado en la economía ante aumentos unitarios en la demanda final
de sector j y se obtiene como sigue:

$$
M E_{j}=\sum_{i=1}^{n} \ell_{i} b_{i j}
$$

Se han calculado estos multiplicadores sectoriales para las TIO de la CAPV de los años 1990, 1992, 1993 y 1994. Con el fin de poder observar los resultados con mayor claridad hemos considerado las TIO agrupadas en cuatro sectores económicos solamente. Los resultados se encuentran en la en la tabla 3.17.

En primer lugar, se puede observar que la evolución de los multiplicadores ha sido muy suave en los últimos años, lo que nos lleva a concluir que los resultados que obtenemos en la evaluación de los impactos inducidos con las TIO de 1994 son muy buenas aproximaciones a los que habríamos podido obtener con las TIO de 1995-96. Como se puede observar en la tabla reftab:evol, el comportamiento de los multiplicadores de producción y renta es muy similar, por lo que nos centraremos en comentar únicamente los multiplicadores de producción y empleo.

Analizando las cifras resumidas en la tabla 3.17, se detecta cómo los multiplicadores de impacto siguen una tendencia creciente, aunque muy suave, a comienzos de los 90 a pesar de la crisis económica general sufrida en esta época. Esta tendencia se rompe en 1994 mostrando los números claramente una disminución en el efecto multiplicador en la economía para los cuatro sectores considerados, siendo de resaltar, en particular, la caída del multiplicador de producción del sector agrícola. Este retroceso de la capacidad de arrastre económico de los distintos sectores de actividad no es tan importante en el caso de los multiplicadores de renta.

Es interesante distinguir el comportamiento diferenciado de los multiplicadores de empleo respecto a los de producción y renta. Mientras que los últimos recuperan en 1994 los niveles alcanzados en 1990, superándolos incluso, los multiplicadores siguen una evolución sistemática decreciente. Por lo tanto, podemos concluir que un incremento en la demanda final de cualquier sector si bien sigue teniendo la misma capacidad de generar renta tiene cada vez menos poder de arrastre para generar empleo.

Los sectores que más nos interesan en este trabajo son el sector de la Construcción y el de Servicios que son donde se han producido,

Tabla 3.17: Multiplicadores de impacto. Cuatro sectores

PRODUCCION

	1990	1992	1993	1994
Agropesquero	2,138	2,163	2,208	2,166
Industria	1,954	1,990	1,995	1,977
Construcción	2,144	2,191	2,196	2,164
Servicios	2,131	2,195	2,233	2,179

RENTA

	1990	1992	1993	1994
Agropesquero	0,559	0,612	0,632	0,599
Industria	0,424	0,464	0,465	0,434
Construcción	0,520	0,573	0,580	0,556
Servicios	0,626	0,678	0,706	0,656

EMPLEO

	1990	1992	1993	1994
Agropesquero	0,378	0,346	0,343	0,293
Industria	0,203	0,185	0,170	0,150
Construcción	0,261	0,226	0,211	0,195
Servicios	0,324	0,280	0,261	0,240

como hemos visto en las secciones anteriores, la mayor parte de los impactos económicos directos e indirectos del aeropuerto. En este sentido, es interesante señalar como el sector servicios aparece como el más dinámico en la economía vasca, con más capacidad de motor económico, es decir de generar efectos inducidos tanto en la producción como, sobre todo, en la renta.

3.2.2 Impactos inducidos del aeropuerto de Vitoria-Gasteiz

Para obtener los efectos inducidos hemos clasificado, en primer lugar, los efectos directos e indirectos obtenidos en las secciones anteriores según la Clasificación Nacional de Actividades Económicas de 1993 (CNAE-93) publicada por el Instituto Nacional de Estadística y según los sectores de la TIO de la CAPV publicadas por EUSTAT. Estas clasificaciones se encuentran resumidas en la tabla 3.18.

Multiplicando la columna de los impactos económicos directos de la tabla 3.18 por la matriz tecnológica B^{p} de multiplicadores de producción obtenemos directamente el total de los impactos directos más los impactos directos inducidos por cada sector. De la misma manera, si multiplicamos la columna de los impactos económicos indirectos de la tabla 3.18 por la matriz de multiplicadores de impacto obtenemos directamente el total de los impactos indirectos más los impactos indirectos inducidos por sectores.

Para obtener los correspondientes impactos inducidos sobre renta y empleo, bastará con multiplicar los impactos de producción por los coeficientes de renta y empleo que para el año 1994 toman los valores que se presentan en la tabla 3.22 del apéndice 3.3.2. Los resultados de los impactos directos e indirectos más los inducidos respectivamente por cada uno de ellos se encuentran en las tablas 3.23 y 3.24 del apéndice 3.3.2 para cada uno de los 73 sectores económicos de las TIO de la CAPV medidos en millones de pesetas. ${ }^{1}$

[^2]Tabla 3．18：Clasificación de los impactos por actividad

－	モ¢LLE\％＇tz	Se！！！uey		¢	72
－	¢¢ $86678^{\circ} 0$		$9^{\circ} 76$	17	89
9	I\＆686T＇Lヵ¢		¢9	81	09
	\＆zL287＇79	оueq．．n әұıodsuex L	09	81	99
－	886866＇¢¢9	ец．гәәғsО	t－¢＇sg＇tige	LI	¢f
－	788L69＇801	о！ээәшор	\％ c^{\prime} L¢	LI	\＆
SOLOḢIGNI					
	L68827＇LOLT	Se！t！urer		\＆\％	TL
2，	78L91才＇88	Solotanas soryo	2＇tı	76	\＆ 2
珃	－		g 2	0%	69
－	Ogstitio		9.76	17	89
9	98tø00＇LI	sesardura e sọotaxas	9＇も2＇T＇LL	12	$\ddagger 9$
－	00000才「б		99	61	79
－	$660668^{\prime} 0$	яәио！эеэ！иишоว	$\ddagger 9$	81	L9
961	669096 ＇モ6I		¢9	81	09
09	8686LE＇06L		79	81	69
9	60でぁで09			8 I	9 C
OI	000267＇09	оueq．ın әұ．odsuex L $^{\text {L }}$	72．09	8 I	gs
IL	000999 ${ }^{\text {a }}$	ецгәәчรОН	q．ga	LI	¢¢
I	000087＇L	оэээәшор	29	2I	$\varepsilon 9$
－	9¢も858＇tı	Lunto exqo \widehat{K} up！oonizsuop	$9 \pm$	9 I	IS
－	880LZI＇89		理	OI	0ε
－	て67998＇07		IE	，	67
－	9LEzgz＇0		L 2.66	6	87
－	て66088＇09		\＆\＆＇0¢	8	27
－	8Ltを¢f＇LT		ちて＇6\％	8	97
－	L289¢t＇ 2	sеұиә！̣шл．ıә	21．98	，	モ¢
SOLOEHEIC					
				sə．ıoұวəs	¢əıołəวs
oə $^{\text {du＇Gr }}$		оұđәэио○	86－GVNO	$\boxed{6}$	$\varepsilon 2$

Tabla 3.19: Impacto económico total

IMPACTOS		Directos	Indirectos	Total
PRODUCCIÓN (millones ptas.)	Inducido Total	2092,715	1206,265	3298,980
	4013,713	2371,410	6385,123	
RENTA (millones ptas.)	Inducidos Total	965,182	2299,185	675,465

En la tabla 3.19 se resume el impacto económico total del aeropuerto de Vitoria-Gasteiz. Por lo tanto, podemos concluir que el impacto económico del aeropuerto de Vitoria-Gasteiz ascienden a un total de 6385,123 millones de pesetas y es capaz de generar un empleo de 715 personas. Ahora bien, hay que tener en cuenta que la cifra de impactos totales sobre producción ha de interpretarse con cierta cautela debido a que la interpretación de los impactos inducidos sobre producción no es tan clara como la de los impactos directos e indirectos y, por lo tanto, la agregación de ambos conceptos implica ciertas duplicidades contables de los inputs intermedios. Este problema, por el contrario, no lo presentan los impactos inducidos sobre la renta que pueden agregarse sin ambigüedades a los impactos directos e indirectos. En el caso del aeropuerto de Vitoria-Gasteiz, los impactos totales sobre la renta ascienden en total a 2974,65 millones de pesetas. Aunque en cifras absolutas el montante de este impacto no es muy grande es preciso señalar, sin embargo, que el multiplicador medio de la renta sí lo es: 1,76.

Figura 3.4: Impacto económico total: producción

En general, se observa que para el aeropuerto de Vitoria-Gasteiz los impactos generados por las actividades directas en el propio aeropuerto son mayores que los impactos indirectos, sobre todo en lo que se refiere a su efecto inicial. Este resultado es lógico en un aeropuerto de las características del de Vitoria-Gasteiz con poco tráfico de pasajeros y poco turismo, actividades ambas que son las que generan la mayoría de los impactos indirectos. Sin embargo, hay que matizar esta conclusión en lo que refiere a los efectos económicos inducidos que ambos tipos de impactos, directos e indirectos, expanden por el conjunto de la economía. De hecho, los multiplicadores medios sobre la producción de la CAPV (número de pesetas de impacto inducido por cada peseta de impacto inicial) son muy similares: 2,09 para los impactos directos y 2,04 para los impactos indirectos.

Conviene hacer un estudio un poco detallado de los impactos económicos por campos de actividad económica con el fin de distinguir con más claridad cuales han sido los sectores económicos que han generado un mayor impacto. Las figuras $3.4,3.5$ y 3.6 nos muestran el impacto económico global dividido en los veintidos sectores económicos de las

Figura 3.5: Impacto económico total: renta

Figura 3.6: Impacto total: empleo

TIO de la CAPV (véase la tabla 3.21 del apéndice 3.3.2). En estos gráficos podemos apreciar tanto el importe del impacto económico total de cada uno de los sectores como su división en impactos directos e inducidos por un lado e indirectos más inducidos por otro. El análisis conjunto de los tres gráficos nos permite además comparar el comportamiento de cada sector en cuanto a producción, generación de renta o empleo se refiere.

En los tres gráficos se puede observar muy fácilmente que son únicamente unos sectores muy determinados los que generan la mayoría de los impactos económicos en el caso del aeropuerto de VitoriaGasteiz: Comercio y Hostelería (17), Transporte y Comunicaciones (18) y Otros servicios comerciales (21), seguidos a distancia de los sectores de Energía (2), Construcción (16) y Otros servicios no comerciales (22).

Examinando en primer lugar la figura 3.4, vemos la influencia casi exclusiva de tres de los sectores mencionados: comercio, transporte y otros servicios comerciales. Hay que tener en cuenta, por una parte, que estos tres sectores ya recogían en lo que se refiere a los impactos iniciales el $67,6 \%$ de los directos y el 100% de los indirectos iniciales. Ahora bien, cuando tenemos en cuenta su efecto arrastre en el resto de la economía siguen aportando el $64,5 \%$ de los impactos directos totales y el 80,9 \% de los impactos indirectos totales.

En los impactos sobre la renta vemos que el comportamiento es similar a la producción. Merece la pena señalar como los sectores relacionados con los servicios $(17,18,21$ y 22$)$ ganan importancia respecto a los sectores industriales y son prácticamente los únicos que generan impactos económicos.

En lo que se refiere al empleo la figura 3.6 recoge solamente los impactos inducidos sobre el empleo. En esta figura se ve claramente como son los sectores relacionados con los servicios son los únicos capaces de generar empleo. De hecho respecto del total de los impactos directos inducidos los sectores $17,18,21$ y 22 recogen el 80% del empleo generado y respecto de los impactos indirectos inducidos los sectores 17,18 y 21 recogen el 87% del total.

Resumiendo, los resultados del aeropuerto de Vitoria-Gasteiz en cuanto a impactos económicos no son muy espectaculares en términos absolutos. Ahora bien, tambien hay que tener en cuenta que no son comparables a otros aeropuertos de los que se ha hecho estudios debido

Tabla 3.20: Cuenta de rentas de las familias

Empleos		Recursos	
Consumo Privado	A	Sueldos y Salarios	F
Impuestos renta y patrimonio	B	Rentas de capital	G
Total gastos Ahorro familiar bruto	$\mathrm{A}+\mathrm{B}=\mathrm{C}$		
	$\mathrm{C}+\mathrm{D}=\mathrm{E}$		$\mathrm{F}+\mathrm{G}=\mathrm{E}$

al tamaño y características particulares del mismo.

3.3 Apéndices

3.3.1 Construcción de la matriz ampliada

En la matriz de coeficientes técnicos ampliada vamos a tratar al sector familias como si fuera un sector productivo. Por lo tanto, el elemento i-ésimo la columna $N+1$ de esta matriz debe recoger el flujo del sector i-ésimo hacia el sector familias, mientras que el elemento i-ésimo de la fila correspondiente al sector familias medirá el flujo del sector familias al sector i-ésimo. Para construir tanto la fila como la columna del sector familias conviene tener presente la Cuenta de rentas de las familias (véase la tabla 3.20) así como la estructura de las TIO (véase tabla 2.1).

Columna del sector familias

La columna de esta matriz ampliada es fácil de construir. Como en este caso el agente productor no es una empresa sino las familias los consumos productivos son los bienes y servicios que compran estas familias. Este dato lo obtenemos directamente de las TIO tomando dentro de la demanda final la fila de consumo privado interno.

Fila del sector familias

La fila de esta matriz medirá el input del sector familias a la producción de cada uno de los demás sectores. La construcción de esta fila es más compleja por lo que vamos a desarrollarla con cierto detalle.

En otras palabras lo que estamos tratando de medir es la renta doméstica directamente generada al obtener el producto de los sectores. Para obtener esta cantidad partiremos de la Renta Regional medida como el Valor Absoluto Neto a coste de factores al que habrá que descontar gastos de seguridad social, impuestos, beneficios no distribuidos para obtener la Renta Personal Disponible. Si a esta RPD descontamos el ahorro familiar bruto y posteriormente el consumo proveniente de la importación, obtendremos la Renta doméstica.

Los pasos que hemos seguido para la construcción de esta fila han sido los siguientes:

1. Renta Total Regional

La renta regional total por cada sector viene dada por:
(a) El Valor Añadido Neto a coste de factores
(b) Otras Rentas de las familias como son las transferencias del sector público, las transferencias de la seguridad social o las rentas netas del exterior de la comunidad.

- El Valor Añadido Neto (VAN) sectorial se puede obtener directamente a partir de los datos proporcionados por la TIO. Para cada sector productivo $i=1, \ldots, N$ tenemos que:

$$
\begin{gathered}
\text { VAN }(\mathrm{i})=\text { Remuneración de Asalariados(i) }+ \text { Excedente } \\
\text { Neto de Explotación(i) }
\end{gathered}
$$

Al VAN hay que restarle las cotizaciones a la Seguridad Social. El dato del montante de estas cotizaciones a cargo de la empresa por sectores nos lo proporciona directamente la TIO. En cuanto a las cotizaciones por parte de los empleados responden a los porcentajes mostrados en la siguiente tabla para los años de interés:

Año	1990	1992	1993	1994
c_{S}	6%	6%	6%	6.6%

En resumen la renta regional (RR) sectorial se obtiene:
Sueldos y Salarios $=$ Remuneración de Asalariados -
Cotizaciones S.Soc. a cargo empresa
$\mathrm{RR}=$ Excedente Neto Explotación $+\left(1-c_{S}\right)$ (Sueldos y Salarios)

- No contamos con datos de Otras Rentas familiares (OR) por sectores. Solamente podemos obtener la cantidad total a partir de las estadísticas de distribución de la renta regional elaboradas por el Banco Bilbao Vizcaya. Para sectorializar estas rentas aplicando el supuestos de que las otras rentas van a mantener en cada sector la misma proporcion que sobre las rentas totales.
Por lo tanto, tenemos que:

$$
\begin{aligned}
& O R(i)=c_{o r}(O R(i)+R R(i)) \\
& O R(i)=\frac{c_{o r}}{1-c_{o r}} V A N(i)
\end{aligned}
$$

donde:

$$
c_{o r}=\frac{O R}{O R+V A N}
$$

La Renta Regional Total por sectores vendrá dada por:

$$
R T(i)=R R(i)+O R(i)
$$

2. Renta Personal Disponible

Para obtener la Renta Personal Disponible es preciso restar a la Renta Regional los beneficios retenidos por las empresas (BND) y los impuestos tanto sobre las empresas (IMPE) como sobre las familias (IMPF). No contamos con datos de ninguna de estas tres variables a nivel sectorial. Las cantidades totales de cada una de estas partidas las podemos obtener a partir de:

- Renta Regional (Banco Bilbao Bizkaia): para los beneficios no distribuidos y los impuestos sobre las empresas.
- Estadísticas del Sector Público (EUSTAT), para los impuestos pagados por las familias. Hemos considerado los impuestos sobre la renta de las personas físicas y sobre el patrimonio.

Para obtener la renta personal disponible por sectores hemos de distribuir estas cantidades totales entre los distintos sectores. Los pasos que se siguen son:
(a) Los coeficientes para los beneficios no distribuidos y los impuestos a las empresas se obtienen proporcionalmente al Excedente Neto de Explotación (EXC):

$$
c_{b n}=\frac{B N D}{E X C} \quad c_{i e}=\frac{I M P E}{E X C}
$$

de forma que:

$$
\begin{aligned}
B N D(i) & =c_{b n} * E X C(i) \\
\operatorname{IMPE}(i) & =c_{i e} * E X C(i)
\end{aligned}
$$

(b) El coeficiente para sectorializar los impuestos sobre las familias se obtiene en proporción a la renta total familiar, definida como:

$$
R F=R T-B N D-I M P E
$$

Es decir,

$$
c_{i f}=\frac{I M P F}{R F}
$$

y, por lo tanto,

$$
I M P F(i)=c_{i f} * R F(i)
$$

La Renta Familiar Disponible la obtenemos, por lo tanto, como:

$$
R F D(i)=R T(i)-B N D(i)-I M P E(i)-I M P F(i)
$$

3. Fila de la matriz: consumo interior

La Renta Familiar Disponible se divide en Consumo y Ahorro. Para construir la fila del sector familias de la tabla input-output, nos interesa obtener la renta de las familias dedicada únicamente al consumo interior. Esto implica que a la RFD hemos de restarle el ahorro bruto familiar y también el consumo de importación.

El ahorro bruto familiar lo podemos obtener restanto a la RFD el consumo privado total (dato proporcionado por las tablas inputoutput). El coeficiente de ahorro que necesitamos para distribuir este ahorro familiar total entre los sectores industriales lo construimos proporcional a la RFD:

$$
c_{a h}=\frac{\text { Ahorro }}{R F D}
$$

Analogamente, el montante total de las importaciones lo podemos obtener directamente de los datos proporcionados por la Tabla Input-Ouput restando del Consumo Privado total el consumo privado interior. Y el coeficiente para sectorializar el consumo importado lo obtenemos como:

$$
c_{i m}=\frac{\text { Importacion }}{R F D}
$$

Cada elemento de la fila del sector familias, R_{i} se obtiene como:

$$
R_{i}=\left(1-c_{a h}-c_{i m}\right) R F D(i)
$$

3.3.2 TABLAS

Tabla 3.21: Sectores de las TIO de la CAPV

SECTORES	Agregación a veintidos
1. Agricultura	1. Agropecuario y pesca
2. Ganadería	
3. Silvicultura	
4. Pesca	
5. Carbones	2. Energía y agua
6. Coquerías	
7. Petróleo y gas natural	
8. Energía eléctrica	
9. Agua y Gas	
10. Material Radioactivo	
11. Miner.Metálicos	3. Metálicas básicas
12. Siderurgía	
13. Metalurgía no ferrea	
14. Minerales no metálicos	4. Industria no metálica
15. Cementos, cales y yeso	
16. Vidrio	
17. Otras no metálicas	
18. Química de base	5. Química
19. Química industrial	
20. Química final	
21. Fundiciones	6. Construcciones metálicas
22. Forja y estampado	
23. Construcción metálica	
24. Artículos metálicos	7. Artículos metálicos
25. Máquina-herramienta	8. Maquinaria
26. Otra maquinaria	
27. M. de oficina	
28. Electrodoméstico	9. Material electrico
29. Otr. material electrónico	
30. Automóviles	10. Material de transporte
31. Construcción naval	
32. Otr.material de transporte	
33. Industrial Cárnicas	11. Alimenticias
34. Industrias Lácteas	

SECTORES	Agregación a veintidos
35. Conservas de pescado	
36. Pan y molinería	
37. Chocolate	
38. Otr. alimenticias	
39. Bebidas	
40. Tabaco	
41. Textil	12. Textil y calzado
42. Confección	
43. Cuero y calzado	
44. Madera	13. Madera y muebles
45. Mueble de madera	
46. Papel	14. Papel y gráficas
47. Artes gráficas	
48. Caucho y neumáticos	15. Caucho y plástico
49. Artículos de Plástico	
50. Otr.manufacturas	
51. Construcción	16. Construcción
52. Recuperación y reparación	
53. Comercio	17. Comercio y Hostelería
54. Hostelería	
55. Transporte urbano	18. Transporte y comunic.
56. Tr. viajeros por carretera	
57. Tr. mercancias por carretera	
58. Transporte ferroviario	
59. Transporte marítimo y aéreo	
60. Anexos al transporte	
61. Comunicaciones	
62. Bancos	19. Banca y seguros
63. Seguros	
64. Servicios a empresas	21. Otros servicios comerc.
65. Alquiler de inmuebles	
66. Sanidad comercial	
67. Enseñanza comercial	
68. S. personales y recreativos	
69. Administraciones públicas	20. Admón. Públicas
70. Sanidad no comercial	22. Otros servicios no
71. Enseñanza no comercial	comerciales
72. Servicio doméstico	
73. Otros servicios	

Tabla 3.22: Coeficientes renta y empleo

	SECTORES	Renta	Empleo
1.	Agricultura	0,2371	
2.	Ganadería	0,1314	
3.	Silvicultura y caza	0,5006	0,1783
4.	Pesca y piscicultura	0,3160	0,1522
5.	Extracción y aglomer. de carbones	0,0000	0,0000
6.	Coquerías	0,0834	0,0204
7.	Petróleo y gas natural	0,0609	0,0037
8.	Energía eléctrica	0,2971	0,0256
9.	Agua y gas	0,2195	0,0250
10.	Materiales radioactivos	0,0000	0,0000
11.	Minerales metálicos	0,1213	0,0306
12.	Siderurgia	0,0986	0,0319
13.	Metalurgía no ferrea	0,0738	0,0220
14.	Minerales no metálicos	0,2664	0,0493
15.	Cementos, cales y yeso	0,1931	0,0345
16.	Vidrio	0,2326	0,0631
17.	Otras industrias de minerales no met.	0,1805	0,0606
18.	Química de base	0,1311	0,0227
19.	Química industrial	0,1997	0,0459
20.	Química final	0,1796	0,0444
21.	Fundiciones	0,1720	0,0706
22.	Forja y estampación	0,1868	0,0748
23.	Construcción métálica	0,1728	0,0702
24.	Artículos metálicos	0,2163	0,0892
25.	Máquina-herramienta	0,2029	0,0771
26.	Otra maquinaria	0,2216	0,0741
27.	Maquinaria de oficina y precisión	0,2848	0,1139
28.	Electrodomésticos	0,2029	0,0688
29.	Otro material eléctrico y electrón.	0,2123	0,0763
30.	Automóviles y piezas	0,1541	0,0479
31.	Construcción naval	0,2343	0,1004
32.	Otro material de transporte	0,1871	0,0554
33.	Industrial Cárnicas	0,1133	0,0502
34.	Industrias Lácteas	0,1664	0,0291
35.	Conservas de pescado	0,1376	0,0683
36.	Pan y molineria	0,2352	0,1161
37.	Chocolate	0,1570	0,0533

	SECTORES	Renta	Empleo
38.	Otras alimenticias	0,0935	0,0198
39.	Bebidas	0,1279	0,0304
40.	Tabaco	0,1297	0,0275
41.	Textil	0,1532	0,0599
42.	Confección	0,1743	0,0980
43.	Cuero y calzado	0,1350	0,0617
44.	Madera	0,1910	0,0854
45.	Mueble de madera	0,2252	0,1049
46.	Papel	0,1139	0,0386
47.	Artes gráficas	0,2197	0,0733
48.	Caucho y neumáticos	0,2900	0,0808
49.	Artículos de plástico	0,1846	0,0699
50.	Otras manufacturas	0,2303	0,1020
51.	Construcción	0,2402	0,0813
52.	Recuperación y reparación	0,1993	0,0937
53.	Comercio	0,3452	0,1155
54.	Hostelería	0,1993	0,0979
55.	Transporte urbano	0,4228	0,1040
56.	Transporte de viajeros por carretera	0,3262	0,0858
57.	Transporte de mercanc. por carretera	0,1941	0,0960
58.	Transporte ferroviario	0,5555	0,2216
59.	Transporte marítimo y aéreo	0,1983	0,0565
60.	Anexos al transporte	0,3669	0,0757
61.	Comunicaciones	0,3676	0,0742
62.	Bancos	$-0,1793$	0,0283
63.	Seguros	0,2656	0,0387
64.	Servicios a empresas	0,1732	0,1016
65.	Alquiler de inmuebles	0,4300	0,0006
66.	Sanidad comercial	0,3834	0,1632
67.	Enseñanza comercial	0,8337	0,4588
68.	Servicios personales y recreativos	0,2602	0,1402
69.	Administraciones Públicas	0,3731	0,1701
70.	Sanidad no comercial	0,4155	0,1246
71.	Enseñanza no comercial	0,5603	0,2171
72.	Servicio doméstico	0,7085	0,8035
73.	Otros servicios	0,3723	0,2261

Tabla 3.23: Impactos directos e inducidos

	SECTORES	Producción (millon. ptas)	Renta (millon. ptas)	Empleo (número)
1.	Agricultura	23,564911	5,587472	
2.	Ganadería	15,878332	2,085999	
3.	Silvicultura y caza	2,351993	1,177372	1,784
4.	Pesca y piscicultura	21,550241	6,809549	0,769
5.	Extrac., aglomar. carbón	0,000000	0,000000	0.000
6.	Coquerías	0,452984	0,037777	0,007
7.	Petróleo y gas natural	163,279930	9,940268	0,276
8.	Energía eléctrica	57,724632	17,152733	0,465
9.	Agua y gas	27,016531	5,929806	0,176
10.	Materiales radioactivos	0,000000	0,000000	0,000
11.	Minerales metálicos	0,072198	0,008760	0,002
12.	Siderurgia	15,382458	1,517218	0,351
13.	Metalurgía no ferrea	1,967068	0,145081	0,033
14.	Minerales no metálicos	3,663927	0,976018	0,088
15.	Cementos, cales y yeso	3,180128	0,614129	0,053
16.	Vidrio	1,968938	0,457930	0,045
17.	Otr.industrias minerales			
	no metálica	12,998565	2,346165	0,378
18.	Química de base	0,784640	0,102872	0,008
19.	Química industrial	6,786760	1,355187	0,151
20.	Química final	9,490138	1,704716	0,109
21.	Fundiciones	4,104079	0,706002	0,233
22.	Forja y estampación	6,842270	1,277878	0,420
23.	Construcción metálica	6,290059	1,086616	0,236
24.	Artículos metálicos	21,817593	4,719364	1,277
25.	Máquina-herramienta	0,000000	0,000000	0,000
26.	Otra maquinaria	52,139410	11,555254	3,574
27.	Maqu.oficina y precisión	52,659189	14,998235	5,869
28.	Electrodomésticos	10,097947	2,049287	0,171
29.	Otro mater. eléctrico			
	y electrónico	32,852565	6,974673	2,026
30.	Automóviles y piezas	72,657258	11,195323	3,066
31.	Construcción naval	8,700203	2,038109	0,754
32.	Otro mater. transporte	3,969300	0,742522	0,185
33.	Industrial Cárnicas	19,922804	2,256741	0,251
34.	Industrias Lácteas	15,366566	2,557550	0,105
35.	Conservas de pescado	5,568645	0,766294	0,092
36.	Pan y molineria	30,605823	7,199088	0,842
37.	Chocolate	1,375675	0,216006	0,018
38.	Otras alimenticias	12,306771	1,150639	0,059

	SECTORES	Producción (millon. ptas)	Renta (millon. ptas)	Empleo (número)
39.	Bebidas	24,166146	3,091046	0,189
40.	Tabaco	0,512555	0,066459	0,003
41.	Textil	5,063514	0,775572	0,080
42.	Confección	8,849412	1,542766	0,216
43.	Cuero y calzado	1,580454	0,213314	0,024
44.	Madera	7,059956	1,348145	0,259
45.	Mueble de madera	8,788765	1,979496	0,214
46.	Papel	5,387624	0,613420	0,074
47.	Artes gráficas	26,380031	5,795698	0,767
48.	Caucho y neumáticos	4,380859	1,270553	0,191
49.	Artículos de plástico	7,958243	1,469021	0,212
50.	Otras manufacturas	2,456912	0,565717	0,067
51.	Construcción	250,397300	60,150336	9,952
52.	Recuperac. y reparación	97,946621	19,516681	2,547
53.	Comercio	473,550070	163,466840	14,521
54.	Hostelería	339,821180	67,721163	8,843
55.	Transp. urbano	71,066854	30,045774	5,767
56.	Transp. viajeros por carretera	84,146336	27,447496	5,693
57.	Transp. mercancías por carretera	54,406265	10,558039	1,810
58.	Transp. ferroviario	8,764754	4,868385	0,526
59.	Transp. marít. y aéreo	204,467770	40,548254	11,355
60.	Anexos al transporte	258,348875	94,788202	19,598
61.	Comunicaciones	74,788318	27,495647	1,915
62.	Bancos	23,565600	-4,224901	3,027
63.	Seguros	67,051677	17,807996	0,635
64.	Servicios a empresas	163,514900	28,328126	7,692
65.	Alquiler de inmuebles	387,136310	166,467130	0,052
66.	Sanidad comercial	45,051166	17,271686	1,689
67.	Enseñanza comercial	53,354222	44,482879	5,664
68.	Serv.personales y recreat.	119,663390	31,137641	4,215
69.	Admón. Públicas	43,772734	16,331401	2,149
70.	Sanidad no comercial	4,839270	2,010872	0,136
71.	Enseñanza no comercial	8,887506	4,979569	0,434
72.	Servicio doméstico	24,332772	17,240122	4,397
73.	Otros servicios	86,437419	32,179586	11,620
74.	Familias	2299,185470	1107,278397	
	TOTAL	4013,713344	2299,18547	150,404

Tabla 3.24: Impactos indirectos e inducidos

	SECTORES	Producción (millon. ptas)	Renta (millon. ptas)	Empleo (número)
1.	Agricultura	21,908869	5,194808	
2.	Ganadería	8,618415	1,132235	
3.	Silvicultura y caza	1,086359	0,543815	5,420
4.	Pesca y piscicultura	12,641523	3,994529	1,873
5.	Extrac., aglomar. carbón	0,000000	0,000000	0,000
6.	Coquerías	0,089448	0,007460	0,002
7.	Petróleo y gas natural	50,921431	3,100030	0,182
8.	Energía eléctrica	34,744893	10,324360	0,869
9.	Agua y gas	13,400746	2,941304	0,324
10.	Materiales radioactivos	0,000000	0,000000	0,000
11.	Minerales metálicos	0,011670	0,001416	0,000
12.	Siderurgia	2,997785	0,295680	0,092
13.	Metalurgía no ferrea	0,356820	0,026317	0,008
14.	Minerales no metálicos	1,313875	0,349997	0,063
15.	Cementos, cales y yeso	1,158970	0,223814	0,039
16.	Vidrio	1,591613	0,370173	0,099
17.	Otr.industrias minerales no metálicas	4,620677	0,834005	0,271
18.	Química de base	0,322146	0,042236	0,007
19.	Química industrial	2,387419	0,476722	0,102
20.	Química final	3,653921	0,656355	0,156
21.	Fundiciones	0,476303	0,081936	0,032
22.	Forja y estampación	0,693739	0,129564	0,050
23.	Construcción metálica	2,284629	0,394672	0,156
24.	Artículos metálicos	4,853784	1,049922	0,418
25.	Máquina-herramienta	0,000000	0,000000	0,000
26.	Otra maquinaria	3,247085	0,719626	0,217
27.	Maqu.oficina y precisión	0,646742	0,184203	0,071
28.	Electrodomésticos	3,230186	0,655537	0,212
29.	Otro material eléctrico electrónico	3,528422	0,749092	0,259
30.	Automóviles y piezas	4,110092	0,633300	0,188
31.	Construcción naval	1,197404	0,280504	0,118
32.	Otro mat. de transporte	0,302871	0,056657	0,016
33.	Industrial Cárnicas	18,131658	2,053850	0,895
34.	Industrias Lácteas	7,464921	1,242432	0,210
35.	Conservas de pescado	4,318663	0,594286	0,289
36.	Pan y molineria	18,833090	4,429911	2,133
37.	Chocolate	1,052706	0,165294	0,055
38.	Otras alimenticias	6,598120	0,616901	0,134

$\left.$| | | Producción
 (millon. ptas) | | Renta
 (millon. ptas) |
| :--- | :--- | ---: | ---: | ---: | | Empleo |
| :---: |
| (número) | \right\rvert\,

Capítulo 4

Impactos geoespaciales del aeropuerto de Vitoria-Gasteiz

En este capítulo elaboramos los resultados de aplicar un programa GIS para la distribución geoespacial de los impactos sobre la producción, la renta y el empleo calculados en el capítulo precedente.

Como hemos comentado anteriormente, los GIS ofrecen un gran incremento en la capacidad de manipulación y análisis de la información en comparación con una base de datos normal, ofreciendo, a través de la incorporación de la información geográfica, un modelo realista y accesible del mundo real. Está información geográfica (o componente geográfico) puede incluir varios tipos de datos procedentes de distintos fuentes. Por ejemplo, en una localidad urbana, tendremos asociados varios tipos de datos, los cuales pueden referirse bien al entorno físico (vegetación, edificios) o bien a la situación socioeconómica (tasa de desempleo, datos del censo de la población, servicios del transporte público, ...) etc. Más tarde, estos datos pueden ser analizados, asociados, agregados/desagregados, actualizados, etc., según sea nuestro objetivo final.

En el caso del aeropuerto de Vitoria-Gasteiz, hemos construido una base de datos del territorio histórico de Alava que consiste, en primer lugar, en ciertos datos sobre su entorno físico - concretamente un mapa digitalizado señalando los municipios y comarcas de la provinciay, en segundo lugar, en información sobre su población en relación con la actividad económica (véase la sección 2.2). De esta manera, tenemos un perfil bastante exacto de la participación de los diferentes municipios y comarcas en la economía alavesa, tanto en su totalidad, como en las distintas ramas de actividad de la economía (clasificación hasta un dígito de CNAE). A continuación, comentamos en detalle los resultados gráficos obtenidos después del análisis.

4.1 Impactos económicos por comarcas y sectores

Desde una perspectiva más general, resulta interesante obtener una distribución por comarcas administrativas del territorio en cuestión (p.ej. usadas para elaborar encuestas del EUSTAT). En este sentido, resulta evidente el dominio de la Llanada Alavesa en el reparto de impactos sobre la economía de Alava. En los gráficos 4.1 y 4.3 podemos ver que esta comarca se lleva el $90,8 \%$ de los impactos sobre la pro-

Figura 4.1: ALAVA: impactos sobre la producción

ducción y el $90,7 \%$ de los impactos sobre el empleo, mientras que la comarca de Cantábrica Alavesa participa con un mero $5,1 \%$ y 4% respectivamente y la Rioja Alavesa no llega al 2% en ambos casos, siendo las participaciones de las otras comarcas en el reparto muy marginales.

Este efecto se acentua aún más en la distribución de los impactos sobre la renta 4.2 donde la Llanada Alavesa aumenta ligeramente su porcentaje al $92,8 \%$ y Cantábrica Alavesa se mantiene en un $4,0 \%$, mientras que las comarcas de los Valles Alaveses y las Estribaciones del Gorbea no llegan ni al 1%.

Estas pequeñas variaciones quiza puedan explicarse si analizamos estos impactos económicos por comarcas desagregados por los diez sectores de la economía (utilizando la clasificación de CNAE). Así en los gráficos-radar 4.4, 4.5 y 4.6 podemos apreciar con cierto detalle el reparto de los impactos de cada comarca, respectivamente sobre la producción, la renta y el empleo, en cada uno de los diez sectores de la economía.

Como se puede apreciar, para cada una de las comarcas y dentro

Figura 4.2: ALAVA: impactos sobre la renta

Figura 4.3: ALAVA: impactos sobre el empleo

Figura 4.4: Producción: impactos comarcales por sectores

del dominio general de la Llanada Alavesa, los sectores más fuertes con diferencia son los del Comercio, Transporte, Bancos y seguros, y Otros servicios por este orden, mientras que la Agricultura y la Industria química son los menos importantes. Así todo es destacable que, en términos absolutos, en estos últimos sectores la Llanada Alavesa se situa ligeramente por adelante de otras comarcas donde estos sectores son fundamentales en la economía local, como es el caso de la Agricultura para la Rioja Alavesa o de la Industría química en la comarca de la Cantábrica Alavesa.

En el gráfico-radar de los impactos sobre la renta (figura 4.5) se cámbia ligeramente el orden de los principales sectores en la econmía de la Llanada Alavesa, donde aparece en primer lugar el sector Transporte seguido de los sectores de Comercio, Otros servicios y Bancos y seguros. Por esto podemos notar que un mayor impacto sobre la producción en el sector no necesariamente se traduce a un incremento igual en la renta. Otra vez apreciamos que las cuatro comarcas con menor participación en términos de impacto, la Rioja Alavesa, los Valles

Alaveses, las Estribaciones del Gorbea y la Montaña Alavesa tienen pocas variaciones en cuantos a la presencia de los diferentes sectores en sus economias comarcales.

En el tercer gráfico radar se refiere a los impactos comarcales del empleo (figura 4.6). Apreciamos en él una tendencia a un mayor efecto en los sectores del Comercio y Otros servicios a lo largo de todas las comarcas, aunque, obviamente los niveles absolutos de participación son muy distintos. La Llanada Alavesa también sigue esta tendencia aunque con una diferencia: aquí apreciamos que el impacto en el sector Transporte es sensiblemente mayor que cualquier otro. Al mismo tiempo, vemos que en todas las comarcas, el sector donde existe un menor impacto sobre empleo es en el de la Energía seguido por el de la Industria química.

4.2 Impactos económicos distribuidos por municipios

Después de haber visto con cierto detalle los impactos económicos por comarcas, nos interesaría saber exactamente como se distribuyen dentro de las mismas a nivel municipal. Por ejemplo, la Llanada Alavesa aparece muy favorecida en el análisis comarcal pero, sería interesante ver cuanto de esto se debe a la presencia de la capital, Vitoria-Gasteiz, dentro de esta comarca. Para llegar a este fin, hemos dividido los impactos de cada uno de los diez sectores CNAE, en cada uno de los 51 municipios de Alava. Nótese que el esquema se queda incompleto al no contar con los datos relevantes del condado de Treviño (enclave perteneciente a la provincia de Burgos), el cual, por su situación geográfica, habrá de verse muy influenciado por los impactos económicos sobre la economía de Alava.

En el primer mapa, figura 4.7, se reflejan los impactos económicos sobre la producción en la provincia de Alava. Los impactos directos y indirectos han sido agregados en su totalidad al municipio de VitoriaGasteiz por ser donde esta localizado este aeropuerto (es decir, donde se reciben todas las inversiones directas.) Los efectos inducidos se reparten por todos los municipios usando la metodología detallada en la sección 2.2. En el mapa se percibe que el municipio de Vitoria-Gasteiz acapara en gran parte los impactos generados seguidos a mucha distan-

Figura 4.5: Renta: impactos comarcales por sectores

Construcción

Construcción		
——VALLES ALAVESES	——LLANADA ALAVESA	MONTAÑA ALAVESA
- ESTRIB DEL GORBEA	_- CANTABRICA ALAVESA	

Figura 4.6: Empleo: impactos comarcales por sectores

Construcción

Construccion			
- VALLES ALAVESES	- LLANADA ALAVESA	MONTAÑA ALAVESA	- RIOJA ALAVESA

PRODUCCION: IMPACTOS POR MUNICIPIOS en millones de pesetas
$\square \quad 5.466+$
$\begin{array}{rrr}180 & \text { a } 5466 \\ 80 & \text { a } & 180 \\ 20 & \text { a } & 80 \\ 10 & \text { a } & 20 \\ 0 & & 10\end{array}$
20
10

so!̣d!̣o

cia por los dos municipios de la Cantábrica Alavesa, Llodio y Amurrio. El resto de municipios se reparten el resto en pequeña cantidades, y destacan aquí los municipios de Salvatierra, Oion, Laguardia, Ayala, etc. En el gráfico 4.10 vemos las cantidades absolutas en millones de pesetas y se destaca la enorme diferencia entre los 5.696 millones del Vitoria frente a los 689 millones a repartir entre los 50 municipios restantes.

Los impactos sobre la renta por municipios estan representados en el segundo mapa, figura 4.8, donde se aprecia una distribución muy similar en cuanto a los municipios a la cabeza de la clasificación, concretamente Vitoria-Gasteiz, y a considerable distancia, Llodio y Amurrio. Sin embargo, podemos apreciar como, Vitoria-Gasteiz aparte, destacan ahora otros cuatro municipios: Llodio, Amurrio, Oion y Salvatierra (figura 4.11), mientras que el reparto entre los municipios restantes es mucho más homogeneo, tratándose de cantidades realmente muy pequeñas (individualmente no superan en ningun caso el $0,25 \%$ del total).

En el último mapa, figura 4.9, se territorializa la distribución de los impactos sobre empleo por municipios. Aquí también se aprecia que casi todo el empleo generado, en concreto el gráfico 4.12 cita el $88,9 \%$, queda concentrado en el municipio de Vitoria-Gasteiz seguido, como antes, de los municipios de Llodio y Amurrio, mientras que en el resto, los únicos que destacan son Salvatierra y Oion. Por la parte baja de la distribución se ve como entre los restantes 41 municipios, se reparten unos 29 empleos.

Figura 4.10: Impactos sobre la producción por municipios

Figura 4.11: Impactos sobre la renta por municipios

Figura 4.12: Impactos sobre el empleo por municipios

Capítulo 5

Aeropuerto de Vitoria-Gasteiz: Evolución de las principales magnitudes durante la década de los 90

Tabla 5.1: Aeropuerto de Vitoria-Gasteiz: series estadísticas mensuales

tipo de tráfico			pasajeros	mercancias	aeronaves
comercial	nacional	regular	PANARE	MENARE	AENARE
		charter	PANACH	MENACH	AENACH
		total	PANATO	MENATO	AENATO
	comunitario	total	PACOTO	MECOTO	AECOTO
	internacional no comunitario	total	PAINTO	MEINTO	AEINTO
	total		PACOMER		AECOMER
tránsito + otro tráfico					AEOTRO
TOTAL			PATOTAL	METOTAL	AETOTAL

5.1 Tendencias y predicciones

La tabla 5.1 presenta la información estadística facilitada por el aeropuerto de Vitoria-Gasteiz respecto al movimiento mensual de pasajeros, mercancias y aeronaves desde enero de 1990 hasta mayo de 1996.

Cada una de estas series mensuales ha sido analizada siguiendo la metodología que presentamos esquemáticamente a continuación.

1. Contraste predictivo del modelo:
se ajusta el modelo (2.11) a la muestra truncada en mayo de 1995 y se obtienen 12 predicciones hasta mayo de 1996. De esta forma podemos realizar un contraste predictivo postmuestral, basado en la comparación de dichas predicciones con los datos reales que quedaron fuera de la muestra truncada (junio del 95 a mayo del 96). El resultado de tal contraste se ilustra mediante sendos gráficos de los errores de predicción con su intervalo del 68% de confianza (correspondiente a un ECM - error cuadrático medio- a cada lado) y de la suma acumulada (CUSUM) frente a su banda del 10% de significación. Sobrepasar dicha banda implicaría un escaso poder predictivo del modelo para la serie en cuestión.
2. Ajuste de la muestra completa: se ajusta el modelo (2.11) a la muestra completa (enero del 90 a mayo del 96) mostrando un detalle de la bondad del ajuste

Figura 5.1: Ajustes: pasajeros de líneas aéreas

Contraste predictivo

intramuestral en el intervalo enero del 94 a mayo del 96, mediante sendos gráficos de los residuos con su intervalo del 68% de confianza y de la suma acumulada o CUSUM frente a su banda del 10% de significación. Sobrepasar dicha banda implicaría que el modelo es poco adecuado para explicar el comportamiento de la serie en cuestión.

Como ejemplo del contraste predictivo y del ajuste intramuestral del modelo (2.11), la figura 5.1 muestra gráficamente la bondad de ambos ajustes para la serie de Pasajeros de Líneas Aéreas.
3. Extracción de tendencia y crecimiento subyacentes:
una vez que el modelo ha sido estimado, se extraen las series de tendencia $\left\{m_{t}\right\}$ y de su correspondiente CAT $\left\{b_{t}\right\}$ mediante tecnicas de filtrado y suavizamiento. Ambas series se presentan de forma gráfica comparándose con los datos originales.
4. Predicción:
por último, la tendencia $\left\{m_{t}\right\}$ y la estacionalidad $\left\{s_{t}\right\}$ se extrapolan de acuerdo con el modelo (2.11) estimado para producir predicciones hasta diciembre de 1998. Nótese que, en un horizonte de predicción tan largo, tales predicciones no pueden interpretarse como lo que realmente ocurrirá, ya que resulta imposible incorporar el posible efecto de intervenciones exógenas futuras que, por su naturaleza, son totalmente imprevisibles. No obstante, la función de predicción obtenida es sumamente útil
por dos motivos: por un lado, señala la senda que se recorrería manteniendo inalteradas las políticas y circunstancias actuales (a mayo de 1996) y, por otro, su comparación con los datos futuros mide el efecto sobre el aeropuerto de las nuevas políticas y circunstacias según éstas van apareciendo y evolucionando a lo largo del tiempo. En este sentido, la tabla 5.10 presenta un extracto de las predicciones obtenidas para las series más agregadas. Nótese, en particular, que las predicciones de mercancias son de menor fiabilidad ya que dependen en gran medida de una intervención detectada casi al final de la muestra pero, en cualquier caso, indican la situación a que se llegaría en el futuro bajo las actuales circunstancias.

5.1.1 número de pasajeros

De acuerdo con la tabla 5.1 antes presentada, se ha analizado la estructura temporal de siete series referidas al número de pasajeros mensuales con origen o destino en Vitoria-Gasteiz desde enero de 1990 hasta mayo de 1996: PAsajeros en vuelos NAcionales REgulares (PANARE), PAsajeros en vuelos NAcionales CHarter (PANACH), TOtal PAsajeros en vuelos NAcionales (PANATO), TOtal PAsajeros en vuelos dentro de la COmunidad Europea (PACOTO), TOtal PAsajeros en vuelos INternacionales extracomunitarios (PAINTO), total PAsajeros en vuelos COMERciales (PACOMER) y, por último, número de PAsajeros TOTAL (PATOTAL), añadiendo al anterior los pasajeros tanto en tránsito como en otro tipo de tráfico, fundamentalmente deportivo.

En términos generales el número de pasajeros viene muy determinado por vuelos charter (PANACH en particular) hasta principios de 1994. A partir de esa fecha, los vuelos charter decaen en importancia hasta niveles casi testimoniales determinando, no obstante, la estructura estacional, mientras que la estabilidad en el número de pasajeros en vuelos regulares hace que estos determinen el nivel subyacente del número de pasajeros usuarios del aeropuerto de Vitoria-Gasteiz.

El ajuste del modelo (2.11) en cada una de estas series es bueno tanto fuera dentro como fuera de la muestra.

Tanto los errores de predicción como los residuos se mantienen bien dentro de su intervalo de confianza del 68% mientras que sus respectivas CUSUM se mantienen en general alejadas del extremo de

Tabla 5.2: Pasajeros: componentes en mayo 1996

mayo 1996	PANARE	PANACH	PANATO	PACOTO
nivel	7.377	3.175	10.970	274
CAT	$5,5 \%$	$-44,4 \%$	$-12,5 \%$	$+32,2 \%$
enero	$-13,8 \%$	$-24,2 \%$	$-21,1 \%$	$-52,2 \%$
abril	$+0,2 \%$	$+65,5 \%$	$+21,1 \%$	$+263,5 \%$
julio	$+6,8 \%$	$+26,4 \%$	$+19,5 \%$	$+102,4 \%$
agosto	$+4,6 \%$	$+57,6 \%$	$+56,5 \%$	$-53,7 \%$
diciembre	$-4,2 \%$	$-25,0 \%$	$-19,7 \%$	$+173,6 \%$
	PAINTO		PACOMER	PATOTAL
nivel	243		11.935	12.378
CAT	$-22,0 \%$		$-11,8 \%$	$-11,9 \%$
enero	$-94,7 \%$		$-24,2 \%$	$-24,7 \%$
abril	$-44,6 \%$		$+24,2 \%$	$+23,1 \%$
julio	$+685,9 \%$		$+27,8 \%$	$+29,5 \%$
agosto	$+1397 \%$		$+44,2 \%$	$+43,5 \%$
diciembre	$+81,0 \%$		$-17,1 \%$	$-17,8 \%$

la banda permisible ${ }^{1}$. Sólo en casos contados (PACOTO en octubre del 95, PAINTO en abril del 95, PANATO en agosto del 95) se acercan al extremo pero sin sobrepasarlo. La tabla 5.2 presenta un resumen de los valores estimados para el nivel y el crecimiento subyacente (CAT), así como de los efectos estacionales de algunos meses clave, al final de la muestra (mayo del 96) de cada una de las series de pasajeros.

pasajeros en vuelos nacionales: PANARE y PANACH

La figura 5.2 muestra los datos de pasajeros en vuelos nacionales regulares y charter junto con sus tendencia extraidas y las predicciones obtenidas mediante el ajuste del modelo (2.11).

El gráfico de PANARE no muestra ninguna incidencia notable a la vista. Su evolución oscila suavemente sin grandes altibajos. Al final de la muestra observada (1995 y 1996) parece entrar en una fase de ligero crecimiento, pero no puede apreciarse si es debido a un ciclo o tiene un caracter más continuado. En cualquier caso el nivel de la serie se situa

[^3]en torno a 7.377 pasajeros mensuales con un crecimiento subyacente del $5,5 \%$ anual, con variaciones estacionales muy estables en torno a $+7 \%$ para los meses de verano y -14% en enero.

En cuanto a PANACH, la serie muestra su nada despreciable tendencia a decrecer tanto en su nivel como en su dispersión. La incidencia más notable en estos datos es la anomalía de agosto del 93 en los pasajeros charter (48.778 pasajeros frente a un nivel extraido para agosto de unos 19.000 por aquellas fechas). Este valor atípico, que se reproduce también en los vuelos comunitarios y, por ende, en las series agregadas, se ha tratado mediante la incorporación al modelo de una intervención puntual (i0893) ${ }^{2}$ tal que toma el valor uno en dicha fecha y cero en todas las demás. El nivel de la serie se ha estimado en torno a los 3.175 pasajeros mensuales, muy lejos ya de los niveles de años anteriores, y cayendo en torno al -44% anual. Queda claro que, en lo que refiere al número de pasajeros, las previsiones señalan un progresivo cambio de composición en favor de los vuelos regulares, aunque en torno a cifras que, además, tampoco son muy grandes. Por otra parte, su componente estacional muestra además el típico esquema vacacional Semana-Santa + Agosto + Navidad, si bien esta última ha desaparecido prácticamente en la actualidad. Así, los efectos estacionales estimados oscilan entre el $+60 \%$ en abril y agosto y el -25% de diciembre-enero.

pasajeros en vuelos nacionales: PANATO

La figura 5.3 muestra los datos del total de pasajeros en vuelos nacionales, comparados con sus dos componentes más importantes (PANERE y PANACH) ya analizados, así como su tendencia y predicciones obtenidas mediante el modelo (2.11).

Sus características más sobresalientes vienen prácticamente determinadas por PANACH. Así, por ejemplo, se aprecia claramente el valor atípico de agosto del 93. Pero además, ésto es así incluso a partir de 1994 en que PANACH pierde fuerza en favor de PANARE, ya

[^4]Figura 5.2: Pasajeros en vuelos nacionales regulares y charter

Figura 5.3: Pasajeros en vuelos nacionales

Figura 5.4: Pasajeros en vuelos internacionales

que, como hemos visto, esta última se mantiene muy estable.
El nivel de la serie al final de la muestra (mayo del 96) se ha estimado en torno a los 10.970 pasajeros mensuales y cayendo en torno al -12% anual (nótese que el nivel desestacionalizado se situaría en algo menos de 25.000 al principio de la decada y en unos 15.000 a mediados de 1993). Por otra parte, el componente estacional muestra además el típico esquema vacacional determinado por PANACH (picos en Semana-Santa + Agosto). Así, los efectos estacionales estimados oscilan entre el $+21 \%$ en abril, el $+58 \%$ en agosto y el -20% de diciembre-enero.

pasajeros en vuelos internacionales: PACOTO y PAINTO

La figura 5.4 muestra los datos del total de pasajeros en vuelos internacionales divididos en dos partes según sea el origen/destino dentro o fuera de la comunidad europea, junto con sus tendencia extraidas y las predicciones obtenidas mediante el ajuste del modelo (2.11).

Nótese que sólo se disponen datos de PACOTO desde junio del 93,
siendo las fechas más sobresalientes las correspondientes a los meses en que cae una Semana Santa y Navidades. Curiosamente los datos correspondientes a los meses de agosto son relativamente bajos dando la impresión de que su importancia se ha desplazado en la actualidad a los meses de julio.

En cuanto a PAINTO, la base de datos tiene valores ausentes en noviembre del 91, mayo del 94, enero del 95, febrero del 95, mayo del 95 y febrero del 96 . No sería de estrañar que no hubiera habido pasajeros de esta categoría en esas fechas, por lo que se ha supuesto un valor de cero. Por otro lado, el perfil de la evolución de estos datos es sumamente irregular, con numerosos altibajos. No obstante, las fechas más sobresaliente vuelven a ser claramente las correspondientes a periodos vacacionales, con el conocido valor atípico de agosto del 93 a la cabeza. En relación con esta fecha, es claro que un gran número de vuelos charter con destino a centros turísticos tanto en territorio nacional como fuero de la UE (¿Antillas?) se concentraron en ese mes de forma harto atípica.

Los niveles desestacionalizados de ambas series se estiman en aproximadamente 274 y 243 pasajeros mensuales respectivamente, muy lejos de nuevo del nivel 1.000 de epocas anteriores (principios de los 90 para PAINTO y mediados del 93 para PACOTO). No obstante sus respectivas tasas de crecimiento estimadas al final de la muestra señalan perspectivas bien distintas: en la categoría PACOTO el número de pasajeros tiende a recuperarse creciendo a una tasa subyacente del $+32 \%$ anual, mientras que en la categoría PAINTO sigue su senda decreciente en torno al -22% anual.

Por otra parte, los respectivos componentes estacionales muestran de nuevo el típico esquema vacacional Semana-Santa + Agosto $+\mathrm{Na}-$ vidad, si bien con características muy distintas que conviene incluso poner en relación con las de PANACH. La tabla 5.3 presenta los valores estacionales más relevantes correspondientes a las series de pasajeros en vuelos charter en las tres categorias estudiadas. De su observación se deduce que la influencia de los destinos vacacionales en el número de pasajeros del aeropuerto de Vitoria-Gasteiz puede resumirse así:

- SS: destinos nacionales y comunitarios.

Los destinos nacionales representan el mayor volumen (5.255) pero los vuelos comunitarios marcan un importante aumento re-

Tabla 5.3: Pasajeros: vacaciones y vuelos charter

mayo 1996	PANACH	PACOTO	PAINTO
Semana Santa	$\mathbf{5 . 2 5 5}$	$\mathbf{9 9 6}$	$\mathbf{1 3 5}$
	$(+65,5 \%$	$(+263,5 \%$	$(-44,6 \%$
	$=+2.080)$	$=+722)$	$=-108)$
pico julio-agosto	$\mathbf{5 . 0 0 4}$	$\mathbf{5 5 4}$	$\mathbf{3 . 6 3 7}$
	$(+57,6 \%$	$(+102,4 \%$	$(+1397 \%$
	$=+1.829)$	$=+280)$	$=+3.395)$
Navidad	$\mathbf{2 . 3 8 1}$	$\mathbf{7 5 0}$	$\mathbf{4 4 0}$
	$(-25,0 \%$	$(+173,6 \%$	$(+81,0 \%$
	$=-794)$	$=+476)$	$=+197)$

lativo para situarse a casi cuatro veces su nivel normal, mientras que el resto baja.

- agosto: destinos nacionales y extracomunitarios.

Los destinos nacionales siguen representando el mayor volumen (5.004) pero los vuelos fuera de la comunidad europea presentan un fortísimo aumento al situarse a 15 veces su nivel normal. Los pasajeros en vuelos con destinos dentro de la comunidad bajan de hecho en agosto, compensando así el ligero aumento que experimenta en julio.

- navidad: destinos internacionales.

Los destinos internacionales experimentan moderados incrementos (1.226 en total), mientras que los destinos nacionales disminuyen de hecho su participación respecto a su nivel normal. No obstante, éstos siguen representando el mayor volumen (2.381).

total pasajeros: PACOMER y PATOTAL

Ambas series son prácticamente idénticas en la práctica ya que el número de pasajeros en tránsito y no comerciales presenta un volumen de escasa entidad. Por esta razón sólo se presenta la figura 5.5 que muestra los datos del total de pasajeros usuarios del aeropuerto de Vitoria-Gasteiz en todas las categorias, comparados con sus dos com-
ponentes más importantes (PANACH y PANATO) ya analizados, así como su tendencia y predicciones obtenidas mediante el modelo (2.11).

Puede observarse que la estructura de la serie es muy similar a la de PANATO y, en consecuencia, viene prácticamente determinada por el principal componente histórico de esta última, es decir, los pasajeros usuarios de vuelos charter con origen/destino nacional (PANACH). Curiosmente, esta circunstancia se mantiene en la actualidad a pesar de que PANACH ha dejado de ser en los últimos años (a partir de 1994) la parte más importante en favor de los vuelos nacionales regulares (PANARE), debido a la estabilidad de este último.

En particular, PATOTAL muestra un claro y continuado decrecimiento de su tendencia a largo plazo e, incluso, de su dispersión estacional. El valor atípico de agosto del 93 en los pasajeros charter repercute aquí en el total (67.609 pasajeros frente a un nivel medio desestacionalizado en torno a los 17.000). El modelo ajustado incorpora por tanto la intervención de impulso i0893 ya mencionada (agosto de 1993) de forma que dicho valor atípico no afecte a la extracción de la tendencia. Una vez estimado el modelo y extraida su tendencia, el nivel de la serie se ha estimado en torno a los 12.378 pasajeros mensuales, muy lejos de los niveles de años anteriores, experimentando un moderado pero constante decrecimiento en torno al -12% anual.

Por último, su componente estacional replica el ya obtenido para PANATO, mostrando el típico picos vacacionales de Semana-Santa y Agosto con ligeras variaciones en sus valores. Así, los efectos estacionales estimados oscilan entre el $+23 \%$ en abril, el $+43 \%$ en agosto y el -18% de diciembre-enero. $(+21 \%,+58 \%$ y -20% para PANATO respectivamente).

La figura 5.6 compara gráficamente las tasas (en porcentaje) de crecimiento anual subyacente extraidas mediante el ajuste del modelo (2.11) para cada una de las series de pasajeros usuarios del aeropuerto de Vitoria-Gasteiz. El gráfico muestra cómo, excepto en los vuelos nacionales (regulares y charter) y comunitarios, las actuaciones sobre el aeropuerto a lo largo de la presente decada no han alterado las tendencias en curso, manteniéndose en tasas constantes los respectivos decrecimientos. En cuanto a los vuelos nacionales, observamos que PANARE muestra tasas positivas desde 1995 pero, no obstante, sin poder compensar la tendencia de PANACH, la cual no ha hecho más que incrementar el ritmo de su caída hasta situarse en su mínimo
histórico ($-4,4 \%$ anual), de forma que el efecto neto sobre PANATO es de caída a una tasa del $-12,5 \%$, que se ha mantenido inalterada hasta la actualidad. Por otro lado, PACOTO es la única serie cuya participación no tiende a deteriorarse, mostrando a lo largo de los últimos años importantes aumentos de su tasa de crecimiento, matizados obviamente por el bajo nivel de esta serie.

Podemos así concluir que el aeropuerto de Vitoria-Gasteiz está apostando por un cambio de estructura en la que el transporte de pasajeros pasa a tener un papel secundario, en favor entonces del transporte de distintos tipos de mercancias como veremos a continuación.

5.1.2 tráfico de aeronaves

De acuerdo con la tabla 5.1 al comienzo de esta sección, se han estudiado ocho series relacionadas con el tráfico mensual de aeronaves con origen o destino en Vitoria-Gasteiz desde enero de 1990 hasta mayo de 1996: AEronaves NAcionales REgulares (AENARE), AEronaves NAcionales CHarter (AENACH), TOtal AEronaves NAcionales (AENATO), TOtal AEronaves en vuelos dentro de la COmunidad Europea (AECOTO), TOtal AEronaves en vuelos INternacionales extracomunitarios (AEINTO), total AEronaves COMERciales (AECOMER), OTRO tráfico de AEronaves, deportivo en su mayor parte, (AEOTRO), y, por último, número de AEronaves TOTAL (AETOTAL).

El ajuste del modelo (2.11) en cada una de estas series es bueno tanto fuera dentro como fuera de la muestra. Tanto los errores de predicción como los residuos se mantienen bien dentro de su intervalo de confianza del 68% mientras que sus respectivas CUSUM se mantienen en general alejadas del extremo de la banda permisible. Sólo en casos contados relacionados todos ellos con el tráfico internacional (y agregados) en los meses entre septiembre y noviembre del 95 se acercan e incluso sobrepasan el valor extremo. En estos casos ha sido preciso incorporar una nueva intervención tipo escalón - tal que toma el valor uno a partir de dicha fecha- en octubre del 95 (e1095) además de la ya habitual en agosto del 93 (i0893) ya mencionada anteriormente. La tabla 5.4 presenta un resumen de los valores estimados para el nivel y el crecimiento subyacente (CAT), así como de los efectos estacionales de algunos meses clave, al final de la muestra (mayo del 96) de cada una de las series de aeronaves.

Figura 5.5: Aeropuerto de Vitoria-Gasteiz: número de pasajeros

Figura 5.6: Pasajeros en el aeropuerto de Vitoria-Gasteiz: tasas CAT (en \%)

Tabla 5.4: Aeronaves: componentes en mayo 1996

mayo 1996	AENARE	AENACH	AENATO	AECOTO
nivel	428	33	466	232
CAT	$75,8 \%$	$-34,0 \%$	$59,9 \%$	$4,0 \%$
enero	$-1,6 \%$	$-10,1 \%$	$-7,2 \%$	$+7,5 \%$
abril	$-2,4 \%$	$+41,9 \%$	$+4,7 \%$	$-8,7 \%$
julio	$+1,8 \%$	$+29,5 \%$	$+14,7 \%$	$-18,1 \%$
agosto	$-1,9 \%$	$+40,6 \%$	$+15,8 \%$	$-19,5 \%$
diciembre	$-4,4 \%$	$-16,0 \%$	$-10,9 \%$	$+5,7 \%$
	AEINTO	AECOMER	AEOTRO	AETOTAL
nivel	47	752	93	852
CAT	$76,2 \%$	$27,1 \%$	$1,4 \%$	$10,6 \%$
enero	$-988,3 \%$	$-8,5 \%$	$-33,6 \%$	$-17,2 \%$
abril	$-6,8 \%$	$+1,9 \%$	$+16,6 \%$	$+8,3 \%$
julio	$+1585 \%$	$+18,7 \%$	$+41,5 \%$	$+27,1 \%$
agosto	$+3314 \%$	$+22,1 \%$	$+17,2 \%$	$+22,5 \%$
diciembre	$+57,0 \%$	$-8,6 \%$	$-44,1 \%$	$-17,9 \%$

aeronaves en vuelos nacionales: AENARE y AENACH

La figura 5.7 muestra los datos de aeronaves en vuelos nacionales regulares y charter junto con sus tendencia extraidas y las predicciones obtenidas mediante el ajuste del modelo (2.11). El gráfico de AENARE no muestra ninguna irregularidad notable a la vista. En la primera mitad de la decada, su evolución oscila suavemente en torno a una tendencia horizontal bastante estable. A partir de mediados de 1994 entra en una fase de crecimiento experimentando un fuerte y continuo incremento de pendiente (compárese con el estancamiento de PANARE). En la actualidad (mayo del 96) el nivel de la serie se situa en torno a 428 aeronaves mensuales con un crecimiento subyacente del $75,8 \%$ anual y variaciones estacionales muy estables en torno a 0% para los meses de verano y -3% en invierno.

En cuanto a AENACH, la serie muestra una tendencia a decrecer de forma sostenida. La incidencia más notable es nuevamente el ya mencionado valor atípico de agosto del 93 en los vuelos charter (390 aeronaves frente a un nivel estimado en 113 para el mes de agosto de aquel año). Claramente este valor atípico corresponde a aviones
dedicados exclusivamente al transporte de turistas (ver PANACH). Una vez estimado el modelo (2.11) con la intervención i0893 (impulso en agosto del 93), el nivel de la serie se ha estimado en torno a las 33 aeronaves mensuales, cayendo en torno al -34% anual.

Nuevamente, en los vuelos nacionales, las previsiones señalan un progresivo deterioro de los charter. Por otra parte, su componente estacional muestra además el típico esquema vacacional con picos en Semana-Santa y Agosto del 40\%, si bien en Navidad el efecto es negativo (-13% en diciembre-enero).

aeronaves en vuelos nacionales: AENATO

La figura 5.8 muestra los datos del total de aeronaves en vuelos nacionales, comparados con sus dos componentes más importantes (AENERE y AENACH) ya analizados, así como su tendencia y predicciones obtenidas mediante el modelo (2.11). En el gráfico se observa cómo la estructura de AENARE ha cambiado de directriz a lo largo de la decada pasando de venir prácticamente determinada por AENACH (impulso i0893 incluido) a venir determinada por AENARE a partir del incremento de pendiente experimentado por ésta última a partir de 1994.

El nivel de la serie al final de la muestra (mayo del 96) se ha estimado en torno a los 466 aeronaves mensuales con un importante incremento subyacente del 60% anual (nótese que el nivel desestacionalizado más bajo de la decada se situaría en unas 200 a mediados de 1993) y variaciones estacionales muy estables en torno al 15% para los meses de verano bajando hasta -11% en invierno.

aeronaves en vuelos internacionales: AECOTO y AEINTO

La figura 5.9 muestra los datos del tráfico de aeronaves en vuelos internacionales divididos en dos partes según sea el origen/destino dentro o fuera de la comunidad europea, junto con sus tendencia extraidas y las predicciones obtenidas mediante el ajuste del modelo (2.11).

Nótese que sólo se disponen datos de AECOTO desde junio del 93. Su tendencia es horizontal y bastante estable hasta el brusco incremento de nivel experimentado en noviembre del 95 (por cierto algo más tarde que AENARE). Este efecto se ha incorporado al modelo

Figura 5.7: Aeronaves en vuelos nacionales regulares y charter

Figura 5.8: Aeronaves en vuelos nacionales

con una intervención tipo escalón (e1195). Es interesante apreciar que tal efecto no existe en la correspondiente serie de pasajeros (PACOTO), luego podemos pensar que los aviones se destinan al transporte de mercancias.

En cuanto a AEINTO, la base de datos tiene un valor ausente en mayo del 94, por lo que el modelo ajustado incorpora una intervención puntual en dicha fecha (i0594). El perfil de la evolución de estos datos es mucho más irregular que los nacionales. Hay muchos picos en agostos (incluido el famoso del 93) pero también otros que pueden ser otras vacaciones (Semanas Santas p.ej.). No obstante, resulta curioso comprobar que el mes con el componente estacional más fuerte es diciembre del 95 pasado; en este caso no se ha incorporado una intervención correctora esperando que el estacional estocástico sea suficientemente flexible como para capturarlo.

Los niveles desestacionalizados se estiman en 279 aeronaves mensuales, de las cuales 232 aeronaves corresponden a vuelos con destino/origen comunitario, muy por encima de la media de aproximadamente 15 al mes observada durante el año 1994.

Los efectos estacionales de estas dos series delatan su peculiar caracter. Por ejemplo, AECOTO es la única serie que crece en invierno (del 6% en diciembre y del 7% en enero) y que decrece en verano (el 18% en ambos julio y agosto), mientras que AEINTO presenta importantes incrementos en los meses de verano.

aeronaves no comerciales: AEOTRO

La figura 5.10 muestra los datos de aeronaves en otros vuelos no comerciales - tráfico deportivo en su mayor parte- junto con su tendencia extraida y las predicciones obtenidas mediante el ajuste de modelo (2.11), ya que, dado su peculiar caracter, se ha considerado conveniente su análisis por separado. La serie tiene un nivel bastante estable (en torno a 93 aeronaves al mes en mayo de 1996, con un crecimiento subyacente del 1% anual), pero oscila mucho a lo largo del año (entre un 41% en julio y un -44% en diciembre) lo que, evidentemente, aparece ligado a la bondad o inclemencia del tiempo.

Figura 5.9: Aeronaves en vuelos internacionales

Figura 5.10: Aeropuerto de Vitoria-Gasteiz: tráfico no comercial

total aeronaves: AECOMER y AETOTAL

La figura 5.12 muestra los datos del tráfico de aeronaves tanto total como sólo vuelos comerciales en el aeropuerto de Vitoria-Gasteiz, junto con la tendencia del total y sus predicciones obtenidas mediante el modelo (2.11). Las dos series son muy similares ya que el número de otros vuelos no comerciales es pequeño respecto al total y, en particular, ambas muestran un ligero decrecimiento de la pendiente con el habitual agosto del 93 como valor atípico (impulso i0893), para después experimentar un paulatino incremento de pendiente a mediados de 1994 (véase AENARE y AENATO). La estructura es, por tanto, muy parecida a la ya analizada para AENATO hasta la aparición de un fuerte y brusco incremento de nivel en octubre del 95 debido a AECOTO (intervención tipo escalón e1095).

A pesar del fuerte incremento en nivel no parece haber un incremento de pendiente en esta fecha, no obstante nótese que esta intervención se encuentra demasiado cerca del final de la muestra como para poder detectar su verdadero caracter. En este sentido, es preciso tener cuidado con las predicciones obtenidas (ver el comentario a este efecto en la pág. 95).

El nivel de la serie al final de la muestra (mayo del 96) se ha estimado en torno a los 852 aeronaves mensuales con un incremento subyacente del 11% anual (nótese que el nivel desestacionalizado más bajo de la decada se situaría en menos de 350 a mediados de 1993) y variaciones estacionales entre el 27% de julio y el -18% de diciembre.

Comparando los datos y previsiones de aeronaves con los de pasajeros podemos contruir sendos gráficos de ocupación (ver figura 5.11). El gráfico muestra claramente que la ocupación media en vuelos charter con origen/destino nacional se ha mantenido en torno a 100-120 pasajeros a lo largo de todo el periodo. Esto es lógico ya que los charter destinados al turismo suelen funcionar a plena capacidad. Mientras, la ocupación en vuelos nacionales regulares se ha mantenido en torno a los 60 pasajeros hasta mediados de 1994 en que comienza a declinar hasta llegar a los 20 pasajeros de la actualidad. Las previsiones para los proximos años son de vuelos charter operando a casi plena capacidad, pero vuelos regulares operando con 10-20 pasajeros por aeronave de media. En cuanto a los vuelos internacionales la figura 5.11 muestra también la ocupación en los vuelos internacionales, donde nuevamente

Figura 5.11: Aeropuerto de Vitoria-Gasteiz: nivel de ocupación en aeronaves vuelos nacionales

vuelos internacionales

observamos un fuerte decrecimiento hasta llegar en nuestras previsiones a niveles entre cero y 15-20 pasajeros por aeronave (prácticamente nulo en los vuelos comunitarios). Todo ésto es consistente con un cambio de estrategia ya señalado hacia el transporte de mercancias.

La figura 5.13 compara gráficamente las tasas (en porcentaje) de crecimiento anual subyacente extraidas mediante el ajuste del modelo (2.11) para cada una de las series de tráfico de aeronaves en el aeropuerto de Vitoria-Gasteiz. El gráfico muestra cómo el aeropuerto ha experimentado un proceso de selección dinámica de las aeronaves que lo utilizan. La decada comienza con una situación homogénea pero de franca decadencia (similares tasas negativas en todas las categorias). Sin embargo, entre 1992 y 1993 ya puede apreciarse una dispersión de las tasas de crecimiento, de forma que mientras algunas series comienzan a ser favorecidas por ritmos cada vez más altos, otras se estancan e incluso aceleran su recesión. Esta situación tiende a estabilizarse a partir de 1995 con tasas de crecimiento que oscilan entre el $+76 \%$ de AENARE y AEINTO y el -34% de AENACH.

Podemos así concluir que el aeropuerto de Vitoria-Gasteiz está apostando fuertemente por los vuelos nacionales regulares y extracomunitarios, dedicados sobre todo al transporte de distintos tipos de mercancias, en detrimento de los vuelos nacionales charter que antes solían destinarse al transporte de pasajeros.

5.1.3 movimiento de mercancias

En cuanto a mercancias, la tabla 5.1 mencionaba las seis series temporales analizadas en relación con el volumen mensual (en Tm) en vuelos con origen o destino en Vitoria-Gasteiz desde enero de 1990 hasta mayo de 1996: MErcancias en vuelos NAcionales REgulares (MENARE), MErcancias en vuelos NAcionales CHarter (MENACH), TOtal MErcancias en vuelos NAcionales (MENATO), TOtal MErcancias en vuelos dentro de la COmunidad Europea (MECOTO), TOtal MErcancias en vuelos INternacionales extracomunitarios (MEINTO), y, por último, volumen TOTAL de MErcancias (PATOTAL) ya que, en este caso, dicho total procede exclusivamente de vuelos comerciales.

En términos generales el volumen de mercancias a comienzos de la decada era de escasa entidad, transportado casi en su totalidad en vuelos nacionales regulares. Esta situación ha experimentado un

Figura 5.12: Aeropuerto de Vitoria-Gasteiz: tráfico de aeronaves

Figura 5.13: Aeronaves en el aeropuerto de Vitoria-Gasteiz: tasas CAT (en \%)

Tabla 5.5: Mercancias: componentes en mayo 1996

mayo 1996	MENARE	MENATO	MEINTO	METOTAL
nivel (Tm)	377,637	382,616	891,356	$1.670,984$
CAT	$49,9 \%$	$53,2 \%$	$-125,3 \%$	$58,1 \%$
enero	$-7,11 \%$	$-6,7 \%$	$+24,4 \%$	$+13,1 \%$
abril	$-6,1 \%$	$-8,0 \%$	$-25,0 \%$	$+6,2 \%$
julio	$+16,1 \%$	$+12,4 \%$	$-20,2 \%$	$-4,8 \%$
agosto	$-25,4 \%$	$-26,4 \%$	$-30,0 \%$	$-40,9 \%$
diciembre	$-5,9 \%$	$-8,4 \%$	$+33,9 \%$	$+68,8 \%$

dramático cambio desde finales de 1994, siendo en la actualidad los vuelos internacionales (extracomunitarios en particular) los que determinan el volumen y, por tanto, el comportamiento, del movimiento de mercancias en el aeropuerto de Vitoria-Gasteiz.

El ajuste del modelo (2.11) en cada una de estas series es bueno tanto fuera dentro como fuera de la muestra. Tanto los errores de predicción como los residuos se mantienen en general dentro de su intervalo de confianza del 68% mientras que sus respectivas CUSUM se mantienen en general alejadas del extremo de la banda permisible. La tabla 5.5 presenta un resumen de los valores estimados para el nivel y el crecimiento subyacente (CAT), así como de los efectos estacionales de algunos meses clave, al final de la muestra (mayo del 96) de cada una de las series de pasajeros.

mercancias en vuelos nacionales: MENATO

La figura 5.15 muestra el volumen de mercancias en vuelos nacionales junto con su tendencia extraida y las predicciones obtenidas mediante el ajuste del modelo (2.11). Tal volumen corresponde en su casi totalidad a vuelos regulares, siendo el correspondiente a vuelos charter puramente testimonial (ver figura 5.14).

El gráfico de MENATO muestra una tendencia horizontal bastante estable en torno a las 50 Tm hasta el mes de noviembre del 95 en el que experimenta un fuerte y brusco incremento de nivel, más tarde que AENARE pero curiosamente al mismo tiempo que AECOTO y sus correspondientes mercancias de vuelos internaciones. Su correc-

Figura 5.14: Mercancias en vuelos charter

Figura 5.15: Mercancias en vuelos nacionales

Figura 5.16: Mercancias en vuelos internacionales

to tratamiento mediante la correspondiente intervención tipo escalón (e1195) es indispensable en este caso dada su proximidad al final de la muestra. De hecho, las predicciones dependerán en gran medida de esta intervención (ver el comentario a este efecto en la pág. 95).

En la actualidad (mayo del 96) el nivel de la serie se situa en torno a 380 Tm mensuales (de las cuales casi 378 corresponderían a vuelos regulares) con un crecimiento subyacente del 53% anual y variaciones estacionales en torno a $+12 \%$ en julio y -7% en los meses de invierno. Nótese que en lo que a mercancias se refiere el mes de agosto tiene un importante efecto negativo en todas las categorias (-26% en los vuales nacionales nacionales), en contraste con lo observado habitualmente para pasajeros y aeronaves.

mercancias en vuelos internacionales: MECOTO y MEINTO

La figura 5.16 muestra el volumen de mercancias transportadas en vuelos internacionales divididos en dos partes según sea el origen/destino dentro o fuera de la comunidad europea, junto con la tendencia extrai-
da para esta última y sus predicciones obtenidas mediante el ajuste del modelo (2.11). Nótese que los datos son practicamente nulos o no existentes hasta enero del 95 y septiembre del 94 respectivamente. No obstante, se ha analizado la serie MEINTO dada la relativa importancia que este tráfico está tomando en los últimos años en el aeropuerto de Vitoria-Gasteiz.

Su tendencia experimenta dos claros y bruscos incrementos de nivel en noviembre del 94 y en octubre del 95 (este casi al tiempo que MENARE-MENATO). Ambos se han incorporado al modelo como intervenciones de escalón (e1194, e1095). Entre ambos la tendencia se mantuvo durante el primer semestre de 1995 fluctuando en torno a las 600 Tm para luego incrementar hasta las 1.600 Tm en el segundo escalón ya mencionado. No obstante, el primer semestre de 1996 parece haber experimentado un retroceso hasta situarse en las 900 Tm . Obviamente, no es posible predecir si ocurriran más saltos bruscos en años sucesivos (p. ej. ¿alrrededor de los 'octubres’ de 1996 o 1997?).

Los niveles desestacionalizados se estiman en 891 Tm mensuales correspondientes a vuelos con destino/origen extracomunitario, a lo que habría que añadir unas 500 Tm correspondientes a vuelos comunitarios.

Los efectos estacionales de estas dos series delatan su peculiar caracter (c.f. AECOTO y AEINTO). En particular, MEINTO experimenta un crecimiento importante en los meses de invierno (del 24% en diciembre y del 34% en enero), pero decrece en los meses de verano no sólo en agosto (-30%) como todas las demás, sino tambien en julio (-20%). Todo esto repercutirá de forma notable en el volumen total.

total mercancias: METOTAL

La figura 5.12 muestra los datos del movimiento de mercancias en el aeropuerto de Vitoria-Gasteiz (en vuelos exclusivamente comerciales debido a la inexistencia de mercancias en otro tipo de vuelos), junto con la tendencia del total y las predicciones obtenidas para distintas agregaciones mediante el modelo (2.11). La tendencia de esta serie es muy estable y practicamente identica a MENATO (es decir MENARE) hasta experimentar un primer brusco incremento de nivel en noviembre del 94 debido exclusivamente al tráfico extracomunitario. A partir de allí, su perfil queda determinado por este tipo de tráfico
hasta experimentar un segundo impulso en octubre del 95 en todos sus componentes. No obstante, es el tráfico internacional el que determina el comportamiento y sus puntos sobresalientes debido a su mayor volumen en la actualidad.

El nivel de la serie al final de la muestra (mayo del 96) se ha estimado en torno a las 1.670 Tm mensuales con un incremento subyacente del 58% anual (nótese que el nivel desestacionalizado más bajo de la decada se situaría en torno a las 30 Tm a comienzos de 1990) y variaciones estacionales muy influenciadas por las mercancias en vuelos internacionales, arrojando efectos positivos en invierno (13% en enero y 7% en diciembre) y negativos en verano (-5% en julio y -41% en agosto).

La figura 5.18 compara gráficamente las tasas (en porcentaje) de crecimiento anual subyacente extraidas mediante el ajuste del modelo (2.11) para cada una de las series de movimiento de mercancias en el aeropuerto de Vitoria-Gasteiz. El gráfico muestra cómo el aeropuerto ha experimentado durante los últimos años expectaculares aumentos en el ritmo de crecimiento del volumen de mercancias transportadas. Así, de una situación a comienzos de la presente decada de tasas constantes en torno al 10% pasamos a partir de 1992 a una fase de fuertes incrementos de las tasas que llegan a estabilizarse de nuevo a partir de 1995 en el casi 60% de incremento anual que observamos en la actualidad. Senda similar sigue el volumen de mercancias en vuelos nacionales. Ha de tenerse en cuenta, no obstante, que desde 1995 ha irrumpido con gran fuerza el volumen de marcancias en vuelos internacionales (extracomunitarios sobre todo) que puede llegar a significar más de las tres cuartas partes del volumen total. Desafortunadamente, el perfil de sus crecimientos subyacentes es todavía muy irregular, debido probablemente a su corta edad.

Podemos así concluir que el aeropuerto de Vitoria-Gasteiz está apostando fuertemente por el transporte de mercancias, particularmente en vuelos internacionales, en detrimento, como ya se ha indicado, del transporte de pasajeros, manteniéndose éste en un segundo plano con niveles aceptables para cubrir las necesidades de la comarca de Vitoria-Gasteiz y su entorno.

Figura 5.17: Aeropuerto de Vitoria-Gasteiz: movimiento de mercancias

Figura 5.18: Mercancias en el aeropuerto de Vitoria-Gasteiz: tasas CAT (en \%)

Tabla 5.6: Aeropuerto de Vitoria-Gasteiz: series estadísticas diarias

tipo de tráfico		pasajeros	mercancias	aeronaves
regular \quad nacional	PANARE	MENARE		
chartercomunitario internacional no comuni- tario	PACOTO	PAINTO	MECOTO	
	total	PATOCH		
			AECOMER	
otro tráfico			AEOTRO	

5.2 Efectos diarios

La tabla 5.6 presenta la información estadística facilitada por el aeropuerto de Vitoria-Gasteiz sobre movimiento diario de pasajeros, mercancias y aeronaves desde enero de 1990 hasta mayo de 1996. Un análisis preliminar de las bases de datos detectó, no obstante, la ausencia de los días 13-1-90, 9-2-91, 16-2-91, 27-5-92 y 28-2-93 (tres sábados, un miércoles y un domingo respectivamente) más el 1-1-94 y el 20-4-96 (dos sábados más) en el caso de las aeronaves y los tres primeros días del año 90 en el caso de mercancias. Estas ausencias han sido tratadas en los modelos estimados mediante la incorporación de sendas variables ficticias que toman el valor uno en su respectiva fecha y ceros en el resto.

Cada una de estas series diarias ha sido analizada siguiendo los pasos siguientes:

1. Ajuste de la muestra:
se ajusta el modelo (2.11), incluyendo sendas intervenciones para semana santa, puentes y navidades, a la muestra completa de 2.343 datos (enero del 90 a mayo del 96). Dichas intervenciones son importantes para detectar efectos, distintos de los asociados a los días de la semana, correspondientes a fechas especiales dentro de cada año y aparecen en el modelo (2.11) como variables ficticias tales que cada una de ellas toma valor uno en
los periodos de tiempo en que la intervención sea efectiva y cero en los demás periodos.

En este sentido, se ha definido la "semana santa" como la variable ficticia que toma valor uno durante el periodo entre miercoles santo (día de salida vacacional) y lunes de pascua (día de regreso por ser fiesta en la Comunidad Autónoma Vasca) de cada año y cero en el resto, mientras que la variable ficticia "navidad" toma valor uno entre el 24 de diciembre y el 1 de enero siguiente y cero en el resto. La variable ficticia "puentes" toma valores uno desde la vispera hasta el día siguiente de un periodo en que una fiesta importantante dentro del año cae a no más de un día de distancia de sábado o domingo. (No obstante, la coincidencia de una de estas fiestas en sábado o domingo no se toma como puente). Mención especial merece el denominado "puente de la Inmaculada" que, por caer dos fiestas (la religiosa y el día de la Constitución) con un único día de separación entre ambas abarca un núcleo desde el 6 al 8 de diciembre más los sábados y domingos adyacentes y sus visperas que conforman verdaderas minivacaciones que afectan al transporte aéreo de pasajeros. Se han considerado además dentro de esta categoría las siguientes fiestas: 6 de enero (Erregeen eguna), 19 de marzo (Joseba deuna), 28 de abril (Prudentzio deuna: fiesta en Alava), 1 de mayo (Lan eguna), 12 de octubre (El Pilar) y el 1 de noviembre (Todos los Santos). Así, por ejemplo, en 1992 dos únicos días de "puente" permitieron unir Prudentzio deuna con el domingo siguiente en una minivacación de diez días.

La bondad del ajuste intramuestral en las últimas 275 observaciones se constata mediante el gráfico de la suma acumulada de residuos (CUSUM) frente a su banda del 10% de significación. Sobrepasar dicha banda implicaría que el modelo es poco adecuado para explicar el comportamiento de la serie en cuestión.
2. Extracción de tendencia:
una vez que el modelo ha sido estimado, se extrae la serie de tendencia $\left\{m_{t}\right\}$ mediante técnicas de filtrado y suavizamiento, comparándose de forma gráfica con los datos originales.
3. Extracción de efectos diarios:
por último, se extrae la "estacionalidad" $\left\{s_{t}\right\}$ que determina la evolución temporal de los efectos correspondientes a cada uno de los días de la semana de acuerdo con el modelo (2.11) estimado. Tales efectos se presentan gráficamente agrupados en días laborables (lunes a jueves) por un lado y fin de semana (viernes a domingo) por otro.

5.2.1 número de pasajeros

De acuerdo con la tabla 5.6 antes presentada, se ha analizado la estructura temporal de dos series referidas al número de pasajeros diarios con origen o destino en Vitoria-Gasteiz desde enero de 1990 hasta mayo de 1996: PAsajeros en vuelos NAcionales REgulares (PANARE), y TOtal PAsajeros en vuelos CHarter (PATOCH).

La razón de esta división es la constatación de que prácticamente no existen pasajeros en vuelos regulares no nacionales: de hecho los vuelos extracomunitarios (PAINTO) no contabilizan un sólo pasajero (a pesar de haberse registrado 98 aeronaves en tal categoría) mientras que en vuelos dentro de la U.E. (PACOTO) sólo se registraron 4.000 pasajeros (curiosamente aparecen 1.530 aeronaves regulares y 958 no regulares en esta categoría). La práctica totalidad de estos últimos pasajeros (3.879) se concentraron en los días entre el 3 de agosto y el 18 de septiembre de 1993 y el resto (121) surgen a partir de octubre de 1995 de forma muy esporádica, lo que convierte a estos vuelos "regulares" en un tanto atípicos (recuérdese el impulso i0893 - agosto del 93- del modelo de datos mensuales).

Por otro lado, comparando los gráficos de PANACH, PAINTO y PACOTO (figuras 5.2 y 5.4) observamos que las características de los dos primeros son muy similares mientras que PACOTO representa un volumen mucho menor. Hemos calculado la serie de proporciones de pasajeros nacionales en el total de vuelos charter (PA$\mathrm{NACH} / \mathrm{PATOCH})$ apreciándose una distribución muy concentrada entre el 90% y el 100% (los momentos centrales son media $=84 \%$, mediana $=100 \%$, moda $=100 \%$). Esto implica que PANACH representa una proporción casi constante del total y, por esta razón, no es preciso analizar cada componente de PATOCH por separado.

El ajuste del modelo (2.11) en cada una de estas series es bueno (según las respectivas CUSUM). La tabla 5.7 presenta un resumen de

Tabla 5.7: Pasajeros: efectos diarios y de calendario en mayo 1996

mayo 1996	PANARE	PATOCH
Semana Santa	-	$521(46)$
Navidad	-	$-59(46)[*]$
Inmaculada	-	$63(53)[*]$
Puentes	-	$31(29)[*]$
	valor estimado (desviación típica).	
	$\left[{ }^{*}\right]$	
	$-39, o r ~ n o ~ s i g n i f i c a t i v o ~ a l ~ n i v e l ~ d e l ~$	5%
lunes	$-39,29 \%$	$8,20 \%$
martes	$246,82 \%$	$-76,55 \%$
miercoles	$-10,43 \%$	$-93,98 \%$
jueves	$-5,04 \%$	$-46,07 \%$
viernes	$-1,20 \%$	-100%
sábado	$-98,14 \%$	-100%
domingo	$-85,81 \%$	$455,23 \%$

los efectos diarios y de calendario estimados al final de la muestra (mayo del 96) de ambas series de pasajeros.

La figura 5.19 muestra los datos de pasajeros diarios en vuelos nacionales regulares junto con su tendencia extraida mediante el ajuste del modelo (2.11) con estacionalidad de periodo $=7$ correspondiente a los días de la semana pero sin efectos de calendario (ya que las fechas especiales resultan no ser relevantes para vuelos regulares). No obstante, como ya se ha mencionado, se han incluido sendas variables ficticias correspondientes a los cinco días ausentes detectados en esta base de datos.

La figura 5.21 muestra la evolución del efecto correspondiente a cada día de la semana a lo largo de la presente década. Resulta interesante destacar los valores registrados en la semana 240 (primera de agosto del 94) ya que mientras los día laborables presentan una sima importante, los día de fin de semana presentan un gran pico (especialmente viernes y domingo), comportándose así como si fueran los típicos vuelos charter vacacionales.

De más interés resulta ser la evolución del martes en los dos últimos

Figura 5.19: Pasajeros diarios en vuelos nacionales regulares

Figura 5.20: Pasajeros diarios en vuelos charter

Figura 5.21: Pasajeros regulares en el aeropuerto de VitoriaGasteiz: factores diarios

años que pasa rápidamente de tener el factor más bajo (efecto negativo) a convertirse en la actualidad en el día favorito para los usuarios de vuelos regulares nacionales (3,5 veces el nivel subyacente, es decir un incremento de unos 650 pasajeros). De hecho, desde el último gran salto experimentado por el martes a finales de 1995 la distribución de pasajeros entre los día de la semana permanece estable, excepto por la evolución creciente del viernes hasta alcanzar prácticamente el nivel subyacente en la actualidad, lo que le situa como el segundo día más importante.

La figura 5.20 muestra los datos de pasajeros diarios en vuelos charter junto con su tendencia extraida mediante el ajuste del modelo (2.11) incluyendo estacionalidad "semanal" y efectos de calendario correspondientes a periodos especiales de interés (Semana Santa etc.) amén de las variables ficticias correspondientes a los días detectados como ausentes en la base de datos.

En este caso, el efecto de la Semana Santa es muy significativo, representando un importante incremento en unos 521 pasajeros diarios, es decir en torno a diez veces el nivel subyacente (el intervalo entre 430 y 612 pasajeros tiene el 95% de confianza). Sin embargo el efecto de los otros periodos (navidad, puentes, etc.) no es significativo por sí sólo (esto es, por encima de lo que significan los días de la semana concretos en los que caen dichos periodos).

La figura 5.22 muestra la evolución del efecto correspondiente a cada día de la semana, tanto para los días laborables como para el fin de semana. A lo largo de toda la década, con la excepción de un pequeño periodo en torno a comienzos de 1993, el domingo ha sido el día preferido para este tipo de pasajeros. De hecho, últimamente su efecto se estima en unos 227 pasajeros extra (esto es, 5,5 veces el nivel subyacente). El lunes también tiene un factor ligeramente positivo en la actualidad ($8,2 \%$ de incremento respecto al nivel subyacente), mientras que el resto de los días tienen factores negativos. Curiosamente, el factor estimado para viernes y sábados al final de la muestra es igual cero, lo que supone que el movimiento de pasajeros charter en esos días es nulo o meramente marginal.

Figura 5.22: Pasajeros charter en el aeropuerto de VitoriaGasteiz: factores diarios

Tabla 5.8: Aeronaves: efectos diarios y de calendario en mayo 1996

mayo 1996	AECOMER	AEOTRO
Nivel	25	5
Semana Santa	$2(0,6)$	-
Navidad	$-3(0,6)$	-
Inmaculada	$-1(0,6)\left[^{*}\right]$	-
Puentes	$-1(0,3)\left[^{*}\right]$	-
	valor estimado (desviación típica).	
	$\left[^{*}\right]$ valor no significativo al nivel del 5%.	
lunes	$-8,26 \%$	$-5,19 \%$
martes	$75,44 \%$	$8,99 \%$
miercoles	$47,92 \%$	$17,8 \%$
jueves	$40,06 \%$	$7,66 \%$
viernes	$41,93 \%$	$-4,07 \%$
sábado	$-78,55 \%$	$-6,32 \%$
domingo	$-58,07 \%$	$-10,21 \%$

5.2.2 tráfico de aeronaves

De acuerdo con la tabla 5.6 antes presentada, se ha analizado la estructura temporal de dos series referidas al tráfico diario de aeronaves con origen o destino en Vitoria-Gasteiz desde enero de 1990 hasta mayo de 1996: total AEronaves COMERciales (AECOMER) y OTRO tráfico de AEronaves (AEOTRO), deportivo en su mayor parte.

El ajuste del modelo (2.11) en ambas series es bueno (como puede apreciarse en las CUSUM respectivas). La tabla 5.8 presenta un resumen de los efectos diarios y de calendario estimados al final de la muestra (mayo del 96) de ambas series de pasajeros.

La figura 5.23 muestra el tráfico diario de aeronaves en vuelos comerciales junto con su tendencia extraida mediante el ajuste del modelo (2.11) incluyendo estacionalidad "semanal" y efectos de calendario (Semana Santa etc.) así como las variables ficticias correspondientes a los siete días detectados como ausentes en la base de datos.

En esta serie, el efecto de la Semana Santa es muy significativo, pero representando sólo un pequeño incremento de 2 aeronaves por encima de las 25 diarias del nivel subyacente, El efecto de la Navidad

Figura 5.23: Aeronaves diarias en vuelos comerciales

Figura 5.24: Tráfico diario no comercial

es también significativo pero de signo negativo, ya que representa una disminución de unas 3 aeronaves diarias durante este periodo. Por otro lado, el efecto del puente de la inmaculada, etc,. resulta ser no significativo.

La figura 5.25 muestra la evolución del efecto correspondiente a cada día de la semana a lo largo de la presente década. El día favorito vuelve a ser el martes con una 19 aeronaves por encima del nivel subyacente, (lo que representa un 75% de incremento). Curiosamente, sábado, domingo y lunes tienen actualmente efectos negativos (siendo el sábado el que cuenta con un nivel más bajo de todos, muy cerca de cero). Por otro lado el viernes muestra una evolución creciente en los últimos dos años, afín a la experimentada en la serie de pasajeros regulares nacionales.

La figura 5.24 muestra el tráfico diario de aeronaves no comerciales junto con su tendencia extraida mediante el ajuste del modelo (2.11) (incluyendo sendas variables ficticias correspondientes a los siete días ausentes detectados en esta base de datos.)

La figura 5.26 muestra la evolución del efecto correspondiente a cada día de la semana, tanto para los días laborables como para el fin de semana. Puede apreciarse que, en términos absolutos, la variación estacional se ha mantenido constante a lo largo de toda la década, con efectos fijos (positivos de martes a jueves y negativos de viernes a lunes) independientes de la evolución del nivel subyacente de la serie. Así el miercoles es el día con mayor número de vuelos de este tipo, mientras que el domingo es el que menor número de vuelos registra.

5.2.3 movimiento de mercancias

De acuerdo con la tabla 5.6 antes presentada, se ha analizado la estructura temporal de dos series referidas al movimiento diario de mercancias transportadas en el aeropuerto Vitoria-Gasteiz desde enero de 1990 hasta mayo de 1996: Total Mercancias en vuelos Nacionales $(\mathrm{MENATO}=\mathrm{MENARE}+\mathrm{MENACH})$ y Total Mercancias en vuelos Internacionales (MECOINTO=MECOTO+MEINTO).

Las CUSUM de cada caso mostraron que el ajuste del modelo (2.11) en ambas series es bueno. La tabla 5.9 presenta un resumen de los efectos diarios estimados al final de la muestra (mayo del 96) de ambas series de pasajeros.

Figura 5.25: Aeronaves comerciales en el aeropuerto de Vitoria-Gasteiz: factores diarios

Figura 5.26: Aeronaves no comerciales en el aeropuerto de Vitoria-Gasteiz: factores diarios

Figura 5.27: Mercancias diarias en vuelos nacionales

Figura 5.28: Mercancias diarias en vuelos internacionales

Tabla 5.9: Mercancias: efectos diarios en mayo 1996

mayo 1996	MENATO	MECOINTO
Nivel	$16,51 \mathrm{Tm}$	$46,40 \mathrm{Tm}$
lunes	$-77,33 \%$	$-41,42 \%$
martes	$15,06 \%$	$-52,28 \%$
miercoles	$77,41 \%$	$129,28 \%$
jueves	$81,16 \%$	$-7,66 \%$
viernes	$66,88 \%$	$-27,18 \%$
sábado	$-86,86 \%$	$-78,05 \%$
domingo	$-86,85 \%$	$77,44 \%$

La figura 5.27 muestra el volumen total de mercancias transportadas a diario en vuelos nacionales junto con su tendencia extraida mediante el ajuste del modelo (2.11) incluyendo las variables ficticias correspondientes a los siete días detectados como ausentes en la base de datos así como estacionalidad "semanal" y efectos de calendario (Semana Santa etc.). No obstante, estos efectos resultaron no ser significativos. También se comtempló la inclusión de la intervención e1195 (ver explicación en la sección 5.1.3 correspondiente a datos mensuales).

La figura 5.29 muestra la evolución del efecto correspondiente a cada día de la semana a lo largo de la presente década. La evolución de cada uno de estos factores diarios es muy similar, representando una variación poco importante respecto a la tendencia subyacente hasta el salto de nivel experimentado en noviembre del 95 . A partir de ahí, comienza a apreciarse una cierta especialización: de hecho el factor correspondiente al lunes cae hasta hacerse prácticamente cero, martes permanece bajo pero positivo, mientras que miércoles y jueves se convierten en los días favoritos con un incremento en torno al 80% sobre el nivel subyacente. En cuanto a los factores del fin de semana, el viernes sube hasta situarse actualmente en un 67% por encima del nivel subyacente mientras que tanto sábado y domingo caen hasta prácticamente desaparecer.

La figura 5.28 muestra el volumen diario de mercancias transportadas en vuelos internacionales, tanto comunitarios como extracomunitarios, junto con su tendencia extraida mediante el ajuste del mo-

Figura 5.29: Mercancias en vuelos nacionales en el aeropuerto de Vitoria-Gasteiz: factores diarios

Tabla 5.10: Aeropuerto de Vitoria-Gasteiz: detalle de predicciones

	Pasajeros	Aeronaves	Mercancias (Tm)
nivel subyacente	9.734	921	1.911
$($ CAT)	12.378	852	1.671
dic-96	$-11,9 \%$	$+10,6 \%$	$+58,1 \%$
may-97	9.091	842	3.909
extrapolaciones:	dic-97	9.913	1.054
2.538			
	may-98	9.001	1.015
dic-98	9.984	1.273	3.664

(*) crecimiento anual subyacente
delo (2.11), incluyendo variables ficticias correspondientes a los días ausentes detectados en esta base de datos, así como sendas intervenciones de escalón e1194 y e1095 (en noviembre del 94 y octubre del 95 respectivamente: ver sección 5.1.3).

La figura 5.30 muestra la evolución del efecto correspondiente a cada día de la semana, tanto para los días laborables como para el fin de semana. En este caso, puede apreciarse que el comportamiento durante los dos últimos años tanto del miércoles como del domingo es muy similar, destacando notablemente entre los días de la semana con factores entre 1,5 y 2,5 veces el nivel subyacente. En la actualidad sus efectos representan el 130% y 77% de incremento respectivamente.

5.3 Conclusiones

El aeropuerto de Vitoria-Gasteiz está apostando fuertemente por un cambio de estructura en la que los vuelos extracomunitarios y, en menor medida, nacionales destinados ambos al transporte de distintos tipos de mercancias han venido a sustituir a los vuelos, charter sobre todo, que antes solían destinarse al transporte de pasajeros. Así, el transporte de pasajeros pasa a tener un papel secundario, manteniéndose justo en niveles aceptables para cubrir las necesidades de la

Figura 5.30: Mercancias en vuelos internacionales en el aeropuerto de Vitoria-Gasteiz: factores diarios

comarca de Vitoria-Gasteiz y su entorno. El resumen de la tabla 5.10 es un breve exponente de las tendencias apuntadas derivadas de la actual situación. (Véanse los gráficos de las secciones anteriores para mayor detalle).

Más concretamente, hemos podido constatar que el número de pasajeros muestra un claro y continuado decrecimiento de su tendencia a largo plazo. En términos generales el número de pasajeros viene muy determinado por vuelos charter hasta principios de 1994. A partir de esa fecha, los vuelos charter decaen en importancia hasta niveles casi testimoniales determinando, no obstante, la estructura estacional, mientras que la estabilidad en el número de pasajeros en vuelos regulares hace que estos determinen el nivel subyacente del número de pasajeros usuarios del aeropuerto de Vitoria-Gasteiz. Dicho nivel se ha estimado en torno a los 12.378 pasajeros mensuales, muy lejos ya de los niveles de años anteriores, experimentando un moderado pero constante decrecimiento en torno al -12% anual.

Comparando los datos y previsiones de aeronaves con los de pasajeros hemos comprobado que la ocupación media en vuelos charter con origen/destino nacional sigue manteniéndose en niveles próximos a la plena capacidad de aviones de tipo medio, lo cual es bastante normal en charters destinados al turismo. En contraste, la ocupación en vuelos nacionales regulares ha pasado de los 60 pasajeros a mediados de 1994 a los 20 pasajeros de la actualidad, previéndose unos 10-20 pasajeros por aeronave en años próximos. En vuelos internacionales nuestras previsiones caen hasta niveles entre cero y 15-20 pasajeros por aeronave (prácticamente nulo en los vuelos comunitarios). Todo esto es consistente con el señalado cambio de estrategia hacia el transporte de mercancias.

En cuanto a los respectivos componentes estacionales su influencia en el número de pasajeros del aeropuerto de Vitoria-Gasteiz puede resumirse con el típico esquema vacacional Semana-Santa + Agosto + Navidad. Así, los viajes vacacionales de SS se concentran en vuelos con destinos nacionales y comunitarios, los de agosto en destinos nacionales y extracomunitarios y los de navidad en destinos internacionales, siempre con niveles que satisfacen la pequeña demanda generada dentro de la comarca de Vitoria-Gasteiz.

Nótese que, para los datos diarios, el único efecto de calendario que resulta estadísticamente significativo corresponde a los vuelos charter
en días de Semana Santa, representando un importante incremento de algo más de 500 pasajeros y dos aeronaves diarios. Sin embargo, el efecto de otros periodos (puente de la Inmaculada, otros puentes, etc.) no es significativo por sí sólo (esto es, por encima de lo que significan los días de la semana concretos en los que caen dichos periodos).

El volumen de mercancias a comienzos de la decada era de escasa entidad, transportado casi en su totalidad en vuelos nacionales regulares. Esta situación experimenta un dramático cambio a finales de 1994 en que se incrementa bruscamente su nivel debido exclusivamente al tráfico extracomunitario. Posteriormente se experimenta un segundo impulso a finales del 95 en todos sus componentes pero, no obstante, dado su mayor volumen en la actualidad, es el tráfico internacional el que determina la tendencia futura en el comportamiento del movimiento de mercancias en el aeropuerto de Vitoria-Gasteiz. Al final de la muestra (mayo de 1996) se ha estimado el nivel de la serie en torno a las 1.670 Tm mensuales con un incremento subyacente del 58% anual (compárese con las 30 Tm a comienzos de 1990) y variaciones estacionales muy influenciadas por las mercancias en vuelos internacionales, arrojando efectos positivos máximos en los meses de en invierno (mercancias perecederas destinadas al consumo navideño probablemente).

Teniendo en cuenta los impactos económicos calculados en el capítulo 3 tenemos que cada 10.000 Tm de crecimiento anual supondrían la creación de 584 empleos entre directos e inducidos, y un incremento del impacto económico sobre la producción de unos 5200 millones de ptas (ver tabla 5.11). Esto implicaría que, de mantenerse las actuales proporciones y tasas de crecimiento observadas, el impacto estimado durante el año 1997 sería de 17.000 millones de pesetas y se mantendrían cerca de 2000 empleos en total entre directos e inducidos, mientras que en el año 1998 dicho impacto rondaría los 27.000 millones de ptas., siendo de unos 3000 el total de empleos que se imputarían a la actividad aeroportuaria.

En cuanto a los días de la semana, a partir del salto de nivel de finales del 95 comienza a apreciarse una cierta especialización. Así, resulta interesante observar la evolución del martes durante los dos últimos años en los que pasa rápidamente de tener el factor más bajo (efecto negativo) a convertirse en la actualidad en el día favorito para los usuarios de vuelos regulares nacionales (3,5 veces el número de pasajeros y 19 aeronaves adicionales). Para el transporte de mercancias

Tabla 5.11: Aeropuerto de Vitoria-Gasteiz: previsión de impactos

año	mercancias	impactos por cada 10.000 Tm		
		$\begin{array}{r} \text { s/Prod } \\ \text { (mill. pts) } \end{array}$	$\begin{aligned} & \text { s/Renta } \\ & \text { (mill. pts) } \end{aligned}$	$\begin{gathered} \text { s/Empleo } \\ \text { (número) } \end{gathered}$
1995	12.248 Tm	5.213	2.429	584
		impactos previstos		
año	mercancias	$\begin{gathered} \text { s/Prod } \\ \text { (mill. pts) } \end{gathered}$	$\begin{aligned} & \text { s/Renta } \\ & \text { (mill. pts) } \end{aligned}$	$\begin{gathered} \text { s/Empleo } \\ \text { (número) } \end{gathered}$
1996	21.077 Tm	10.987	5.120	1.231
1997	33.302 Tm	17.360	8.089	1.945
1998	52.617 Tm	27.429	12.781	3.071

tenemos que miércoles y jueves se convierten en los días favoritos: los vuelos internacionales en el primero, mientras que los nacionales se reparten entre ambos. Mientras, los factores correspondientes a sábado y domingo caen, hasta hacerse prácticamente nulos, excepto por los charter de pasajeros, para los que el domingo ha sido el día preferido a lo largo de toda la década (actualmente representa 5,5 veces el número de pasajeros) y el transporte de mercancias en vuelos internacionales, para los que el domingo es el segundo día de la semana en importancia.

Capítulo 6

Efectos cualitativos

Una vez definida y calculada la cuantía de los impactos económicos dedicaremos este capítulo a adelantar algunas conclusiones sobre los efectos cualitativos del aeropuerto desde la perspectiva del propio usuario de las instalaciones aeroportuarias. Nos interesa, aquí y ahora, resaltar el papel del aeropuerto de Vitoria-Gasteiz no ya de agente dinamizador de actividades relacionadas con la riqueza colectiva e individual, sino como medio de satisfacer necesidades personales para los miembros de una colectividad.

Posiblemente, la repercusión cualitativa derivada de la percepción que tiene la población residente de los servicios aeroportuarios y la valoración que hacen de los mismos, tiene un valor tan importante como la riqueza que genera en su ámbito territorial. Lo que aquí se pretende es que ambos enfoques tiendan a complementarse entre si.

La repercusión agregada macroeconómica es el objeto fundamental de este trabajo, pero debe de comprenderse en su verdadera dimensión si, basándonos en la información real que proporcionan las encuestas de campo, analizamos el comportamiento microeconómico del protagonista fundamental del aeropuerto, el viajero. En consecuencia, dedicaremos en primer lugar nuestra atención a analizar la tipología sociológica del pasajero, el modo de acceso al aeropuerto, las características de los viajeros y de la estancia, y, en segundo lugar, a tratar de medir el grado de satisfacción del usuario con el aeropuerto y su imagen asociada, así como la importancia del aeropuerto para la ciudad de Vitoria-Gasteiz.

6.1 Rasgos tipológicos de los pasajeros

La tipificación de los pasajeros efectuada en la encuesta en función de su condición de residentes, no residentes y limítrofes y que se llevó a cabo conforme a los criterios ya comentados en el apartado metodológico, ha permitido extraer los rasgos típicos del viajero. Bajo esta premisa, encontramos que el $42,7 \%$ de los pasajeros entrevistados han sido catalogado como residentes, un $25,4 \%$ no residentes, mientras que un $27,4 \%$ se han considerado como limítrofes.

Puede estimarse que dos de cada tres pasajeros (tabla 6.1), al menos son hombres, llegando a suponer el 80% cuando los entrevistados son no residentes, mientras que en el caso de los limítrofes las propor-

Tabla 6.1: Sexo de pasajeros según tipo (\%)

	Residen.	No Residen.	Limítr.	Total
	Hombre	67,8	80	50,3
66,1				
Mujer	32,2	20	49,7	33,9

Tabla 6.2: Edad de pasajeros según tipo (\%)

	Residen.	No Residen.	Limítr.	Total
Menos de 18 años	2,6	0,4	8,2	3,6
De 18-25 años	7,6	5,9	8,2	7,3
De 26-35 años	22,7	34,8	17,8	24,4
De 36-45 años	36,6	32,6	17,8	30,4
De 46-55 años	19,7	19,6	11	17,3
De 56-65 años	7,8	5,6	16,8	9,7
Más de 65 años	3,2	1,1	20,2	7,3
MEDIA	41	39	46	42

ciones se igualan. Recordemos que estos últimos fueron caracterizados como viajeros preferentemente de tercera edad, de vuelo charter, y para los que el factor sexo no es una variable discriminante.

La edad media de los usuarios del aeropuerto de Vitoria-Gasteiz es de 42 años, para los visitantes foráneos es de 39 años, mientras que los pasajeros limítrofes alcanzan una edad media más elevada, de 46 años. Hay que tener en cuenta, por otro lado, que el 37% de estos pasajeros tiene más de 56 años.

En la tabla 6.2 adjunta se aprecia de manera más nítida el peso específico de cada cohorte de edad según la tipología de viajero, pudiéndose confirmar el comentario señalado anteriormente sobre la mayor edad de los pasajeros limítrofes mientras que los residentes se encuentran más centrados en edades intermedias (36 y 55 años). Asimismo, el tipo de vuelo (charter o regular) se encuentra mediatizado por un tipo de público de mayor o menor edad, constatándose la presencia preponderante de un usuario de superior edad en los charter nacionales, mientras que es en los charter internacionales donde se

Figura 6.1: Distribución de los pasajeros por edad

registran los viajeros más jóvenes.
Lógicamente, la situación laboral de la mayor parte de los usuarios del avión como medio de transporte es trabajando ($71,5 \%$) y, como veremos, precisamente lo utilizan por dicho motivo. Aunque, como se puede apreciar en la tabla 6.3, cabe considerar la fuerte presencia de los clientes jubilados (11\%), especialmente localizados en los vuelos charter de carácter nacional.

El tráfico de pasajeros del aeropuerto de Vitoria-Gasteiz en relación con su cobertura espacial, medida en función del lugar de residencia de los pasajeros, se restringe en su mayor parte al ámbito estatal y aunque el área de influencia del aeropuerto obviamente exceda los límites del territorio estatal, cabe considerar que prácticamente el 97% de la clientela reside en España. Esto es, por otra parte, lógico si tenemos en cuenta la no existencia de vuelos regulares al extranjero (véase la tabla 6.4).

Considerando este elemento, es decir, un público netamente español, como distintivo del aeropuerto de Vitoria-Gasteiz, cabe delimitar que el 46% de los pasajeros residen en el área de influencia más inmediata, como es la provincia de Alava, seguidos por los residentes en Madrid con un peso específico del 16%. El resto de las áreas geográficas de procedencia residencial de los clientes recogen porcentajes mucho menores de usuarios destacando el territorio de Gipuzkoa

Tabla 6.3: Situación laboral de pasajeros según tipo (\%)

	Residen.	No Residen.	Limítr.	Total
Trabaja	76,5	93,7	42,1	71,5
Parado/				
busca 1er empleo	0,2	0,4	0,7	0,4
Parado	1	0,4	1,7	1
Jubilado/				
Pensionista	6,2	1,1	29,5	11,3
Ama de casa	8,9	2,2	13,7	8,5
Estudiante	7	1,9	12,3	7,1
NS/NC	0,2	0,4		0,2

Tabla 6.4: Lugar de residencia de los pasajeros

Alava	46,1
Madrid	15,8
Guipuzkoa	6,6
Navarra	5,2
Burgos	5,1
Cataluña	4,6
Rioja	4,2
Bizkaia	4,1
Canarias	2,2
Andalucía	1,2
Extranjero	2,2
Soria-Valladolid	1
Mallorca	0,4
Galicia	0,6
Cantabria	0,3
Comunidad Valenciana	0,2
Zaragoza	0,1

Tabla 6.5: Forma de viajar según tipología de pasajero

	Residen.	No Residen.	Limítr.	Total
Viaja solo	51,6	77	20,9	51,7
Viaja acompañado	43,9	23	70,5	45,9
Grupo			8,6	2,3

Tabla 6.6: Relación con los acompañantes (\%)

	Residen.	No Residen.	Limítr.	Total
Familiar	54,8	29	77,2	60,9
Amistad	17,6	9,7	14,6	15,3
Laboral	27,1	59,7	7,8	23,1
NS/NC	0,5	1,6	0,5	0,6

($6,6 \%$), Navarra ($5,2 \%$), Burgos ($5,1 \%$). Provincias como Barcelona, Bizkaia y La Rioja aportan cada una de ellas una cuota de clientes en torno al 4%.

De nuevo hay que tomar como referencia la tipología de viajero como variable explicativa de la composición y características del grupo de viajeros. En este sentido, puede decirse siguiendo la tabla 6.5 que si de manera general casi el 52% de los pasajeros de avión viajan solos, es decir, algo más de la mitad de los entrevistados, al considerar el grupo de no residentes esta proporción se eleva al 77% y, a lo sumo, el 23% restante, viaja con otra persona.

Estas diferencias son francamente significativas sobre todo si se compara con los pasajeros limítrofes donde los términos porcentuales se invierten y el 70% viaja acompañado, el 21% solo y sólo un $8,6 \%$ en grupo. En consecuencia se detecta una correlación muy fuerte entre el tipo de vuelo (charter, regular, etc.) y la composición del grupo de viajeros (solo, acompañado). De manera cuantitativa, puede estimarse que en casi tres de cada cuatro personas que viajan acompañados el tamaño del grupo no excede de dos personas.

El nivel y tipo de relación entre los miembros que viajan juntos es preferentemente familiar (61\%), laboral en un 23% y de amistad en el

Tabla 6.7: Modo de acceso al aeropuerto (\%)

	Residen.	No Residen.	Limítr.	Total
Solo, coche privado	51,5	6,7	30,1	34,3
Traido familiar/				
amigo	19,7	25,6	12,3	19,2
Coche de alquiler	0,2	5,2	2,1	2
Taxi	27,8	51,9	9,2	28,8
Autobús discrecional	0,2	1,9	45,2	13
Otros	0,2	8,9	0,3	2,4
NS/NC	0,2			0,1

45%. Ahora bien, si consideramos la tipología de residente en esa triple vertiente, los pasajeros no residentes que viajen acompañados lo hacen predominantemente con un compañero de trabajo produciéndose ese fenómeno con especial intensidad en los vuelos regulares (tabla 6.6).

Las conexiones con el aeropuerto: modo de acceso

Buena parte de la cuota de pasajeros que atrae un aeropuerto está en relación, entre otros factores, con la diversidad de la oferta de destinos, del número de vuelos, de la calidad de las instalaciones aereoportuarias y de las comunicaciones existentes. Así, la disponibilidad del mayor o menor soporte estructural de los distintos medios de transporte, de las infraestructuras de las comunicaciones, etc. se encuentra determinando el tiempo y calidad de acceso hasta el aeropuerto que sin ninguna duda influye en el desarrollo y atractivo de la actividad aereoportuaria.

Entre las conexiones posibles con el aeropuerto de Vitoria-Gasteiz, se observa la importancia que tiene la utilización del coche privado ya que más de la mitad de pasajeros opta por esta fórmula de traslado, si bien a una buena parte de ellos (19\%) le ha llevado un familiar o amigo.

El taxi es el segundo medio de transporte más utilizado con casi un 30% de usuarios de este servicio, situándose la proporción en torno al 52% cuando se trata de pasajeros no residentes (tabla 6.7). El autobús discrecional acapara una cuota estimada del 13% de pasajeros, incre-

Figura 6.2: Modo de acceso al aeropuerto

mentándose hasta el 45% cuando se trata de pasajeros considerados limítrofes que normalmente vienen en vuelos charter, con viajes o paquetes turísticos organizados. La influencia de los coches de alquiler es más bien escasa llegando hasta el 5% cuando nos referimos a pasajeros no residentes. La carencia de un transporte regular de pasajeros hasta el aeropuerto restringe poderosamente la posibilidad de comparación con otros aeropuertos.

Ahora bien, como ya se ha comentado, el atractivo de un aeropuerto no sólo se encuentra en consonancia con los medios de transporte disponibles sino con las infraestructuras de comunicación existentes. En este sentido, el aeropuerto de Vitoria-Gasteiz ocupa un lugar estratégico y, hasta cierto punto, privilegiado en el mapa geográfico con una poderosa área demográfica en sus inmediaciones y en una excelente localización en relación a grandes núcleos de población que, en muchos casos, tienen limitaciones estructurales sobre el desarrollo del tráfico aéreo.

Respecto a la infraestructura terrestre, es preciso mencionar las buenas comunicaciones existentes como lo demuestra el hecho de la im-

Tabla 6.8: Tiempo empleado para llegar al aeropuerto

Tiempo en minutos	Residen.	No Residen.	Limítr.	Total
Menos de 15 min.	53,5	32,2	1	33,7
De 15 a 29 min.	42,3	61,5	7,5	37,7
De 30 a 59 min.	3,2	2,6	22,3	8,3
De 1 hora o más		3,7	69,2	20,3
NS/NC				0,1
MEDIA	14	17	69	29

portancia decisiva que va adquiriendo como aeropuerto de mercancías, lo que le convierte en un punto logístico básico para muchas compañías sobre todo por la idoneidad de las conexiones a través de la red de carreteras.

El tiempo medio que invierten los pasajeros en el trayecto hasta el aeropuerto es de 29 minutos variando ostensiblemente en función de la procedencia. En general, puede estimarse que el 71% de los usuarios de avión del mencionado aeropuerto tarda menos de media hora (véase la tabla 6.8 y el gráfico de la figura 6.3). Si nos referimos a los pasajeros considerados residentes el margen es de 14 minutos, para los no residentes es de 17 minutos (la mayor parte procede de VitoriaGasteiz), mientras que para los limítrofes su tiempo real medio de acceso hasta el aeropuerto excede la hora (69 minutos).

Como ya indicábamos, estos datos dependen exclusivamente del lugar de procedencia ya que una adecuada dotación de infraestructuras por carretera y la fluidez del tráfico aminora el tiempo de acceso a las instalaciones aeroportuarias.

En esta línea argumental se asienta el hecho de que el 69% de los clientes del aeropuerto de Vitoria-Gasteiz procedan de la propia ciudad de Vitoria-Gasteiz y el 2% de otro municipio de Alava, guardando lógica relación con ese 71% que tardaban menos de media hora.

Los otros territorios de la Comunidad Autónoma del País Vasco aportan una cuota similar: como origen del viaje desde Bilbao u otro municipio vizcaíno lo realizan un $5,2 \%$, mientras que la población cautiva guipuzcoana es ligeramente superior al $6,6 \%$. También hay

Tabla 6.9: Procedencia del pasajero al embarcar

Ambito Generalizado	Residen.	No residen.	Limítr.	Total
Vitoria-Gasteiz	94,4	94,1	1,7	68,9
Otro Municipio Ala-	3,6		1	2
va	1,0	1,1	11,6	3,9
Bilbao		4,5	1,3	
Otro Municipio Biz-	0,2		5,5	1,8
kaia Sebastián	0,2	0,7	4,8	
San Sasti-	0,4	16,8	4,8	
Otro Municipio Gi-	0,2		0,4	6,2
puzkoa	1,8			
Miranda			19,2	5,4
Navarra	0,2	12	3,5	
Burgos	0,2	0,4	3,4	0,9
Soria		3	18,2	5,7
Rioja y otras				
limítrofes				

municipios próximos pertenecientes a Burgos, como Miranda de Ebro, que aportan un 2% de clientes y que sumados al $3,5 \%$ del resto de la provincia burgalesa aportan un número de personas próximo al $5,5 \%$, porcentaje similar al que se registran desde Navarra y La Rioja (véase la tabla 6.9).

La incidencia de las personas que proceden de estos territorios limítrofes en los vuelos regulares es reducida (15% en total) centralizando la demanda hacia los vuelos charter de carácter nacional o internacional.

En consecuencia, el aeropuerto de Vitoria-Gasteiz tiene un área de influencia amplia, si tomamos como variable de referencia el lugar de residencia ésta excede el territorio alavés, pero con unos flujos de visitantes que tiene que como soporte -si exceptuamos la demanda interna- los residentes en Madrid y en las provincias limítrofes de Alava. Curiosamente, y a pesar de mantener vuelos regulares diarios, la cuota de viajeros que aporta Cataluña es más bien restringida no llegando al 5%.

Figura 6.3: Isocronas de tiempo de acceso al aropuerto

Si basamos el análisis en el lugar de procedencia anterior, el tráfico de viajeros se basa en la ciudad de Vitoria-Gasteiz (casi el 70\%), con cierta incidencia en el territorio guipuzcoano y en menor medida en los otros territorios colindantes, llegando sus límites a provincias relativamente distantes como Soria.

Los motivos generadores de viajes

Una vez inferidas, en el apartado netamente económico, las cantidades de gasto medio efectuado por los pasajeros no residentes según el propósito del viaje, en éste epígrafe abordaremos las razones que han llevado al conjunto de los pasajeros a utilizar los servicios de Foronda para, de alguna forma, ser capaces de identificar los rasgos distintivos de este aeropuerto.

Bajo esta perspectiva, la infraestructura aérea sirve de soporte, o de catalizador, a diferentes actividades vinculadas con aspectos derivados de la satisfacción de necesidades de los ciudadanos entre las que cabe destacar, la cultura, el ocio, los estudios, la salud, sin olvidarnos del trabajo, ya que la existencia de un aeropuerto incrementa las posibilidades de desarrollo de las actividades económicas. Difícilmente se entiende el diseño y preparación de actividades de cierto prestigio sin la presencia de un aeropuerto cercano que permita una comunicación rápida y cómoda con otras ciudades y países y que a la vez posibilite el contacto y apertura con nuevos mercados.

La estructura jerárquica de las principales motivaciones de los viajes hacia destinos determinados se orienta en función del papel distintivo del ámbito territorial donde se circunscribe el aeropuerto, identificando, definiendo y orientando los aspectos interrelacionados entre la vertiente de desarrollo local y el propósito de los viajes. En este sentido, el movimiento de pasajeros del aeropuerto tiene como componente fundamental los viajes por motivos laborales; según datos de la encuesta, recogidos en la tabla 6.10, casi el 53% de los pasajeros vinculan su desplazamiento a razones derivadas del trabajo de empresa o negocios. El placer se convierte en el segundo elemento en orden de importancia más como aeropuerto generador de viajes hacia otros destinos turísticos que como receptor de turistas. Así, mientras el 82% de los no residentes acuden por temas laborales, no llega al 10% los que lo efectúan por placer, entre los residentes en Alava llegan hasta el 33\%

Tabla 6.10: Motivo del viaje

Motivo del Viaje	Residen.	No Residen.	Limítr.	Total
Trabajo empre./negoc.	56,3	81,9	19,2	52,6
Placer	32,2	9,6	76,0	38,5
Congr./Confer.	5,2	2,2	1,0	3,3
Visita familiar	4,8	4,8	3,1	4,3
Motivos de salud	1,2	1,1	0,7	1,0
Estudio	0,4	0,4		0,3

los viajes que tienen como origen el placer, ocio y el 56% el trabajo. La importancia del resto de los motivos, en su conjunto, es bastante relativa sin que se perciban apenas diferencias porcentuales entre los residentes y no residentes, siendo la visita familiar y la asistencia a congresos y conferencias (mayor presencia de residentes y por tanto mayor número de viajes generador hacia otras ciudades por dicho motivo) las otras razones con cierto peso específico. De manera residual, también aparecen mencionados los motivos de salud y estudios.

En consecuencia, el papel dinamizador que juega Foronda en su ámbito de influencia territorial se encuentra determinado fundamentalmente en torno a la actividad económica, siendo los viajes por motivos laborales los que mayor proporción de personas movilizan. Ahora bien, también cabe constatar la importancia que tiene este medio de transporte entre los residentes como elemento canalizador de los momentos de ocio y disfrute de vacaciones o de viajes por placer hacia otros destinos turísticos del Estado o del extranjero. Para los pasajeros limítrofes, el aeropuerto de Vitoria-Gasteiz constituye una infraestructura importante, relativamente cerca de su residencia, desde donde puede solventar y satisfacer adecuadamente la necesidad de los viajes que se generan básicamente por placer.

Características de la estancia

Dentro del apartado dedicado a los impactos indirectos ya se han analizado las características relacionadas con la estancia de los visitantes,

Tabla 6.11: Tipo de alojamiento

Tipo de Alojamiento	Total $(\%)$
Hotel de lujo	41,1
Hotel normal	16,7
Apartamento	0,4
Hostal, pensión	0,4
Casa particular	11,9
No se ha alojado	28,5
NS/NC	1,1

fundamentalmente el aspecto referente a los gastos. En este punto se describirán otra serie de rasgos relacionados con la permanencia de los visitantes dentro de la CAPV.

Por término medio, el grupo denominado no residentes ha permanecido dentro del ámbito de la CAPV una media de 3,2 días, siendo lo más habitual la estancia de un día, aunque en el otro extremo de la clasificación se localiza un 12% de visitantes que han permanecido más de 5 días. El tipo de alojamiento utilizado, si exceptuamos ese 28,5\% que no se han alojado ya que han realizado un viaje de ida y vuelta en el día, es principalmente en hoteles de lujo (41\%), configurándose una relación directa entre los motivos de viaje, fundamentalmente trabajo y asistencia a congresos, y la elevada cualificación profesional de las personas que han viajado por este motivo. En un hotel denominado normal han pernoctado otro 17% de visitantes y un $11,9 \%$ en una casa particular (véase la tabla 6.11). El resto de la tipología de alojamientos utilizados tiene escasa incidencia sobre el conjunto de los datos (principalmente hostales, pensiones y apartamentos).

Si se realiza un cruce de las variables tipo de alojamiento con motivo de la visita se comprueba que efectivamente la clientela de los hoteles de lujo de Vitoria-Gasteiz se restringe a los visitantes que acude por motivos de trabajo ($47,1 \%$), y a congresos y conferencias $(66,7 \%)$.

Recordar, como apunte interesante, que del conjunto de los entrevistados un $16,7 \%$ no ha gastado nada durante su estancia, y en general se corresponden con ese grupo que viajan en el día por motivos labo-

Figura 6.4: Estancia en hotel de lujo

rales y que son invitados personalmente por las empresas (anfitriones) de la CAPV. De los que efectuaron algún tipo de gasto, considerando que la cantidad media se situaba en las 12.238 ptas./día, hay cerca de un 13% que gasta menos de 10.000 ptas. durante todo el período de estancia mientras que el 66% restante supera esa cuantía. En consecuencia, puede hablarse de que el motivo laboral es quien caracteriza la actividad principal de los viajes realizados por los pasajeros no residentes desde el aeropuerto de Vitoria-Gasteiz. Este motivo implica que en muchos casos (casi un 30\%) la visita sea bastante breve, reduciéndose prácticamente al día, aunque por término medio la estancia se sitúa en 3,2 días por persona. De la misma forma, la correlación entre el motivo principal de la visita, (trabajo y congresos) junto con la alta cualificación profesional de los visitantes, hace que la mayor parte de las estancias de este colectivo se produzcan en hoteles de lujo.

Los viajes de los pasajeros residentes

Además de los datos comentados previamente y analizando el resto de información relativa a los viajes desde la óptica de los pasajeros residentes, se confirma la hegemonía de los vuelos efectuados a través de la línea regular de pasajeros por parte de tres de cada cuatro pasajeros entrevistados.

Otra serie de aspectos interesantes para conocer cuáles son los mecanismos y procesos utilizados para adquirir el viaje en avión son las agencias de viaje y que sigue siendo el vehículo transmisor de informaciones y comunicaciones más utilizado para dar a conocer los vuelos existentes, habiendo informado el 70% de los usuarios residentes de los vuelos que tienen como origen-destino el aeropuerto de VitoriaGasteiz; en segundo lugar las propias empresas se han encargado de organizar e informar de la existencia de los vuelos (20\%), y en menor medida se ha recurrido a la prensa ($6,5 \%$), o a la compañía aérea sita en el propio aeropuerto.

El tipo de billete en el 87% de los casos es de ida y vuelta habiendo sido adquirido a través de una reserva que efectuó la empresa (en el 56% de los viajes). De los datos de las encuestas se desprende también que las agencias de viajes trabajan al menos directamente con el 43% de los pasajeros ya que es posible que muchas de las reservas de las empresas se tramitaran a través de las agencias de viajes.

En realidad, la notoriedad de la compañía con la que efectuará el vuelo llega hasta el 90% de los entrevistados mientras que un 10% desconocen el nombre de la compañía que le transportará hasta su destino final.

De cualquier forma, el 14% de estos pasajeros, en su mayoría vitorianos, deberán hacer escala en otro aeropuerto para llegar al final de su destino.

Tipología de cliente: frecuencia de viaje

Otro de los elementos interesantes a conocer dentro de la tipología de pasajero es el que se refiere a la habitualidad con que realizan viaje en avión.

Se observa, en principio, que casi un 15% de la muestra entrevistada realiza los viajes con una periodicidad al menos semanal y casi otro 10% con carácter quincenal, lo que significa que aproximadamente una de cada cuatro personas entrevistadas pudieran considerarse pasajero habitual.

Como se aprecia en la tabla 6.12 adjunta, se producen diferencias claramente significativas en función de la variable reclasificada tipología de pasajero resultando que mientras sólo el 8% aproximadamente de los pasajeros limítrofes pueden catalogarse como clientes habituales, en el

Tabla 6.12: Frecuencia de los viajes en avión

Frecuencia	Residen.	No Residen.	Limítr.	Total
Diaria	0,4	1,9	0,7	0,8
Semanal	10,5	28,9	5,1	13,7
Quincenal	9,7	18,1	2,1	9,8
Mensual	17,9	26,3	3,8	16,2
Trimestral	11,7	6,7	5,5	8,7
Semestral	8,9	5,9	12,7	9,2
Anual	14,3	3,7	21,6	13,6
Ocasional	26,4	8,5	48,6	28

caso de los no residentes la proporción se sitúa casi en la mitad, 49%. En un terreno intermedio se localizan los residentes procedentes de territorio alavés donde un 21% recibirían este calificativo de habituales.

Dentro de esta escala se va a considerar a los usuarios que viajan una vez al mes o al trimestre en avión como frecuentes, encontrándose que por término medio suponen un 25%, incrementándose también la proporción entre los no residentes (33\%). Los que viajan con una periodicidad semestral o anual se catalogan como esporádicos, con una media de pasajeros de estas características del $22,8 \%$; y por último los ocasionales, que representan el 28%.

Es bastante evidente que se invierten las cifras en relación con la tipología de pasajeros, con un claro predominio de los pasajeros limítrofes y en menor medida residentes en estas últimas categorías caracterizándose por la poca habitualidad de sus viajes en avión.

De cualquier forma, esta catalogación sirve para conocer el tipo de pasajero que utiliza el entorno aéreo como medio de transporte más o menos habitual. No obstante, si se formulan estas preguntas en relación al aeropuerto de Vitoria-Gasteiz las cifras de habitualidad decrecen considerablemente situándose además los residentes como principales usuarios habituales de este aeropuerto, aunque la diferencia porcentual respecto a los no residentes es de sólo seis puntos.

En consecuencia, el aeropuerto de Vitoria-Gasteiz tiene por término medio un $10,4 \%$ de pasajeros habituales, aumentando hasta un $15,8 \%$ cuando hablamos de residentes, existiendo cerca de otro 25% de pasa-

Figura 6.5: Tipología de los usuarios del avión

Figura 6.6: Tipología del usuario del avión desde VitoriaGasteiz

Tabla 6.13: Frecuencia de los viajes en avión desde VitoriaGasteiz

Frecuencia	Residen.	No Residen.	Limítr.	Total
Diaria	0,2			0,1
Semanal	7,6	5,2	0,7	5,1
Quincenal	8	4,1	1,4	5,2
Mensual	15,5	18,1	3,1	12,8
Trimestral	9,7	11,1	2,7	8,2
Semestral	9,3	5,9	8,2	8,2
Anual	12,9	6,7	12,7	11,3
Ocasional	36,4	48,5	70,5	48,8
NS/NC	0,4	0,4	0,7	0,5

jeros frecuentes. Estas cifras nos permiten evaluar el nivel de afección directa de carácter negativo que supondría en términos porcentuales la no existencia del aeropuerto y su impacto sobre la colectividad de usuarios (tabla 6.13).

Por último, refiriéndonos exclusivamente al colectivo de no residentes, casi la mitad de ellos confirman que vienen frecuentemente a Foronda (45%) mientras que un $20,7 \%$ han volado desde este aeropuerto entre 2 y 10 veces y el $21,1 \%$ acuden por primera vez.

6.2 La imagen que transmite el aeropuerto

El aeropuerto de Vitoria-Gasteiz, como los del resto de territorios, ha arrastrado tras de sí un gran conjunto de inversiones generando toda una infraestructura productiva soporte a su vez de múltiples actividades tanto de carácter público como privado. Esta contribución económica representa una riqueza colectiva que en principio es compartida y disfrutada por el conjunto de los agentes sociales de su área de influencia más inmediata. En definitiva, esta riqueza colectiva no sólo tiene un trasfondo en el plano material sobre las actividades netamente productivas, sino que el impacto que provoca el aeropuerto afecta a todo el tejido social y cultural de la zona. Posiblemente cuantificar el impacto cualitativo de un aeropuerto sobre la ciudad de Vitoria-

Tabla 6.14: Satisfacción con las prestaciones del aeropuerto

Nivel de	Residen.	No Residen.
Satisfacción	$(\%)$	$(\%)$
Satisfecho	95	94,8
Regular	3,2	3
Insatisfecho	1,5	1,5
NS/NC	0,3	0,7

Gasteiz sea una tarea difícil de llevar a cabo, pero no cabe ninguna duda del papel que ha jugado y su contribución a la modernización de la ciudad y de su entorno, dinamizando tanto la economía como la sociedad a la que representa.

En el fondo constituye un exponente más de la ciudad, del territorio, que acarrea toda una serie de sentimientos, actitudes y que genera opiniones en un sentido u otro, pero que en definitiva tiene un acento muy especial para los ciudadanos.

En este entramado, el aeropuerto se convierte en algo propio, peculiar de la zona de Vitoria-Gasteiz y diferente de los otros, con una serie de intangibles de difícil evaluación, pero que son percibidos desde diferentes ámbitos y pueden catalogarse a través de la imagen que transmite a los usuarios en su calidad de residentes y no residentes. Es precisamente en este apartado donde se tratarán de analizar las opiniones que se encuentran presentes sobre el aeropuerto, el grado de satisfacción con los diferentes elementos del mismo, la importancia que se le confiere, los aspectos positivos y negativos, en definitiva la imagen que se encuentra asociada y la importancia que tiene para la ciudad.

Satisfacción con la prestación del aeropuerto y los servicios que ofrece.

En términos generales, casi el 95% de las personas entrevistadas se encuentran muy o bastante satisfechas con el nivel de prestaciones que ofrece el aeropuerto de Vitoria-Gasteiz, no alcanzando al 2% la proporción de personas que muestran una opinión desfavorable (véase

Tabla 6.15: Satisfacción con los servicios del aeropuerto (\%)

$\left.$| Nivel de | Bar-
 Satisfacción | Tiendas | Ren-Car | Personal
 Restaur. | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Servicio | | | | | | | No. de |
| ---: |
| Vuelos | \right\rvert\, | Ratisfecho | 79,5 |
| :--- | ---: |
| Regular | 9,1 |

la tabla 6.14). Como puede comprobarse los niveles de satisfacción son similares entre el colectivo de residentes y no residentes, con una buena consideración general hacia el aeropuerto de Vitoria-Gasteiz.

En realidad, de los diferentes elementos sometidos a la valoración únicamente se resiente la satisfacción con el número de vuelos que ofrece el aeropuerto, pudiéndose evaluar en uno de cada cuatro el número de usuarios que no se encuentra del todo satisfechos con la cobertura actual ($17,9 \%$ regular y $6,5 \%$ poco o nada satisfechos) (tabla 6.15).

Considerando la mención regular como un aspecto hasta cierto punto no satisfactorio de la situación actual, este sentimiento de insatisfacción se detecta en mayor medida entre los residentes, alcanzando casi al 32% de ellos, 9 puntos por encima de los no residentes. Conviene insistir que dentro de esta valoración de insatisfechos se está contabilizando el grupo que opina regular y que representa casi un 18% de las opiniones consideradas como poca satisfactorias.

Parece evidente que hay un mayor espíritu crítico entre los que habitualmente utilizan los servicios del aeropuerto y que, en principio, se corresponde con personas residentes dentro del territorio alavés. Este posicionamiento es lógico ya que son los que en realidad sufren o disfrutan en mayor medida los privilegios o carencias de una situación que conocen de manera directa. Además, esta fidelidad demostrada como clientes habituales parece dar derecho a mantener y manifestar una serie de opiniones más negativas que pudieran servir para mejorar la situación actual. De cualquier forma, conviene recordar que, incluso en el peor de los casos, bastante más de la mitad de ellos $(65,4 \%)$ considera suficientes el número de vuelos que hay en la actualidad.

Ahora bien, cabe precisar que los pasajeros catalogados como ha-

Figura 6.7: No satisfechos con el número de vuelos

bituales de Foronda (viajan diariamente, semanal o quincenal) y que suponen un 10% de los encuestados, distinguen entre lo central y periférico, siendo conscientes de las limitaciones que tiene este Aeropuerto para poder ofertar una serie de servicios comparables con otros aeropuertos de mayor entidad y, por tanto, no se muestran excesivamente críticos con la calidad de los diferentes servicios. Se puede observar, incluso, que las peores valoraciones se obtienen entre los usuarios menos habituales (catalogados como ocasionales o esporádicos) que centran su mayor insatisfacción en lo reducido del número de vuelos con un 12% de insatisfechos o muy insatisfechos con los servicios aéreos ofertados, decreciendo estos niveles a medida que el tipo de pasajero utiliza en menor medida los servicios aéreos de Foronda (viajeros ocasional o esporádico).

Las posibles deficiencias del aeropuerto

La opinión pública constituye uno de esos fenómenos sociales que mantiene día a día a una parte de la población en una actitud vigilante y crítica sobre los asuntos que en mayor medida interesan. La construcción social de la realidad de cualquier aspecto interrelacionado con la vida cotidiana tiene por término general un reflejo a través de actitudes, opiniones que se traducen en comportamientos concretos y que, cuando esas preocupaciones cotidianas de un número elevado de personas convergen y saltan a la luz pública, se convierten en corrientes de opinión que pueden marcar y difundir una imagen determinada.

De manera interesada se ha tratado de conocer cómo se manifiesta esa corriente de opinión en el caso del aeropuerto de Vitoria-Gasteiz, cómo se percibe y cuáles son los aspectos más destacables desde el punto de vista de las deficiencias observadas.

En principio, hay que resaltar que el 76% de los entrevistados no contestan a la pregunta por lo que cabe considerar que no encuentran ningún tipo de aspecto negativo claramente identificable. Desde el exterior (véase la tabla 6.16), sólo uno de cada diez no residentes encuentran alguna deficiencia o irregularidad en el conjunto de la dotación del aeropuerto, con especial mención hacia lo limitado de la oferta de vuelos ($4,4 \%$), y en menor medida de las infraestructuras existentes y de la comida-hostelería; el resto de apreciaciones negativas tienen un efecto residual (tamaño del aeropuerto, puntualidad, comunicaciones

Tabla 6.16: Deficiencias o irregularidades del aeropuerto (\%)

Menciones	Residen.	No Residen.	Limítr.	Total
Flexibil. horaria			0,3	0,1
Accesible/comun.	0,4	0,4		0,3
Atención	0,8		1	0,7
Oferta vuelos	23,5	4,4	4,5	13,4
Calidad servicio	0,6		0,3	0,4
Comida, hostelería	6,4	1,9	4,1	4,6
Puntualidad	0,4	0,4		0,3
Tamaño aeropuerto	0,8	0,7	3,4	1,5
Infraestructura	2,8	2,2	1,4	2,3
Rapidez, agilidad	0,4		0,3	0,3
Precio	1.8		1.4	1.2
Horarios	2,6		0,3	1,3
Facturación	0,2			0,1
Personal	1		0.7	0.7
Distracc./ocio			1,1	0,7
Ruidos de aviones	0,2		0,5	
NS/NC	64			0,1

o accesibilidad).
Desde la óptica de los residentes, la gama de aspectos negativos o deficiencias constatada se amplía considerablemente llegando a representar casi un 24% la proporción de personas que se muestran disconformes con lo limitado de la oferta de vuelos, seguido de la hosteleríacomida, quejándose también de la dotación de infraestructuras, de los horarios y de los precios. El resto de las menciones pueden apreciarse en la tabla 6.16.

Asimismo, los comentarios efectuados anteriormente guardan cierto paralelismo con la habitualidad como usuario de Foronda confirmando esa relación directa entre la mayor habitualidad como usuario o cliente del aeropuerto y una gradual mayor acentuación de la deficiencia basada en el escaso número de vuelos existentes, incorporándose otro factor de carácter negativo, que también guarda relación con lo que podríamos denominar variedad de servicio, como son los malos
horarios. Los pasajeros tipificados como frecuentes (mensual, bimensual, trimestral) destacan también como aspectos negativos la escasa oferta de vuelos acompañado de la hostelería- comida. Los atributos destacables entre los pasajeros esporádicos rebajan sensiblemente su percepción crítica sobre la escasa oferta de vuelos, significando los aspectos deficientes de la comida-hostelería, infraestructura y del precio. Los ocasionales añaden una nueva connotación de tipo negativo centrada en el tamaño del aeropuerto.

La importancia del aeropuerto para la ciudad

Como ya se ha comentado, la influencia de los transportes y de sus tecnologías adquieren un papel relevante como vertebradores no sólo de los equilibrios regionales, nacionales o internacionales, sino como agentes dinamizadores locales, fundamentados en la configuración de la estructura y organización urbana.

Difícilmente puede concebirse un área metropolitana sin una red de transportes colectivos que garanticen la satisfacción de la necesidad de transporte a la población adscrita y a los visitantes. Así, la posesión de un aeropuerto asegura un movimiento mucho más rápido de la colectividad, ampliando e incrementando el hinterland. De esta misma forma, la existencia de un aeropuerto va indisolublemente ligada a una imagen de modernidad y puesta al día de la ciudad contribuyendo decisivamente a la identificación entre el aeropuerto y la ciudad de referencia.

No obstante, si bien abundamos en el papel decisivo y fundamental del desarrollo económico, social y cultural que adquiere el aeropuerto para su entorno inmediato, habría que matizar que las últimas inversiones en infraestructura viarias tanto en la CAPV como en el resto del Estado están garantizando un sistema de comunicaciones cada vez más rápido y fluido que hace que las distancias entre las diferentes capitales se acorten. Asimismo, la variedad y cada vez mayor oferta de medios alternativos de transporte y la presencia del vehículo privado en una gran parte de la población hace que ningún medio sea imprescindible.

Las consideraciones anteriores se confirman, si tenemos en cuenta que no llega al 4% la proporción de pasajeros entrevistados que no hubiese realizado este viaje de no existir Foronda, lo cual no descarta el viaje el avión ya que casi el 60% hubiera realizado el viaje desde el

Tabla 6.17: ¿Realizaría este viaje de no existir este aeropuerto?

Sí desde Bilbao	59,4
Sí desde Fuenterrabia	1,7
Sí desde otro Aeropuerto	16,2
Sí en Taxi	0,7
Sí en autobús	2,1
Sí en coche privado	13,7
Sí en tren	2,5
No	3,5
NS/NC	0,2

Tabla 6.18: Importancia del aeropuerto para la ciudad

| Nivel de |
| :--- | ---: |
| Importancia |\(\left.\quad \begin{array}{c}Total

\%\end{array}\right]\)| Mucha | 77,1 |
| :--- | ---: |
| Bastante | 20,1 |
| Algo | 1,4 |
| Poco | 1,2 |
| Nada | |
| NS/NC | 0,2 |

aeropuerto de Bilbao, un $1,7 \%$ desde Fuenterrabia y un $16,2 \%$ desde otros aeropuertos (tabla 6.17). El resto de los entrevistados hubiera tomado otro medio de transporte alternativo, destacando la utilización del coche privado (14%), teniendo menor poder de atracción el tren, el autobús y el taxi.

Por consiguiente, la fidelidad hacia el medio de transporte parece garantizada en su mayor parte: pocos usuarios de avión cambiarían de sistema, pero no así la plataforma geográfica origen o destino del desplazamiento. Es claro que la no existencia del aeropuerto de VitoriaGasteiz desplazaría a los usuarios, redundando en un aumento de la demanda de aeropuerto de Bilbao.

Aún así, a la transcendencia que tiene el Aeropuerto de Vitoria-

Figura 6.8: Importancia del aeropuerto (por motivos laborales)

Gasteiz como elemento que satisfaga los viajes derivados de actividades laborales (véase la figura 6.8) de los habitantes alaveses, se le confiere mucha o bastante importancia en el 65% de los casos, para el resto de los entrevistados este factor cuenta con poca o ninguna importancia.

Por otro lado, la relevancia que tiene este aeropuerto para la ciudad de Vitoria-Gasteiz se considera prácticamente decisiva: mucha para el 77%, o bastante importante (20%), solamente un $1,4 \%$ de los pasajeros residentes opinan que algo, y un $1,2 \%$ poco como se puede apreciar en la tabla 6.18.

De cualquier forma, la imagen del aeropuerto asociada a la ciudad sale bien parada lo que corrobora, por tanto, la hipótesis barajada de la profunda identificación de los habitantes de Vitoria-Gasteiz con su aeropuerto, concediéndole una importancia decisiva tanto desde un punto de vista práctico, como elemento que satisface necesidades producto del desarrollo de actividades laborales, como desde una perspectiva globalizante, que implica un sentimiento, sensación difícilmente evaluable en términos comparativos con fuerte impacto sobre la colectividad. Por último, desde este marco de las actitudes y sentimientos,
la imagen que transmite Foronda para los visitantes contribuye a dar una buena imagen de Vitoria-Gasteiz, siendo sólo un porcentaje muy exiguo de las personas que nos visitan, $(2,2 \%)$ las que mantienen una opinión desfavorable.

De cualquier forma, la imagen del aeropuerto asociada a la ciudad sale bien valorada tanto como sentimiento y orgullo de pertenencia entre los residentes, como de percepción positiva de los visitantes que efectúan sus desplazamientos a través de este aeropuerto.

Notas:

- Pág. 6: No aparece el año 1991 en gráficos de evolución de los multiplicadores de impacto porque ese es el año en que aparecen publicadas las tablas input-output correspondientes al año 90 , de forma que el EUSTAT no proporciona actualizaciones para el año 91 , lo que sí hace para los años 92,93 Y 94.
- Pág. 8: En la tabla de impactos previstos aparece el año 96, ya que los datos disponibles sólo alcanzan a mayo de 1996. Por tanto el total de impactos de 1996 son previstos. Para mayo de 1996, las estimaciones que se presentan son las del nivel subyacente.
- Pág. 62: Los gráficos de esta página y la siguiente se refieren a los impactos directos/indirectos totales (incluyendo los correspondientes impactos inducidos). Obsérvese que el ancho de barra nos proporciona la suma total de todos los impactos económicos.
- Pág. 121: Respecto a las fechas de enero de 1990 a mayo de 1996 hay que señalar que aparecen en el texto no como matización sino para indicar cuál es el tamaño de la serie temporal con la que se trabaja.

Bibliografía

ACI (EUROPE) (1993), The economic impact study kit, Documento de Trabajo Mayo, Airports Council International: European Region.

Arthur D. Little International (1993), How to Assess Total Economic Impact, ADLI.

Batey, P. W., Madden, M. y Scholefield, G. (1992), 'Socioeconomic impact assessment of large-scale projects using inputoutput analysis: a case study of an airport', Regional Studies 27.3, 179-191.

Batey, P. W. y Rose, A. Z. (1990), 'Extended input-output models: Progress and potential', International Regional Science Review 13, 27-49.

Box, G. y Jenkins, G. (1976), Time Series Analysis: Forecasting and Control, 2 edn, Holden-Day. New York.

Centre For Local Strategies (1988), The impact on the local economy of past likely future development of Manchester airport, Documento de trabajo, Manchester.

Ciaschini, M. (1988), Input-Output Analysis: Current Developments, Chapman and Hall. London.

EUSTAT (1993a), 1990 Euskal Autonomi Elkarteko Input-Output Taulak, Euskal Estatistika-Erakundea/Instituto Vasco de Estadística.

EUSTAT (1993b), Biztanleriaren eta Etxebizitzen Zentsuak. 1991, Euskal Estatistika-Erakundea/Instituto Vasco de Estadística.

EUSTAT (1995), 1993 Kontu Ekonomikoak, Euskal EstatistikaErakundea/Instituto Vasco de Estadística.

EUSTAT (1996), Sektore Publikoaren Aurrekontuen Estatistikak 94,95, Euskal Estatistika-Erakundea/Instituto Vasco de Estadística.

Fernández Macho, F. J. (1991), 'Indicadores sintéticos de aceleraciones y desaceleraciones en la actividad económica', Revista Española de Economía 8(1), 125-156.

García Linaza, A., Martín Reyes, G. y Otero Moreno, J. (1996), El impacto de los aeropuertos sobre el desarrollo económico, Editorial Civitas, Madrid.

Leontieff, W. (1951), The Structure of American Economy, Oxford University Press.

Miernyk, W. (1968), The Elements of Input-Output Analysis, Random House. New York.

Miller, R. y Blair, P. (1985), Input-Output Analysis: Fundations and Extensions, Prentice Hall. New Jersey.

Monfort, A. (1991), 'The importance of airports to the economics of regions of Spain', 1st Working Session. Bruselas.

NCGIA (1990), Core curriculum: Introduction to GIS, Vol. I, National Center for Geographic Information and Analysis, Santa Barbara. Cal. USA.

O'Connor, R. y Henry, E. (1975), Input-Output Analysis and its Aplications, Charles Criffin and Company Ltd., London.

Pulido, A. y Fontela, R. (1993), Análisis Input-Output: modelos, datos y aplicaciones, Pirámide.

Servicio de Estudios del BBV (Varios años), Renta nacional de España y su distribución provincial, Banco Bilbao Vizcaya.

Smith, C. (1993), The Contribution of Airports to Regional Development.
U.S. Department of Tansportation F.A.A. (1986), Measuring the Regional Economic Significance of Airports, Office of Airport Planning and Programming. Washington.

Wilburn Smith Associates (1988), The economic impact of los angeles airport, Final report.

[^0]: ${ }^{1}$ El EUSTAT publica las TIO de la CAPV cada cinco años (para aquellos acabados en 0 ó 5). Para el resto se publican actualizaciones anuales, con la excepción del año en que se construyen las tablas propiamente dichas; es decir, no existen actualizaciones para los años acabados en 1 o en 6 .

[^1]: ${ }^{1}$ Ver bibliografía.

[^2]: ${ }^{1}$ La primera columna de la tabla 3.23 recoge los impactos directos más los inducidos sobre la producción para los 73 sectores productivos. En la segunda columna aparecen los impactos directos más los inducidos sobre la renta para cada sector económico. El elemento correspondiente al sector familias nos recoge el efecto sobre salarios. Por último, la tercera columna presenta los efectos inducidos sobre empleo (sin recoger los efectos iniciales).

[^3]: ${ }^{1}$ Los gráficos de este tipo para cada una de las series analizadas pueden obtenerse directamente de los autores.

[^4]: ${ }^{2}$ Una intervención puntual o de impulso es efectiva únicamente en la fecha en la que ocurre mientras que una intervención tipo escalón tiene un efecto permanente a partir de dicha fecha. En lo que sigue utilizaremos la abreviatura "iMMAA" para denotar un impulso y la abreviatura "eMMAA" para denotar un escalón, ambos en el mes "MM" del año "AA".

