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Abstract

A dynamic factor model is introduced which may be viewed as an alternative to
vector autoregressions in the treatment of cointegration. An obvious way of introducing
dynamics in the standard factor analysis is to allow a realization of the common factors
at a specific time interval to work its way through to the observed variables in several
time periods. A problem arises however, when representing economic time series which
generally are nonstationary. In this paper the dynamic factor model considered can
handle nonstationarity rather trivially via unobserved factors with unit roots. The
stochastic behaviour of these factors is explicitly modeled, and therefore the model is
a member of the multivariate structural time series model class. A situation in which
we might wish to entertain such a model is when considering two or more related
economic variables which, as is often the case, appear to exhibit a common trend, and
hence are cointegrated. The paper investigates the maximum likelihood estimation
in the frequency domain and a scoring algorithm is provided. Also a generalization
is considered in which independent common factors are made up of stochastic trends
with stochastic common slopes and stochastic seasonals.
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1 Introduction.

The analysis of cointegrated systems through vector autoregressions (VAR) has become a

standard procedure in applied macroeconometrics following Johansen (1988, 1991) In many

instances the main interest of the analysis consists in the extraction of dynamic common

factors, such as common trends, and, although the vector moving-average (VMA) represen-

tation —determining the way in which nonstationarity is generated in the system— can be

obtained from the VAR representation, it may be argued that if the main objective is the ex-

traction of permanent components then possibly a better idea would be to formulate directly

a model taking care of such permanent components. The corresponding VAR representation

will in practice have a very high order (probably infinite) and clearly will not be appropriate

for this purpose. As an alternative a dynamic factor model may be used.

The standard factor analysis (FA) was originally developed mainly to analyze intelligence

tests so as to determine whether “intelligence” is made up of the combination of a few factors

measuring attributes like “memory”, “mathematical ability”, “reading comprehension”, etc.

In this sense, the basic idea of FA is, given observations on n variables, to assume a proper

statistical model in which each observed variable is a linear function of k < n unobserved

common components or factors plus a residual error term, i.e.

yt
(n × 1)

= A
(n × k)

ηt
(k × 1)

+ et
(n × 1)

, t = 0 . . . , T. (1)

Most applications of standard FA have been in the search for latent variables explaining

psychological and sociological cross-section data. We note however that since dynamic effects

are absent from the analysis, the technique is clearly inappropriate for analyzing time series

data. An obvious way of introducing dynamics in (1) is to allow a realization of the common

factors at a specific time period to work its way through to the observed variables in several

time periods. In other words, we may assume a distributed-lag factor model,

yt = A(L)ηt + et, t = 0 . . . , T, (2)

where A(L) is a polynomial matrix in the lag operator, i.e. A(L) =
∑∞

r=0ArL
r, and the

factors in ηt and the error terms in εt are generated by stationary random processes. For

example Brillinger (1975, chapter 9) investigates the problem of representing a stationary

series as a filtered version of a stationary signal series of reduced dimension plus an error

series. Similar FA models have also been considered by Anderson (1963), Geweke (1977),

Geweke & Singleton (1981), Engle & Watson (1981), Molenaar (1985) and others. Other

data reduction techniques have also been considered by Priestley & Subba Rao (1973),

Priestley, Subba Rao & Tong (1974), Subba Rao (1975), Box & Tiao (1977), Sims (1981)
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and Velu, Reinsel & Wichern (1986). These techniques, unlike the dynamic FA model,

pertain to the case in which observable input series are assumed to be given, e.g. lagged

dependent variables. In particular, in the approach of Box & Tiao (1977) the original

time series are assumed to follow a multiple stationary autoregressive model; then principal

components of the one-step-ahead forecast error covariance matrix are extracted so as to

obtain a transformed process whose components are ordered from least to most predictable.

As a first step towards identification of the structure (2) we will assume henceforth that

A(L) is a geometric distributed lag, i.e. Ar = AΦr, where Φ is a (k × k) matrix such that,

in order to keep {yt} stationary, its eigenvalues are less than one in absolute value. Thus

yt = A
∞∑
r=0

Φrηt−r + et, t = 0 . . . , T, (3)

which is equivalent to

yt = Aµt + et, t = 0 . . . , T, (4)

µt = Φµt−1 + ηt, (5)

c.f. (1). This suggests a reinterpretation of the dynamic FA model in which µt, rather than

ηt, is the vector of common factors, being generated by a dynamic mechanism in the form

of a transition equation. Thus (4)-(5) is a special case of the “state-space” model used in

engineering to represent certain physical processes. Engle & Watson (1981) use a similar one-

factor model (which they also described as “dynamic multiple indicator” model) to obtain

estimates of the unobserved metropolitan wage rate for Los Angeles based on observations

of sectorial wages. They use a time domain approach based on the Kalman filter (Pagan

1975, Harvey & Todd 1983) which may be computationally very demanding for multivariate

time series. Later in this paper the time domain structure of the model is estimated from

the spectral likelihood function as explained in Fernández-Macho (1990).

2 Unit roots and common trends.

Up to here we have considered the observed series (and hence the factors µt in (4)-(5) to

be stationary. This is certainly not very realistic if they are to represent economic time

series. Yet previous techniques seem to run into trouble when attempting to tackle this

problem. For example, if {yt} is nonstationary in (2), the lag structure must be infinitely

long thus rendering the analysis impossible (Molenaar 1985). In Box & Tiao (1977) the

“most predictable” component will be nearly nonstationary representing the dynamic growth

characteristic of economic series. However they note that the technique will break down in
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the presence of strict nonstationarity. They also mention that differencing is of no help in

this case since when analyzing multiple time series of this kind, it might be that the dynamic

pattern in the data is caused by a small subset of nonstationary components, in which case

differencing all the series could lead to complications in the analysis, particularly in the form

of strict non-invertibility (which relates to the problem of cointegration treated below). It

might also be worth mentioning that in Engle & Watson (1981) the unobserved component

—metropolitan wage rate— appears to be nonstationary.

On the other hand the dynamic FA model (4)-(5) can handle nonstationary series rather

trivially. Thus in the sequel we will consider a nonstationary version of (4)-(5) in which the

transition equation has Φ set to the identity matrix and a deterministic drift is also present.

Further, it will be assumed for simplicity that the disturbance terms follow multivariate NID

processes. (More generally they might be allowed to follow AR processes of low order, as

in Fernández-Macho, Harvey & Stock (1987), but the statistical treatment is essentially the

same). This simple dynamic factor model thus takes the form

yt
(n × 1)

= γ
(n × 1)

+ A
(n × k)

µt
(k × 1)

+ εt
(n × 1)

, t = 0 . . . , T, (6)

µt
(k × 1)

= µt−1

(k × 1)

+ δ
(k × 1)

+ ηt
(k × 1)

,

where γ and δ are vectors of deterministic intercepts and slopes respectively and(
εt
ηt

)
∼ NID

[
0,

(
Σε 0
0 Ση

)]
.

That is, the common factors are specifically modeled as random-walk-cum-drift components

and therefore they will be interpreted as common stochastic —or local— linear trends; c.f.

the Multivariate exponential smoothing (MES) model in Fernández-Macho (1990).

Note that we assume 0 < k < n. In the extreme cases k = 0 or k = n, no common factors

are present: the former collapses trivially to yt = εt and the latter to the MES model with

component µ†t = Aµt.

As it stands, model (6) is not identifiable. For example defining A† = AΣ
1
2
η P ′, µ†t =

PΣ
− 1

2
η µt, δ

†
t = PΣ

− 1
2

η δt, η
†
t = PΣ

− 1
2

η ηt, where P is an orthogonal matrix, we obtain an

alternative dynamic FA model

yt = γ + A†µ†t + εt, t = 0 . . . , T,

µ†t = µ†t−1 + δ† + η†t ,

in which the trend innovation covariance matrix is In for any choice of P , (note that the fac-

tors remain independent). In order to identify a structure we choose within each equivalence

class that member satisfying the following restrictions on A and Ση:
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A is formed by the first k columns of a (n× n) unit-lower-triangular matrix

A = [aij/aij = 0, i < j; aii = 1] (7)

and Ση is a diagonal matrix

Ση = [ση,ij/ση,ij = 0, i �= j; ση,ii = σ2
η,i]. (8)

Also it will be assumed that Σε as well as Ση are of full rank so that the statistical

treatment presented in section 4 does not break down.

Constraining Ση to be diagonal also ensures that the common factors are independent as

is customary in standard FA. An interesting point here is that the factors themselves might

be given an economic interpretation. In such a case it is sometimes useful to consider a

rotation of the estimated factors. An appropriate choice of matrix P above may be used to

redefine the common factors so as to give the desired interpretation.

3 Cointegration.

A situation in which we might wish to set down such a model as (6) is when considering

two or more related economic variables which, as it is often the case, evolve in time in

such a fashion that they do not diverge from each other. In other words, they appear to

exhibit a common trend. An obvious example might be the prices of the same merchandise

at different locations or the prices of close substitutes in the same market. In this case the

common trend could be interpreted as the “latent” market price so that observed divergences

are attributed to specific factors. Other typical examples are interest rates of different terms,

national income and consumption, etc. Although individually all these economic series need

differencing, it has already been mentioned that differencing a multiple time series is not

appropriate if common trends are suspected: in general more unit roots than necessary will

be imposed and only relationships between changes will be investigated while important

relationships between the levels of the variables will be lost. Assuming that there are k < n

common trends, only k unit roots should be imposed.

Let us consider the dynamic factor model (6). Since the factor loading matrix A is of

full column rank k its orthogonal complement in a basis of �n, say matrix B, will have full

column rank n − k and its columns will be orthogonal to those of A, i.e. B′A = 0. Thus

in (6)

B′yt = γ + ξt, t = 0 . . . , T, (9)
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where ξt ∼ NID(0, B′ΣεB). This means that there exists n − k linear combinations of the

observed variables for which the trend components cancel out so that the vector of such linear

combinations follow a stationary vector process even though each of the observed variables

is best described by an integrated ARMA process. Time series which together exhibit this

feature are called cointegrated (CI) series. Granger & Engle (1985) gave the following general

definition:

“If each element of a vector of time series yt must be differenced d times to

achieve stationarity, but linear combinations B′yt need be differenced only d− b
times, the time series yt are said to be CI of order (d, b) with cointegrating matrix

B.”

In our case it follows that the series yt in the dynamic factor model (6) are CI of order (1, 1).

The converse is also true. As can be seen in Stock & Watson (1988), data generated by a

CI process with n−k linearly independent vectors can be represented as linear combinations

of k random-walk “trend” variables plus n− k “transitory” variables.

As an example, it is easy to see that in the typical bivariate case

y1t = y1,t−1 + a1t,

y2t = δy1t + a2t,

in Box & Tiao (1977, sec 4.4) or Hillmer & Tiao (1979) illustrating the problems which can

arise with differencing (e.g. strict noninvertibility) there must be a common trend since the

observed series are CI. The cointegrating vector is b = (−δ, 1)′ and {b′yt} is stationary.

Back to our model we can see from (9) that B′yt will wander around its mean. For that

reason B′ȳt = γ, where {ȳt} represents the mean course of {yt}, can be interpreted as a long

run equilibrium towards which the observed variables are pushed back by economic forces

whenever they drift apart. Also, at a particular time t = τ , ξτ = B′(yτ − ȳτ ) is a measure of

current disequilibrium.

Finally, since yt ∼ CI(1, 1), it follows from theorem 1 in Engle & Granger (1987) that

there exists an error-correction representation of the dynamic FA model (6), i.e. in such a

representation a proportion of the disequilibrium ξτ from one period τ is corrected in the

next period. That model (6) has error-correction representation is an interesting property

because error-correction mechanisms are used very often in econometrics (e.g. Sargan (1981)

and more recently Davidson, Hendry, Srba & Yeo (1978) and Salmon (1982) among others).
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4 Maximum likelihood estimation of the FA model.

Apart of the intercept γ, which does not enter into the likelihood, there are 1
2
[k(3+2n−k)+

n(n+1)] parameters to be estimated in the dynamic factor model (6) as follows: k parameters

in the drift vector δ, nk − 1
2
k(k + 1) in the factor loading matrix A, k in the common trend

innovation covariance matrix Ση, and
1
2
n(n+1) in the transitory term covariance matrix Σε.

Before going any further, it is convenient that we define column vectors containing these

unknown parameters, (i.e. eliminating those elements which are already set). Thus, let α be

a vector obtained from vecA by eliminating those elements above and on the main diagonal.

Similarly, let diagΣη be the vector of diagonal elements of Ση and let vΣε be the vector of

distinct elements of Σε obtained from vecΣε by eliminating all supradiagonal elements: i.e.

α = [aij ∈ A/i > j], diagΣη = [ση,ij ∈ Ση/i = j], vΣε = [σε,ij ∈ Σε/i ≥ j].
Let us further define 0-1 matrices mapping α, diagΣη and vΣε into vecA, vecΣη and vecΣε

respectively, i.e.

Dαα+ vec

[
Ik

0n−k

]
= vecA, HdiagΣη = vecΣη, DvΣε = vecΣε,

so that
∂vecA

∂α′ = Dα,
∂vecΣη

∂(diagΣη)′
= H,

∂vecΣε

∂(vΣε)′
= D.

This matrices help to simplify the analysis since the derivatives with respect to the unknown

parameters can be obtained from the derivatives with respect to the corresponding vec by

straightforward application of the chain rule, i.e. ∂L
∂α

=
(
∂vec A

∂α′

)′
∂L

∂vec A
= D′

α
∂A

∂vec A
, and so

on.

Since yt ∼ CI(1, 1) in model (6) taking first differences we obtain a stationary series

zt = ∆yt − Aδ = Aηt + ∆εt, t = 1 . . . , T. (10)

Let us consider the Fourier transform of {zt}

wj =
1√
2πT

T∑
t=1

zte
iλjt, λj =

2πj

T
, j = 0 . . . , T − 1. (11)

This can be expressed more compactly as

vecW
(nT × 1)

= ( U
(T × T )

⊗ In
(n × n)

) vecZ
(nT × 1)

, (12)

where W = (w0 . . . , wT−1), Z = (z1 . . . , z1), U is the (T × T ) Fourier matrix whose (h, k)th

element is (2πT )−
1
2 exp(ikλh−1), and In denotes the identity matrix of order n. Note also

that UU∗ = (2π)−1IT , i.e. U is proportional to a unitary matrix by a factor of (2π)−
1
2 .
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Since {zt} is a multivariate stationary nondeterministic gaussian process, {wj} is asymp-

totically distributed as a normal independent zero-mean heteroscedastic process, i.e.

wj
a∼ N (0,

1

2π
Gzj), j = 0 . . . , T − 1,

where Gzj is the autocovariance matrix generating function (AMGF) of {zt} evaluated at

λj = 2πj/T . From (10) it is easy to see that

Gz(u) = AΣηA
′ + (1 − u)(1 − u−1)Σε,

Gzj = Gz(e
iλj) = AΣηA

′ + cjΣε, cj = 2 − 2 cosλj. (13)

Since the wj’s are independent the joint density function is simply the product of the indi-

vidual densities whose logarithm, apart of the usual constant, is equal to

-j = −1

2
[log detGzj + trG−1

zj (2πPzj)], j > 0, (14)

where Σε > 0 ensures that Gzj > 0 for j > 0 and Pzj denotes the real part of the periodogram

matrix of {zt} at frequency λj.

It is also clear that, for j=0, Gz0 = AΣηA
′ is of deficient rank k < n. Thus w0 has a

singular (or degenerated) multivariate normal distribution, and no explicit determination

of the density function is possible in �n. However the density exists in a subspace and,

according to Rao & Mitra (1971, p. 204), the logarithmic density of w0 in the hyperplane

K ′w0 = 0 (where K is a n × (n − k) matrix of rank (n − k) such that K ′Gz0 = 0 and

K ′K = In−k) can be written as

-0 = −1

2
logϕ− πw∗

0G
+
z0w0,

where ϕ is the product of nonzero eigenvalues of Gz0 and G+
z0 denotes the Moore-Penrose

generalized inverse of Gz0.

As we know that for any matrix X, XX∗ and X∗X have the same nonzero eigenvalues

writing X = AΣ
1
2
η we find that, since A′A is of full rank, ϕ = det(A′A) detΣη. Besides

G+
z0 = (A+)′Σ−1

η A
+ where A+ = (A′A)−1A′ since A is of full column rank.

Therefore the logarithm of the density function of w0 is

-0 = −1

2
log det(A′A) − 1

2
log detΣη − 1

2
trΣ−1

η [A+(2πPz0)(A
+)′]. (15)

Finally from (12) we see that since U is (2π)−
1
2 times a unitary matrix, the likelihood function

—the density function of vecZ as a function of the sample— is (2π)−nT/2 times the density

function of vecW . Thus the log-likelihood function can be written as

L = −nT
2

log(2π) +
T−1∑
j=0

-j,
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where the -j’s are given by (14) and (15).

The periodogram of {zt}, whose real part {Pzj, j = 0 . . . , T − 1} is needed in (14),

cannot be directly computed from the sample as it depends on the unknown δ. From (10)-

(11) and since
T∑
t=1

eiλjt =

{
T, j = 0
0, otherwise

,

we get

Pzj =

{
T
2π
hh′, j = 0

P∆y,j, otherwise
,

where h = T−1(yT − y0) − Aδ. As δ only appears in the log-likelihood via h in -0, it can be

easily concentrated out. First of all take into account that in (15)

A+(2πPz0)(A
+)′ = T (A+h)(A+h)′, (16)

being A+h = T−1A+(yT − y0) − δ, so that

−1

2
trΣ−1

η [A+(2πPz0)(A
+)′] = −T

2
(A+h)′Σ−1

η (A+h). (17)

Thus we can write
∂L

∂δ
=
∂-0
∂δ

= TΣ−1
η A

+h. (18)

This is zero if and only if A+h = 0; therefore the ML estimator of δ conditional on A is

δ̃(A) = T−1A+(yT − y0). (19)

From (18) we can also get the second derivatives involving δ as follows

∂2L

∂δ∂δ′
= TΣ−1

η

∂(A+h)

∂δ′
= −TΣ−1

η ,

∂2L

∂δ∂α′ = TΣ−1
η

∂(A+h)

∂(vecA)′
∂vecA

∂α′ = [(yT − y0)′ ⊗ Σ−1
η ]
∂vecA+

∂(vecA)′
Dα,

where
∂vecA+

∂(vecA)′
= Cnk[(A

′A)−1 ⊗ (In − AA+)] − [(A+)′ ⊗ A+], (20)

being Cnk the commutation matrix such that for any matrix X, vecX is converted into

vecX ′. Finally

∂2L

∂δ∂(diagΣη)′
= T

∂(Σ−1
η A

+h)

∂(vecΣη)′
∂vecΣη

∂(diagΣη)′
= −T [(A+h)′Σ−1

η ⊗ Σ−1
η ]H,

but note however that E( ∂2L

∂δ∂(diag Ση)′
) = 0 because E(A+h) = 0. It is also obvious that

∂2L

∂δ∂(vΣε)′
= 0.
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Substituting δ by δ̃ in (16) we see that (17) (i.e. the last term in the expression (15) for -0)

vanishes so that the concentrated log-likelihood can be written as

Lc = −nT
2

log(2π) − 1

2
log det(A′A) − 1

2
log detΣη +

T−1∑
j=1

-j, (21)

where the -j’s are given by (14) with Pzj ≡ P∆y,j for j = 1 . . . , T − 1.

Let ϑ be the vector of parameters to be estimated via maximisation of (21): i.e. ϑ =

{α′, (diagΣη)
′, (vΣε)

′}′. As the derivative vector dLc(ϑ) and the (concentrated) information

matrix Φ(ϑ) = −E ∂2Lc

∂ϑ∂ϑ′ are relatively easy to construct, a scoring algorithm is appropriate

for ML estimation. This procedure involves finding a direction vector, p(ϑ) = Φ(ϑ)−1dLc(ϑ),

to obtain new estimates from the recursion ϑκ+1 = ϑκ + ρκp(ϑκ) (with ρκ as a step length)

and iterate until convergence. Analytic expressions for the derivatives are as follows.

From (21), since ∂ log det(A′A)
∂vec A

= 2vec [(A+)′],

∂Lc

∂vecA
= −vec [(A+)′] +

T−1∑
j=1

(
∂-j
∂vecA

). (22)

Also, since for any nonsingular square matrix X it is well known that d log detX =

tr [X−1(dX)] = (vecX−1)(dvecX), we have

∂Lc

∂vecΣη

= −1

2
vecΣ−1

η +
T−1∑
j=1

(
∂-j

∂vecΣη

), (23)

and finally
∂Lc

∂vecΣε

=
T−1∑
j=1

(
∂-j

∂vecΣε

). (24)

Note that for positive definite Gzj, i.e. for j > 0 here, it can be found that

∂-j
∂ψ

=
1

2
(
∂vecGzj

∂ψ′ )′mj, ψ ∈ {vecA, vecΣη, vecΣε},

where mj = vec [G−1
zj (2πP∆y,j)G

−1
zj −G−1

zj ].

Differentiating (22)-(23)-(24) further and denoting Φj(ψ1, ψ
′
2) = −E( ∂2�j

∂ψ1,∂ψ′
2
), ψi ∈ {vecA, vecΣη,

vecΣε}, i = 1, 2, we get that the diagonal blocks in the information matrix are

Φ(vecA) =
∂vec [(A+)′]
∂(vecA)′

+
T−1∑
j=1

Φj[vecA, (vecA)′],

where ∂vec [(A+)′]
∂(vec A)′ = [(A′A)−1 ⊗ (In − AA+)] − Ckn[(A

+)′ ⊗ A+],

Φ(vecΣη) = −1

2
(Σ−1

η ⊗ Σ−1
η ) +

T−1∑
j=1

Φj[vecΣη, (vecΣη)
′],
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Φ(vecΣε) =
T−1∑
j=1

Φj[vecΣε, (vecΣε)
′],

and the off-diagonal blocks

Φ(ψ1, ψ
′
2) =

T−1∑
j=1

Φj(ψ1, ψ
′
2), ψ1 �= ψ2.

As shown elsewhere (Fernández-Macho 1990), we have that for j > 0

Φj(ψ1, ψ
′
2) =

1

2
(
∂vecGzj

∂ψ′
1

)′Mj(
∂vecGzj

∂ψ′
2

),

withMj = (G−1
zj ⊗G−1

zj ), and it only remains to find expressions for the derivatives of vecGzj.

From (13) they are as follows

∂vecGzj

∂(vecA)′
=
∂vec (AΣηA

′)
∂(vecA)′

= 2Nn(AΣη ⊗ In),

where Nn = 1
2
(In2 + Cnn) is the “symmetrication” matrix such that for any square matrix

X it returns the vec of 1
2
(X +X ′), as defined in Magnus & Neudecker (1988),

∂vecGzj

∂(vecΣη)′
=
∂vec (AΣηA

′)
∂(vecΣη)′

= (A⊗ A),

and
∂vecGzj

∂(vecΣε)′
= cjIn2 .

Summarizing

dLc(ϑ) =


 D

′
α{−vec [(A+)′] + (ΣηA

′ ⊗ In) ∑T−1
j=1 mj}

H ′[−1
2
vecΣ−1

η + 1
2
(A′ ⊗ A′)

∑T−1
j=1 mj]

D′(1
2

∑T−1
j=1 cjmj)


 ,

Φ(ϑ) =


 Φ11(ϑ) Φ12(ϑ)

′ Φ13(ϑ)
′

Φ12(ϑ) Φ22(ϑ) Φ23(ϑ)
′

Φ13(ϑ) Φ23(ϑ) Φ33(ϑ)


 ,

with

Φ11(ϑ) = D′
α{[(A′A)−1 ⊗ (In − AA+)]− Cnk[(A+)′ ⊗ A+] + 2(ΣηA

′ ⊗ In)(
T−1∑
j=1

Mj)Nn(AΣη ⊗ In)}Dα

Φ12(ϑ) = H ′[(A′ ⊗ A′)(
T−1∑
j=1

Mj)(AΣη ⊗ In)]Dα

Φ22(ϑ) = H ′[−1
2
(Σ−1

η ⊗ Σ−1
η ) +

1
2
(A′ ⊗ A′)(

T−1∑
j=1

Mj)(A ⊗ A)]H
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Φ13(ϑ) = D′[(
T−1∑
j=1

cjMj)(AΣη ⊗ In)]Dα

Φ23(ϑ) = D′[(
T−1∑
j=1

cjMj)(A ⊗ A)]H

Φ33(ϑ) = D′[(
T−1∑
j=1

c2
jMj)]D

From these expressions a scoring algorithm can be constructed for ML estimation of the

parameters in ϑ. Once these parameters have been estimated, δ is estimated from (19) and

γ from

γ̂′ = [0 . . . , 0︸ ︷︷ ︸
k

,
1

T

∑
(y2t − Â2Â

−1
1 y1t)

′]

where (yt, A) has been partitioned so that (y1t, A1) contains the first k rows and (y2t, A2) the

remaining n− k rows.

This scoring algorithm should be initialized with a consistent estimator which can be con-

structed from the moment estimator as explained in the appendix. Once starting consistent

estimates of Σε, A and Ση have been calculated efficient ML estimates can be obtained by

iterating the scoring algorithm until convergence. Unfortunately the limiting properties of

the ML estimator are not easily established under the present circumstances. We can apply

some suitable LLN (e.g. Dunsmuir & Hannan (1976)) to assess almost sure convergence to

the true values but, as the spectral density matrix happens to be singular at λ = 0, the CLT

in Dunsmuir (1979) breaks down. This is of course the usual unit root problem arising here

because of the presence of common trends. There are k common trends in (6), therefore

there are only k < n unit roots in the AR part of the corresponding ARIMA representation

but differencing, as in (10), imposes n unit roots, that is, n−k more than needed. The effect

is similar to that of overdifferencing a univariate series in that n−k unit roots appear in the

MA part and this is reflected in the spectra as F (0) being of deficient rank k < n.

Let us review this more formally. From (10) we see that the difference vector series follow

an MA(1) process, i.e. zt = (In − Θ)νt, where νt ∼ NID(0,Σν). Thus the spectrum matrix

can be expressed in two alternative forms:

2πFz(λ) = AΣηA
′ + c(λ)Σε = (In − Θeiλ)Σν(In − Θ′e−iλ),

where c(λ) = 2− 2 cosλ. For λ > 0, Σε > 0 implies Fz(λ) > 0 which in turn implies Σν > 0.

But for λ = 0

2πFz(0) = AΣηA
′ = (In − Θ)Σν(In − Θ′)

12



is of deficient rank k which means that Θ must have n − k unit roots. This situation has

been discussed in Sargan & Bhargava (1983) for the univariate MA(1) process where the ML

estimator is shown to be not asymptotically normally distributed. By inference, we are then

to expect a similar result in our present multivariate case.

If the limiting distribution of the ML estimator is not normal the classical procedures,

e.g. likelihood ratio test, Wald test and LM test, all run into difficulties and cannot be

applied for testing the presence and number of common trends. The problem has received

some attention in the literature. In the univariate case it is associated with testing for a unit

root in autoregressive processes. Among the earliest contributions see in particular Fuller

(1976, sec 8.5), Dickey & Fuller (1979), Dickey & Fuller (1981) and Fuller (1985). In the

multivariate case Fountis & Dickey (1983), Granger & Engle (1985) and Stock & Watson

(1988) have proposed and compared a variety of tests for common trends.

5 An extension of the model.

The dynamic factor model (6) can be easily extended in a number of ways in order to handle

more general kinds of data, thus providing an attractive alternative to the VAR context

advocated by Johansen (1988), Johansen (1991) where such extensions are not so obvious.

In this section a generalization is considered in which independent common factors are made

up of stochastic trends with stochastic common slopes and stochastic seasonals, i.e.

yt
(n × 1)

= γ
(n × 1)

+ A
(n × k)

ft
(k × 1)

+ εt
(n × 1)

, t = 1 − s . . . , 0 . . . , T, (25)

ft
(k × 1)

= µt
(k × 1)

+ ξt
(k × 1)

,

∆µt
(k × 1)

= Aδ

(k × kδ)

δt−1

(kδ × 1)

+ ηt
(k × 1)

,

∆δt
(kδ × 1)

= ζt
(kδ × 1)

,

S(L)ξt
(k × 1)

= ωt
(k × 1)

,



εt
ηt
ζt
ωt


 ∼ NID


0,




Σε 0
Ση

Σζ

0 Σω





 ,

where 0 ≤ kδ ≤ k ≤ n (strict inequalities in nontrivial cases) and S(L) represents the

seasonal sum operator.

Since the factors ft are assumed to be independent we must have that the covariance

matrices Σν , ν ∈ {η, ζ, ω} are diagonal. Also, for identification, the loading matrices A and

13



Aδ are restricted to be respectively the first k and the first kδ columns of unit-lower-triangular

matrices.

Note that in general the trend components µt are themselves cointegrated in the sense

that µt has to be differenced twice to achieve stationarity but there exists Bδ such that

B′
δAδ = 0 so that B′

δµt is stationary after differencing only once. In the terminology of Engle

& Granger (1987) we write µt ∼ CI(2, 1).

As for the observed variables we will see below that ∆∆syt is stationary but it is clear

that there exists B such that B′A = 0 so that B′yt is stationary. We may write yt ∼
CI(1, 1) × (1, 1)s —in an obvious notation extending that of Engle & Granger (1987) to

allow for seasonality— which is a sort of complete cointegration as mentioned in Lee (1992).

The dynamic FA model (25) can be analyzed much in the same way as model (6) above.

Since ∆s = S(L)∆ we have that

∆∆sµt = Aδ∆sδt−1 + ∆sηt = AδS(L)ζt−1 + ∆sηt,

∆∆sξt = ∆2S(L)ξt = ∆2ωt.

Therefore

zt = ∆∆syt

= A[∆sηt + AδS(L)ζt−1 + ∆2ωt] + ∆∆sεt, t = 1, . . . , T,

is stationary with AMGF given by

Gz(u) = (1 − us)(1 − u−s)AΣηA
′

+ S(u)S(u−1)AAδΣζA
′
δA

′

+ [(1 − u)(1 − u−1)]2AΣωA
′

+ (1 − u)(1 − u−1)(1 − us)(1 − u−s)Σε.

Thus setting u = exp(iλj), λj = 2πj/T , we have, for j > 0,

Gzj = Gz(e
iλj) = csjAΣηA

′ + (csj/c1j)AAδΣζA
′
δA

′ + c21jAΣωA
′ + (c1jcsj)Σε, (26)

where crj = 2 − 2 cos(rλj), r ∈ {1, s}, and for λ = 0

Gz0 = Gz(1) = s2AAδΣζA
′
δA

′.

As before the Fourier transform of {zt}, say {wj}, is distributed as NID(0, (2π)−1Gzj), j =

0 . . . , T − 1, asymptotically and in particular, w0 has a singular distribution. Following

the same arguments as in the previous section the logarithm of the density of w0 in the

14



appropriate hyperplane of dimension (n − kδ) is -0 = −1
2
logϕ − πw∗

0G
+
z0w0 where ϕ is the

product of nonzero eigenvalues of Gz0, i.e. ϕ = s(2kδ) det(A′
δA

′AAδ) detΣζ , and G
+
z0 is the

Moore-Penrose generalized inverse, i.e. G+
z0 = s−2(AAδ)

+′Σζ(AAδ)
+. Therefore

-0 = −kδ log(s) − 1

2
log det(A′

δA
′AAδ) − log detΣζ − (πs−2)tr [Σ−1

ζ (AAδ)
+Pz0(AAδ)

+′].

For j > 0, Σε > 0 ensures that Gzj > 0 so that the logarithm of the density function of wj is

-j = −1

2
{log detGzj + tr [G−1

zj (2πPzj)]}, j > 0.

Let ϑ be the unknown parameter vector in the model, i.e. ϑ = {α′, α′
δ, (diagΣη)

′, (diagΣζ)
′,

(diagΣω)
′, (vΣε)

′}′, where α and the operators v (·), diag (·) are as defined in the previous

section and αδ is as α but with reference to Aδ. Since the wj’s are independent the log-

likelihood is

L(ϑ) = −nT
2

log(2π) +
T−1∑
j=0

-j(ϑ).

This is to be maximized with respect to the elements of ϑ, perhaps using a quasi-Newton

method like the Gill-Murray-Pitfield algorithm which does not need the explicit evaluation

of derivatives since the construction of the Hessian, and hence of the scoring algorithm, is

rather cumbersome in the present case. To give an example, the scoring algorithm will be

shown only for the special case in which kδ = k and AδΣζA
′
δ = Ik so that, in addition

to (7)-(8), the common factors remain independent.

Firstly, after some algebra we get

∂-0
∂vecA

= −vec (A+)′ − s−2vec [(In − AA+)(2πPz0)(A
+)′(A′A)−1 − A+(2πPz0)(A

+)′A+],

Φ0(vecA) = Cnk[Ik ⊗ (A+)′A+] + (2Ink − Ckn)[(A
+)′ ⊗ A+] − Cnk[(A

′A)−1 ⊗ (In − AA+)].

Secondly, for j > 0, we know that

∂-j
∂ϑ

=
1

2
(
∂vecGzj

∂ϑ′
)′mj,

Φj(ϑ) =
1

2
(
∂vecGzj

∂ϑ′
)′Mj(

∂vecGzj

∂ϑ′
),

where mj = vec [G−1
zj (2πPzj)G

−1
zj − G−1

zj ], Mj = (G−1
zj ⊗ G−1

zj ) and from (26) dvecGzj =

csjdvec (AΣηA
′) + (csj/c1j)dvec (AA′) + c21jdvec (AΣωA

′) + (c1jcsj)dvecΣε.

Since, in general, for any matrices B, Σν

dvec (BΣνB
′) = vec [(dB)ΣνB

′] + vec [BΣν(dB)′] + vec [B(dΣν)B
′]

= 2Nnvec [(dB)ΣνB
′] + vec [B(dΣν)B

′]

= 2Nn(BΣν ⊗ In)(dvecB) + (B ⊗B)(dvecΣν),
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we have that
∂vecGzj

∂(vecA)′
= 2Nn(AQj ⊗ In),

where Qj = csjΣη + c21jΣω + (csj/c1j)In.

Also

∂vecGzj

∂(vecΣη)′
= csj(A⊗ A),

∂vecGzj

∂(vecΣη)′
= c21j(A⊗ A),

∂vecGzj

∂(vecΣη)′
= (csj/c1j)In2 ,

from where we can easily construct the expressions for the first derivative vector dL(ϑ)

and the Hessian Φ(ϑ) of the log-likelihood function with respect to the parameters in ϑ.

6 Factor extraction

Once the model parameters have been estimated, an interesting question is how to obtain

estimates of the k unobserved, or hidden, factors. It goes without saying that since the

dynamic FA model can be written in state-space form, the optimal factor estimators should

be obtained applying the Kalman filter (forwards) and a smoother (backwards) Fernández-

Macho (1990).

On the other hand multiplying the measurement equation of the FA model in (6) or

in (25) by the Moore-Penrose generalized inverse of A we obtain

µt = A+(yt − γ − εt), t = 0 . . . , T,

and, therefore, a moment estimator can be easily obtained as linear combinations of the n

observed series as follows:

µ̂t = Â+(yt − γ̂)
which in contrast with the filtered optimal estimate, is contaminated with the errors {εt}
and hence will not be optimal in general; c.f. Gonzalo & Granger (1995) whose estimator is

essentially the same as µ̂t and hence will not be optimal.

For example in an n-variate one-factor model (i.e. k = 1) with A = (1, a2 . . . , an)
′ this

“quick” estimate of the common factor will be given by

µ̂t = [y1t + â2(y2t − γ̂2) + · · · + ân(ynt − γ̂n)]/(1 + â2
2 + · · · + â2

n) (27)
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7 Examples

7.1 Simulated data

Figure 1 (thin lines) plots 180 observations of two artificial series generated by

y1t = µt + ε1t,

y2t = 0.8µt + ε2t,

µt = µt−1 + 0.02 + ηt, µ0 = 100,

Var


 ε1t
ε2t
ηt


 =


 0.008 −0.004 0
−0.004 0.02 0

0 0 0.01


 ,

together with their underlying common factor (thick line).

Maximizing the log-likelihood (21) for a bivariate dynamic factor model, i.e. assuming a

common drifted random-walk factor, we obtained the following results:

factor loads: Â = (1 0.8401)′

intercept vector: γ̂ = (0 − 4.1038)′

factor innovation variance: Σ̂η = 0.0100

factor drift: δ̂ = 0.0245

error covariance matrix: Σ̂ε =

(
0.0110
−0.0059 0.0159

)

which are very close to the true ones used to generate the data.

Thus in the present one-factor bivariate case the common factor “quick” estimate given

by (27) is

µ̂t = 2.0212 + 0.5862y1t + 0.4925y2t. (28)

Figure 2 compares this quick estimate of the common factor with both observed series

(left axis: {y1, µ̂}, right axis: {y2, âµ̂}).
Notwithstanding the possibility of factor rotation already mentioned at the end of sec-

tion 2, it must be said that the observed systematic deviation of the “quick” estimate in

figure 2 from the underlying true factor in figure 1 is just consequence of estimation error

and it can be expressed as

dµ̂t = dÂ+(yt − γ̂) (29)
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Figure 1: Simulated data: drifted random walk plus errors

98

99

100

101

102

103

104

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 169 175

79

80

81

82

83

84

85

Common Trend

Y1

Y2

Figure 2: Simulated data: quick estimate of common factor
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Figure 3: Common factor: estimation errors
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where dA+ is obtained from (20). In the present bivariate example we have then that the

quick estimate of the common factor will have a systematic deviation of

dµ̂t = [(1 − â2)(y2t − γ̂2) − 2ây1t]da/(1 + â2)2

where da is the estimation error of the factor load a. The following table gives expressions

for some chosen values of â.

â = 0 dµ̂t = day2t

â = ±1 dµ̂t = ∓da
2
y1t

â = ±2 dµ̂t = (− 3
25
y2t ∓ 4

25
y1t)da

â = ±0.5 dµ̂t = (75
64
y2t ∓ 25

16
y1t)da

In particular, since â = 0.8401 and γ̂ = −4.1038 in our case, the systematic deviation of

our factor “quick” estimate is given by

dµ̂t = (0.4148 + 0.1011y2t − 0.5774y1t)da.

This, for an estimation error of da = 0.0401, gives

dµ̂t = 0.0166 + 0.0040y2t − 0.0231y1t.

Figure 3 compares these estimation errors for the quick estimate (28) (solid line) with

those obtained for the optimal —Kalman filter plus smoother— estimate (dotted line). In

both cases they are relatively small: their respective sum of squares being 1.0555 for the

quick estimate and 0.7494 for the smoothed one.

7.2 European stock exchange data

Figure 4 (thin lines) presents 431 observations of three European stock exchange indices from

January 92 to September 93 (excluding nontrading days). Looking at the graph it not only

appears that all series are nonstationary, but also that they tend to move together in the

long run. The usual unit root tests applied to the logs of the three series come in support of

this notion as shown in the following table (figures in bold type mean rejection of unit root

at the 5% significance level):

DF test: Engle-Granger test:
1st and 2nd unit roots 1 residual unit root

London -1.124 -22.26 -2.382
Paris -1.633 -23.18 -4.279

Frankfurt -0.648 -17.87 -3.919
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Figure 4: Three European stock exchanges: observed indices and common factor
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In summary, we may conclude that all three series are I(1), but there appears to be

two I(0) linear combinations between them, thus implying the existence of one common

factor. Therefore a dynamic factor model (6) with n = 3 and k = 1 was adjusted to the

stock exchange data. Maximization of the spectral log-likelihood (21) produced the following

results:

y1t ≡ log(Londont) = µt + εL,t,

y2t ≡ log(Parist) = 4.9468µt − 31.5239 + εP,t, (30)

y3t ≡ log(Frankfurtt) = 6.0779µt − 40.5879 + εF,t,

∆µt = 0.8236 × 10−4 + ηt,

Var



εL,t
εP,t

εF,t
ηt


 =




17.7022 6.0080 1.0017 0
6.0080 5.9712 −0.4607 0
1.0017 −0.4607 0.2197 0

0 0 0 0.0208


 × 10−4.

The thick line in figure 4 shows the common factor extracted by Kalman filtering and

smoothing. On the other hand, for the stock exchange data, the common factor “quick”
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Figure 5: European stock exchanges: common factor estimates
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estimate given by (27) is

µ̂t = 6.4512 + 0.0160y1t + 0.0793y2t + 0.0974y3t.

Figure 5 compares the observed series with both the optimal smoothed estimate and this

quick estimate of the common factor (both scaled in accordance with (30)). Notwithstanding

the possibility of factor rotation, we have that the systematic deviation (29) of the “quick”

estimate in figure 5 is

dµ̂t =
(1 − â2

2 + â2
3)(y2t − γ̂2) − 2â2(y1t + â3)(y3t − γ̂3)da2

(1 + â2
2 + â2

3)
2

+
(1 − â2

3 + â2
2)(y3t − γ̂3) − 2â3(y1t + â2(y2t − γ̂2))da3

(1 + â2
2 + â2

3)
2

where da2, da3 are the estimation errors of the factor loads a2, a3 respectively. In particular,

since â2 = 4.9468, â3 = 6.0779 and γ̂2 = −31.5239, γ̂3 = −40.5879 in our case, the systematic

deviation of our “quick” estimate of the common factor is given by

dµ̂t = (−0.5176 − 0.0025y1t + 0.0034y2t − 0.0154y3t)da2

+ (−0.6062 − 0.0031y1t − 0.0154y2t − 0.0029y3t)da3.

Therefore, since the estimation errors will probably be small due to the length of the

sample, we expect the quick estimate not to be far from the optimal one in this case.
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Appendix: Initial estimates.

The autocovariance matrices of the differenced series (10) are

Γz(0) = AΣηA
′ + 2Σε, Γz(±1) = −Σε, Γz(±r) = 0, |r| > 1.

Thus by the method of moments we obtain

Σ̂ε = −1

2
[Γ̂z(1) + Γ̂′

z(1)], Σ̂†
η = Γ̂z(0) + [Γ̂z(1) + Γ̂′

z(1)],

where Σ̂†
η will just approximate ÂΣ̂ηÂ

′ because in general it will not be of reduced rank

k < n. The problem is then how to obtain Â, Σ̂η satisfying the identification conditions (7)-

(8) so that ÂΣ̂ηÂ
′ is of reduced rank k < n. Since Stock (1987) shows that the least squares

estimator of the CI matrix, i.e. B in (9), is consistent we can construct an idempotent

matrixM = In− B̂B̂+ which has the propertyMÂ = Â. Then by constructing /Σ =MΣ̂†
ηM ,

a symmetric matrix of appropriate reduced rank k < n is obtained such that

/Σ = ÂΣ̂ηÂ
′. (31)
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As, for identifiability, A and Ση are restricted so that the former be a truncated unit-

lower-triangular matrix and the latter be a diagonal matrix, (31) can be interpreted as a

rank-deficient Cholesky decomposition.

Strictly speaking a Cholesky decomposition only exists for strict positive definite matrices

but, notwithstanding this, an approximate decomposition can be obtained in the following

way. Let CΛC ′ be the spectral decomposition of matrix /Σ, i.e. /Σ = CΛC ′ where Λ denotes

the diagonal matrix of eigenvalues in descending order and C the matrix of corresponding

eigenvectors. Since rank /Σ = k < n the last (n − k) eigenvalues must be zero. Let us

substitute the zero eigenvalues in Λ by a small but positive number h and let us call Λh the

resulting diagonal matrix so that

/Σh = CΛhC
′ (32)

is a positive definite matrix for which a standard Cholesky decomposition exists. Let

/Σh = LhDhL
′
h

=
(k)

(n− k)


 L1 0

L2

(k)

L3

(n − k)





 D1 0

0
(k)

D2

(n − k)





 L′

1 L′
2

0
(k)

L′
3

(n − k)


 (33)

be such decomposition (note that the eigenvalues in Dh are in descending order). It is easy

to see from (32) that the smaller h > 0 is the closer /Σh gets to /Σ, it i.e.

lim
h→0

/Σh = /Σ. (34)

Similarly in (33) it must be that limh→0D2 = 0, implying that

lim
h→0

/Σh = lim
h→0

[
L1

L2

]
D1

[
L′

1 L′
2

]
. (35)

Combining (34) and (35) we have

/Σ = lim
h→0

[
L1

L2

]
D1

[
L′

1 L′
2

]
.

This suggests, by comparison with (31), that Â and Σ̂η such that /Σ = ÂΣ̂ηÂ
′ can be ap-

proximated by the (n× k) matrix of k first columns of Lh and the (k × k) diagonal matrix

of k first columns and rows of Dh. The approximation depends on the choice of h > 0 and

therefore is as accurate as desired (or rather as permitted by the machine accuracy).
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