

Signal Extraction in Long Memory Stochastic Volatility

Zaragoza, Abril 2013

 III_t Workshop in Time Series Econometrics

eman ta	zabal zazu
UPV	EHL

Introduction.	•
Semiparametric estimation of volatility	•
Finite sample behaviour	•
Application: Dow Jones	•
Conclusions	•
	•
	•
	•
	•

 \Box Motivation.

□ LMSV models.

■ Signal extraction for volatility estimation in LMSV.

□ Kalman filter.

□ Time domain methods (Harvey, 1998).

□ Frequency domain methods.

Finite sample behaviour.

Application to Dow Jones Industrial index.

eman ta	zabal zazu
UPV	EHL

Introduction.
Cominoromotrio
Semiparametric
estimation of volatility
Finite sample behaviour
Application: Dow Jones
Conclusions

□ Motivation.

□ LMSV models.

Signal extraction for volatility estimation in LMSV.

 \Box Kalman filter.

 \Box Time domain methods (Harvey, 1998).

□ Frequency domain methods.

- Finite sample behaviour.
- Application to Dow Jones Industrial index.

eman ta	zabal zazu
UPV	EHL

Introduction.
Semiparametric
estimation of volatility
Finite sample behaviour
Application: Dow Jones
· ·
Conclusions

 \Box Motivation.

 \Box LMSV models.

Signal extraction for volatility estimation in LMSV.

 \Box Kalman filter.

□ Time domain methods (Harvey, 1998).

□ Frequency domain methods.

- Finite sample behaviour.
- Application to Dow Jones Industrial index.

eman ta	zabal zazu
UPV	EHL

Introduction.	•
	•
Semiparametric	•
estimation of volatility	•
	•
Finite sample behaviour	•
	•
Application: Dow Jones	•
	•
Conclusions	•
	•
	-

 \Box Motivation.

□ LMSV models.

Signal extraction for volatility estimation in LMSV.

 \Box Kalman filter.

 \Box Time domain methods (Harvey, 1998).

□ Frequency domain methods.

- Finite sample behaviour.
- Application to Dow Jones Industrial index.

Motivation

Introduction.	
Motivation	
LMSV	Why Long Memory in Stochastic Volatility?
Semiparametric estimation of volatility	
Finite sample behaviour	
Application: Dow Jones	
Conclusions	

Introduction.	•
Motivation	•
LMSV	•
Semiparametric	•
estimation of volatility	•
Finite sample behaviour	•
Application: Dow Jones	•
Conclusions	•
	•

- Why Long Memory in Stochastic Volatility?
 - Persistent autocorrelation in proxys of the volatility of financial time series (squares or other powers of absolute values) ⇒ Long memory in volatility is a stylized fact.

Introduction.	•
Motivation	•
LMSV	•
Semiparametric	•
estimation of volatility	•
Finite sample behaviour	•
Application: Dow Jones	•
Conclusions	•
	•

- Why Long Memory in Stochastic Volatility?
 - Persistent autocorrelation in proxys of the volatility of financial time series (squares or other powers of absolute values) ⇒ Long memory in volatility is a stylized fact.
 - SV models more flexible than ARCH based models (for example, contrary to ARCH extensions, covariance stationarity and long memory in squares is possible).

Introduction.	
Motivation	
LMSV	• Why APCH based models more pepular among empirical researchers?
Semiparametric estimation of volatility	 Why ARCH based models more popular among empirical researchers?
Finite sample behaviour	
Application: Dow Jones	
Conclusions	

Introduction.	•
Motivation	•
LMSV	
Semiparametric	
estimation of volatility	•
Finite sample behaviour	•
Application: Dow Jones	•
Conclusions	•
	•

- Why ARCH based models more popular among empirical researchers?
 - **Estimation**: MLE much easier in ARCH \Rightarrow Recent advances in LMSV using Whittle QMLE (Breidt et al, 1998, Zaffaroni, 2009, JoE).

Introduction.
Motivation
LMSV
Semiparametric estimation of volatility
Finite sample behaviour
Application: Dow Jones
Conclusions

- Why ARCH based models more popular among empirical researchers?
 - **Estimation**: MLE much easier in ARCH \Rightarrow Recent advances in LMSV using Whittle QMLE (Breidt et al, 1998, Zaffaroni, 2009, JoE).
 - Volatility estimation: Conditional variances (volatility) are very easily obtained in ARCH based models because they are deterministic functions of the past.

Introduction. Motivation LMSV Semiparametric estimation of volatility Finite sample behaviour Application: Dow Jones Conclusions

- Why ARCH based models more popular among empirical researchers?
 - **Estimation**: MLE much easier in ARCH \Rightarrow Recent advances in LMSV using Whittle QMLE (Breidt et al, 1998, Zaffaroni, 2009, JoE).
 - Volatility estimation: Conditional variances (volatility) are very easily obtained in ARCH based models because they are deterministic functions of the past.

Goal of this paper: propose a simple to implement, general and robust technique of volatility extraction in LMSV

Motivation LMSV Semiparametric

estimation of volatility

Finite sample behaviour

Application: Dow Jones

Conclusions

The series (returns) is defined as

 $z_t = \sigma \sigma_t \epsilon_t$

- $\sigma > 0$ a scale factor,
- $\ \ \, \bullet_t \sim iid(0,1),$
- $\sigma_t = \exp(x_t/2)$ for x_t a long memory process with a spectral density (pseudo spectral density in the nonstationary case) function

$$f_x(\lambda) = \lambda^{-2d} g_x(\lambda) , \quad 0 < \lambda \le \pi$$

 $\Box 0 < d < 1$ (stationary or nonstationary but mean reverting x_t),

 $\Box g_x(\lambda)$ positive, finite, symmetric around the origin and twice continuously differentiable.

Long Memory in Stochastic Volatility

Introduction.

Motivation

LMSV

Semiparametric estimation of volatility

Finite sample behaviour

Application: Dow Jones

Conclusions

Denoting $y_t = \log z_t^2$

$$y_t = \mu + x_t + u_t$$

where

$$\mu = \log \sigma^2 + E \log \epsilon_t^2$$

■ $u_t = \log \epsilon_t^2 - E \log \epsilon_t^2$ is a mean zero white noise process with finite variance σ_u^2 .

Long Memory in Stochastic Volatility

Introduction.

Motivation

LMSV

Semiparametric estimation of volatility

Finite sample behaviour

Application: Dow Jones

Conclusions

Denoting $y_t = \log z_t^2$

$$y_t = \mu + x_t + u_t$$

where

$$\mu = \log \sigma^2 + E \log \epsilon_t^2$$

■ $u_t = \log \epsilon_t^2 - E \log \epsilon_t^2$ is a mean zero white noise process with finite variance σ_u^2 .

The estimation of the volatility component x_t is then just a particular case of signal extraction in a long memory signal plus white noise process.

Motivation LMSV Semiparametric

estimation of volatility

Finite sample behaviour

Application: Dow Jones

Conclusions

A.1: If $0 < d_0 < 1/2$ then $x_t = v_t$ and for $1/2 \le d_0 < 1$ then $x_t = x_0 + \sum_{s=1}^t v_s$ for x_0 a random variable not depending on t and $v_t = \sum_{j=0}^{\infty} b_j \varepsilon_{t-j}, \sum_{j=0}^{\infty} b_j^2 < \infty$ where $E(\varepsilon_t | F_{t-1}) = 0$, $E(\varepsilon_t^2 | F_{t-1}) = 1, E(\varepsilon_t^3) < \infty, E(\varepsilon_t^4) < \infty$.

A.2: The spectral density of v_t is

$$f_v(\lambda) = \lambda^{-2d_v} g_v(\lambda) , \quad 0 < \lambda \le \pi ,$$

 $0 < d_v = d_0 < 1/2$ (if x_t stationary) and $-1/2 \le d_v = d_0 - 1 < 0$ (nonstationary x_t).

A.3: u_t is zero i.i.d. with finite fourth moment.

A.4: u_t and ε_s are uncorrelated at all leads and lags (correlation between ε and ϵ allowed).

A.5: $cum(\varepsilon_t, \varepsilon_s, u_l, u_m) = k < \infty$ if t = s = l = m and 0 otherwise.

Kalman Filter

Introduction. Semiparametric estimation of volatility	A parametric specification of x_t is needed.
Kalman Filter Time domain Wiener-Kolmogorov Frequency domain Wiener-Kolmogorov	Huge dimension of the state space representation in long memory series (Chan and Palma, 1998).
Finite sample behaviour Application: Dow Jones	
Conclusions	

Kalman Filter

Introduction.	•
Semiparametric estimation of volatility	•••••
Kalman Filter	•
Time domain Wiener-Kolmogorov	•
Frequency domain Wiener-Kolmogorov	• • • • •
Finite sample behaviour	•••••
Application: Dow Jones	•

Conclusions

- A parametric specification of x_t is needed.
- Huge dimension of the state space representation in long memory series (Chan and Palma, 1998).
- Alternatively: Use a truncated AR (better than MA because AR coefficients converge faster to 0) and use smoothing for volatility estimation.

Kalman Filter

Introduction.
Semiparametric estimation of volatility
Kalman Filter
Time domain Wiener-Kolmogorov
Frequency domain Wiener-Kolmogorov
Finite sample behaviour
Application: Dow Jones

Conclusions

- A parametric specification of x_t is needed.
- Huge dimension of the state space representation in long memory series (Chan and Palma, 1998).
- Alternatively: Use a truncated AR (better than MA because AR coefficients converge faster to 0) and use smoothing for volatility estimation.

Problems:

- □ The number of parameters to be estimated increases with the truncation.
- □ Large dimension of the state space model (a large truncation is needed), large number of parameters to be estimated and large sample sizes ⇒ KF quite computationally demanding and subject to numerical inaccuracies.

Semiparametric estimation of volatility

Kalman Filter

Time domain Wiener-Kolmogorov

Frequency domain Wiener-Kolmogorov

Finite sample behaviour

Application: Dow Jones

Conclusions

• Harvey (1998), for the stationary case, proposed a linear estimator of x_t based on a Wiener-Kolmogorov filter that minimizes the mean square error

$$\tilde{x} = (I - \sigma_u^2 \Sigma_y^{-1})(y - \mu)$$

where Σ_y is the variance covariance matrix of y and σ_u^2 is the variance of the noise.

Semiparametric estimation of volatility

Kalman Filter

Time domain

Wiener-Kolmogorov

Frequency domain Wiener-Kolmogorov

Finite sample behaviour

Application: Dow Jones

Conclusions

• Harvey (1998), for the stationary case, proposed a linear estimator of x_t based on a Wiener-Kolmogorov filter that minimizes the mean square error

$$\tilde{x} = (I - \sigma_u^2 \Sigma_y^{-1})(y - \mu)$$

where Σ_y is the variance covariance matrix of y and σ_u^2 is the variance of the noise. <u>Problems</u>:

- Requires inversion of Σ_y , which can be rather computationally demanding if n is large.
- Variances and covariances have to be estimated and the quality of the estimates significantly affects the signal extraction.
- Only valid under stationary long memory.

Wiener-Kolmogorov filter in the frequency domain

Introduction.

Semiparametric estimation of volatility Kalman Filter

Time domain Wiener-Kolmogorov

Frequency domain Wiener-Kolmogorov

Finite sample behaviour

Application: Dow Jones

Conclusions

• We consider a frequency domain minimum MSE linear estimator of x_t defined as

$$x_{t|\infty} = \sum_{j=-\infty}^{\infty} \psi_j (y_{t-j} - \mu)$$

where

$$\psi_j = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f_{xy}(\lambda)}{f_y(\lambda)} e^{ij\lambda} \mathrm{d}\lambda = \mathbf{1}_{j=0} - \frac{1}{\pi} \int_0^{\pi} \frac{\theta}{f_y(\lambda)} \cos(j\lambda) \mathrm{d}\lambda$$

due to uncorrelation of signal and noise, $f_y(\lambda)$ and $f_{yx}(\lambda)$ are the (pseudo) sdf of y_t and cross sdf of y_t and x_t , $\theta = \sigma_u^2/2\pi$ is the (constant) sdf of the noise and $\mathbf{1}_{j=0} = 1$ if j = 0 and $\mathbf{1}_{j=0} = 0$ otherwise.

• The gain of this filter is $f_x(\lambda)/f_y(\lambda)$.

Introduction. Semiparametric estimation of volatility Kalman Filter Time domain Wiener-Kolmogorov

Frequency domain Wiener-Kolmogorov

Finite sample behaviour

Application: Dow Jones

Conclusions

A feasible plug-in version of
$$\psi_j$$
 is $\hat{\psi}_j = \hat{\psi}_j(\hat{ heta}, \hat{f}_y)$ where

$$\hat{\psi}_j(\hat{\theta}, \hat{f}_y) = \mathbf{1}_{j=0} - \frac{1}{n^*} \sum_{p=1}^{n^*} \frac{\hat{\theta}}{\hat{f}_y(\lambda_p)} \cos(j\lambda_p)$$

for $n^* = [n/2]$, [] denoting "the integer part of", n is the sample size, $\lambda_p = 2\pi p/n$ are Fourier frequencies.

Introduction. Semiparametric estimation of volatility Kalman Filter Time domain Wiener-Kolmogorov

Frequency domain Wiener-Kolmogorov

Finite sample behaviour

Application: Dow Jones

Conclusions

 \bullet A feasible plug-in version of ψ_j is $\hat{\psi}_j = \hat{\psi}_j(\hat{\theta}, \hat{f}_y)$ where

$$\hat{\psi}_j(\hat{\theta}, \hat{f}_y) = \mathbf{1}_{j=0} - \frac{1}{n^*} \sum_{p=1}^{n^*} \frac{\hat{\theta}}{\hat{f}_y(\lambda_p)} \cos(j\lambda_p)$$

for $n^* = [n/2]$, [] denoting "the integer part of", n is the sample size, $\lambda_p = 2\pi p/n$ are Fourier frequencies.

- For consistency of $\hat{\psi}_j$ we need:
 - A consistent estimator of $\theta \implies$ Local Whittle (Hurvich et al. 2005).
 - An estimator of $f_y(\lambda_p)$ consistent uniformly over $p = 1, ..., n^*$, that is consistent for constant frequencies (p = O(n)) and for Fourier frequencies collapsing to zero (p = o(n)), no matter how far from or close to the spectral pole.

Semiparametric estimation of volatility

Kalman Filter

Time domain

Wiener-Kolmogorov

Frequency domain Wiener-Kolmogorov

Finite sample behaviour

Application: Dow Jones

Conclusions

• Uniformly consistent estimator of $f_y(\lambda)$ (Hidalgo and Yajima, 2002):

$$\left(\hat{f}_y(\lambda_v) = \frac{|\lambda_v|^{-2\hat{d}}}{2m^*+1} \sum_{j=-m^*}^{m^*} |\lambda_v + \lambda_j|^{2\hat{d}} I_y(\lambda_v + \lambda_j)\right)$$

for \hat{d} an estimator of d_0 such that $(\hat{d} - d_0) = o_p(\log^{-1} m^*)$ (for example the local Whitle), $\lambda_v = 2\pi v/n$, $v = 1, ..., n^*$ and m^* satisfying $\frac{1}{m^*} + \frac{m^*}{n} \to 0$ as $n \to \infty$.

Semiparametric estimation of volatility

Kalman Filter

Time domain

Wiener-Kolmogorov

Frequency domain Wiener-Kolmogorov

Finite sample behaviour

Application: Dow Jones

Conclusions

• Uniformly consistent estimator of $f_y(\lambda)$ (Hidalgo and Yajima, 2002):

$$\left(\hat{f}_y(\lambda_v) = \frac{|\lambda_v|^{-2\hat{d}}}{2m^*+1} \sum_{j=-m^*}^{m^*} |\lambda_v + \lambda_j|^{2\hat{d}} I_y(\lambda_v + \lambda_j)\right)$$

for \hat{d} an estimator of d_0 such that $(\hat{d} - d_0) = o_p(\log^{-1} m^*)$ (for example the local Whitle), $\lambda_v = 2\pi v/n$, $v = 1, ..., n^*$ and m^* satisfying $\frac{1}{m^*} + \frac{m^*}{n} \to 0$ as $n \to \infty$.

Theorem (consistency for 0 < d < 1): Under linearity (in a martingale difference) of the (stationary part of) the signal and finite fourth moments of the noise and innovations of the signal, as $n \to \infty$, uniformly over $v = 1, ..., n^*$

$$\left[\hat{f}_y(\lambda_v) = f_y(\lambda_v) \left(1 + o_p(1)\right)\right]$$

Semiparametric estimation of volatility

Kalman Filter

Time domain Wiener-Kolmogorov

Frequency domain Wiener-Kolmogorov

Finite sample behaviour

Application: Dow Jones

Conclusions

Theorem : Let $\hat{\theta}$ be a consistent estimator of θ and $\hat{f}_y(\lambda_p)$ estimate consistently $f_y(\lambda_p)$ uniformly over $p = 1, ..., n^*$. Then as $n \to \infty$

$$\hat{\psi}_j = \psi_j(1+o_p(1))$$

for j satisfying $|j|^{2d+1}/n \to 0$ as $n \to \infty.$

Introduction. Semiparametric estimation of volatility Kalman Filter Time domain Wiener-Kolmogorov Frequency domain Wiener-Kolmogorov Finite sample behaviour

Application: Dow Jones

Conclusions

• The plug in estimator of the volatility component x_t is then

$$\hat{x}_{t|n} = \sum_{j=\max(t-n,-M)}^{\min(t-1,M)} \hat{\psi}_j(y_{t-j} - \hat{\mu})$$

for
$$M$$
 satisfying $M^{-1} + n^{-1}M^{2d+1} \to 0$ as $n \to \infty$.

Introduction. Semiparametric estimation of volatility Kalman Filter Time domain Wiener-Kolmogorov Frequency domain Wiener-Kolmogorov

Finite sample behaviour

Application: Dow Jones

Conclusions

• The plug in estimator of the volatility component x_t is then

$$\hat{x}_{t|n} = \sum_{j=\max(t-n,-M)}^{\min(t-1,M)} \hat{\psi}_j(y_{t-j} - \hat{\mu})$$

for
$$M$$
 satisfying $M^{-1} + n^{-1}M^{2d+1} \to 0$ as $n \to \infty$.

- We restrict the lags of the observable to a maximum of M:
 - Consistency of $\hat{\psi}_i$ is guaranteed.
 - Since $\psi_j = O(j^{-1-2d})$, weights for larger lags are virtually zero.
 - Relatively low values of M allow a symmetric feasible filter to be applied for a large number of intermediate observations, avoiding in that way undesirable phase shifts.

Introduction.	
Semiparametric estimation of volatility	
Kalman Filter Time domain Wiener-Kolmogorov	
Frequency domain Wiener-Kolmogorov	
Finite sample behaviour	
Application: Dow Jones	
Conclusions	

An estimate of the constant μ is needed for feasible signal extraction.

- Inder stationarity (d < 1/2) the sample mean $\hat{\mu} = \bar{y}$ is consistent.
- If $d \ge 1/2$ the sample mean is not consistent. Following Shimotsu (2010) $\hat{\mu} = y_1$ or any mean of a fixed number of observations, which are $O_p(1)$ such that the (nonstationary) signal asymptotically dominates the constant μ .

Introduction. Semiparametric estimation of volatility Kalman Filter Time domain Wiener-Kolmogorov Frequency domain Wiener-Kolmogorov

Finite sample behaviour

Application: Dow Jones

Conclusions

Step 1: Get \hat{d} , $\hat{\theta}$ by local Whittle. The bandwidth m is selected within a stable region of estimates (Taqqu and Teverovsky, 1996).

Step 2: Get $\hat{f}_y(\lambda_p)$ for $p = 1, 2, ..., n^*$ with m^* selected based on the smoothness of the spectral density at frequencies far from the origin. The higher the smoothness the larger m^* .

Step 3: Construct the weights $\hat{\psi}_j$. Chose M as the lowest value such that for j > M then $|\hat{\psi}_j| < \eta$ for a prespecified $\eta > 0$.

Step 4: With this M get $\hat{x}_{t|n}$.

Step 5 (Validation): Check that the standardized residuals $\hat{\varepsilon}_{t|n} = z_t \exp(-\hat{x}_{t|n}/2)$ are *i.i.d.* (e.g. portmanteau test on $\hat{\varepsilon}_{t|n}^2$).

Introduction. Semiparametric estimation of volatility Finite sample behaviour Monte Carlo Sensitivity analysis **Global Comparison** Application: Dow Jones Conclusions

EHL

$$y_t = x_t + u_t \quad t = 1, 2, ..., n,$$

for $x_t = \kappa x_t^*$, $(1 - L)^{d_0} x_t^* = w_t$ and:
Model 1: $d_0 = 0.4$, $w_t = w_t^*$ and $u_t = \log \epsilon_t^2$ with
 $\begin{pmatrix} \varepsilon_t \\ w_{t-1}^* \end{pmatrix} \sim NID \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right]$
Model 2: As Model 1 but with $(1 - 0.8L)w_t = w_t^*$.
Model 3: As Model 1 but with $(1 - 0.2L + 0.8L^2)w_t = w_t^*$.

Model 4: As Model 1 but with $d_0 = 0.8$.

Model 5: Higher order dependence. $d_0 = 0.4$ and $(w_t, u_t)' = H_t^{1/2} \eta_t$ for $\eta_t \sim N(0, I_2)$, $H_t = diag(a_1h_{1t}, a_2h_{2t})$, $h_{it} = \alpha_0 + \alpha_1 w_{t-1}^2 + \alpha_2 u_{t-1}^2$ for i = 1, 2, and a_1, a_2 are constants chosen to maintain the unconditional variances of signal and noise as in Model 1.

1 0

Introduction. Semiparametric estimation of volatility Finite sample behaviour Monte Carlo Sensitivity analysis **Global Comparison** Application: Dow Jones Conclusions

• $\alpha = (\alpha_0, \alpha_1, \alpha_2) = (0.0001, 0.25, 0.04)$ (as in Wong and Li, 1997, *Biometrika*).

• $\rho = 0, -0.8$, the latter corresponding to a large negative correlation (leverage).

■ κ is chosen to satisfy $f_u(0)/\kappa^2 f_w(0) = \pi^2$, $5\pi^2$, which are two long run NSR close to those empirically found in financial time series (Breidt et al. 1998, Pérez and Ruiz 2001).

The constant µ is estimated in Models 1, 2, 3 and 5 by the sample mean and by the average of the first 10 observations in Model 4 (Shimotsu, 2010, ET)).

 \blacksquare n = 2048 comparable with the size of many financial series.

1000 replications.

Monte Carlo

Introduction.	•
Semiparametric estimation of volatility	-
Finite sample behaviour	-
Monte Carlo	•
Sensitivity analysis	D D D
Global Comparison)))
Application: Dow Jones	D D D
Conclusions)))
	6 6
)))

1. $\hat{x}_{t|n}^{(1)}$ with M = 100, $(m^*, m) = (80, 1000)$ for Models 1, 2, 4 and 5 and (60, 300) in Model 3.

2.
$$\hat{x}_{t|n}^{(2)}$$
 with $M = 100$ and true f_y and θ .

- 3. $\hat{x}_{t|n}^{(3)}$ is \tilde{x} with true variances and covariances. Following Harvey (1998) we consider weights for a sample size n = 256. Prior first differencing and posterior integration back in the nonstationary case.
- 4. $\hat{x}_{t|n}^{(4)}$ is as before but with the covariances of y_t estimated by their sample counterparts and σ_u^2 by local Whittle with m as in $\hat{x}_{t|n}^{(1)}$.
- 5. $\hat{x}_{t|n}^{(5)}$ is obtained by the Kalman filter applied to an AR(10).

6. The naive $\hat{x}_{t|n}^{(6)} = y_t - \hat{\mu}$, often used as proxy of the volatility.

Josu Arteche – 19 / 33

Semiparametric estimation of volatility

Finite sample behaviour

Monte Carlo

Sensitivity analysis

Global Comparison

Application: Dow Jones

Conclusions

Two criteria for global comparison:

The average over the 1000 replications of the sample correlation between x_t and $\hat{x}_{t|n}^{(i)}$, i = 1, 2, ..., 6.

The global typified Monte Carlo Mean Square Error defined as

$$MCMSE(i) = \frac{1}{\sigma^2} \frac{1}{2048} \sum_{t=1}^{2048} \frac{1}{1000} \sum_{l=1}^{1000} (\hat{x}_{t,l}^{(i)} - x_{t,l})^2$$

where $\sigma^2 = \sigma_x^2$ in Models 1, 2, 3 and 5, $\sigma^2 = \sigma_v^2$ in Model 4, t, l indicates observation t in Monte Carlo replication l.

Number of times that the Ljung-Box statistic does not reject the hypothesis that the first 100 autocorrelations of the squared standardized residuals $\hat{\varepsilon}_{t|n}^{2(i)} = \exp(y_t - \hat{x}_{t|n}^{(i)})$ are null at 5% significance level.

•	Tabl	e 1: Sen	sitivity to	the choice of η	n and m	*. Model	2
Introduction.				$NSR = \pi^2$			
Semiparametric		m=40	m=100	m=300	m=600	m=800	m=1000
estimation of volatility	$m^* = 40$	5.659	3.634	1.367	0.882	0.793	0.771
Finite sample behaviour		(0.317)	(0.438)	(0.575)	(0.633)	(0.647)	(0.655)
Monte Carlo	$m^* = 60$	5.603	3.619	1.351	0.862	0.773	0.749
Sensitivity analysis		(0.330)	(0.451)	(0.591)	(0.653)	(0.668)	(0.677)
Global Comparison	$m^* = 80$	5.563	3.614	1.348	0.857	0.767	0.744
Application: Dow Jones		(0.339)	(0.458)	(0.599)	(0.663)	(0.678)	(0.687)
Conclusions	$m^* = 100$	5.530	3.614	1.351	0.860	0.770	0.746
•		(0.347)	(0.463)	(0.604)	(0.668)	(0.684)	(0.693)
				$NSR = 5\pi^2$			
•	$m^* = 40$	18.500	15.389	10.408	7.177	6.428	5.987
•		(0.193)	(0.236)	(0.281)	(0.302)	(0.309)	(0.310)
•	$m^* = 60$	18.446	15.372	10.381	7.142	6.391	5.949
•		(0.205)	(0.252)	(0.302)	(0.326)	(0.334)	(0.335)
•	$m^* = 80$	18.452	15.405	10.414	7.168	6.416	5.972
•		(0.211)	(0.259)	(0.310)	(0.336)	(0.344)	(0.345)
	$m^* = 100$	18.488	15.457	10.475	7.222	6.471	6.024
		(0.213)	(0.262)	(0.313)	(0.339)	(0.347)	(0.348)
MCMSE and correlation with true signal (between round brackets) of $\hat{x}^{(1)}$ with different m and m*							.*

MCMSE and correlation with true signal (between round brackets) of $\hat{x}_{t|n}^{(1)}$ with different m and m^* .

•	Table 2: Sensitivity to the choice of m and m^* . Model 3.						
Introduction.				$NSR = \pi^2$			
Semiparametric estimation of volatility		m=40	m=100	m=300	m=600	m=800	m=1000
•	$m^* = 40$	1.088	0.767	0.512	0.723	0.876	1.041
Finite sample behaviour		(0.590)	(0.692)	(0.740)	(0.626)	(0.505)	(0.555)
Monte Carlo	$m^* = 60$	1.072	0.763	0.508	0.707	0.844	1.019
Sensitivity analysis		(0.595)	(0.695)	(0.743)	(0.630)	(0.518)	(0.567)
Global Comparison	$m^* = 80$	1.060	0.763	0.509	0.698	0.821	1.004
Application: Dow Jones		(0.598)	(0.695)	(0.742)	(0.629)	(0.525)	(0.574)
Conclusions	$m^* = 100$	1.053	0.765	0.514	0.693	0.805	0.994
•		(0.598)	(0.693)	(0.739)	(0.625)	(0.528)	(0.579)
•				$NSR = 5\pi^2$			
•	$m^* = 40$	3.269	2.620	1.890	1.297	1.438	2.325
•		(0.353)	(0.398)	(0.431)	(0.293)	(0.363)	(0.384)
•	$m^* = 60$	3.264	2.622	1.891	1.280	1.430	2.321
		(0.353)	(0.397)	(0.431)	(0.291)	(0.364)	(0.385)
	$m^* = 80$	3.271	2.635	1.905	1.279	1.437	2.330
		(0.347)	(0.390)	(0.423)	(0.282)	(0.358)	(0.379)
	$m^* = 100$	3.284	2.653	1.925	1.286	1.451	2.343
		(0.340)	(0.380)	(0.411)	(0.269)	(0.348)	(0.370)
	MCMSE and correlation with true signal (between round brackets) of $\hat{x}^{(1)}$ with different m and m^*						

MCMSE and correlation with true signal (between round brackets) of $\hat{x}_{t|n}^{(1)}$ with different m and m^* .

Global Comparison

Table 3: Global MSE and correlation								
Introduction.								
Semiparametric estimation of volatility		$\tilde{x}_{t\mid\infty}$	$\hat{x}_{t n}^{(1)}$	$\hat{x}_{t n}^{(2)}$	$\hat{x}_{t n}^{(3)}$	$\hat{x}_{t n}^{(4)}$	$\hat{x}_{t n}^{(5)}$	$\hat{x}_{t n}^{(6)}$
Finite sample behaviour				Model 1				
Monte Carlo	$NSR = \pi^2$	0.523	0.788	0.711	0.719	1.299	1.166	4.948
Sensitivity analysis		(0.556)	(0.545)	(0.579)	(0.572)	(0.331)	(0.158)	(0.379)
Global Comparison			[842]	[923]	[916]	[422]	[28]	[377]
Application: Dow Jones	$NSR = 5\pi^2$	0.662	4.017	0.871	0.875	6.032	2.718	23.983
Conclusions		(0.357)	(0.289)	(0.376)	(0.372)	(0.116)	(0.082)	(0.178)
			[678]	[923]	[918]	[164]	[153]	[375]
				Model 2				
•	$NSR = \pi^2$	0.286	0.744	0.638	0.656	1.620	1.616	8.528
•		(0.713)	(0.687)	(0.734)	(0.716)	(0.389)	(0.083)	(0.271)
•			[717]	[869]	[861]	[122]	[0]	[387]
	$NSR = 5\pi^2$	0.443	5.972	0.798	0.803	9.453	4.257	41.468
		(0.488)	(0.345)	(0.504)	(0.498)	(0.115)	(0.038)	(0.123)
			[650]	[907]	[890]	[116]	[133]	[409]

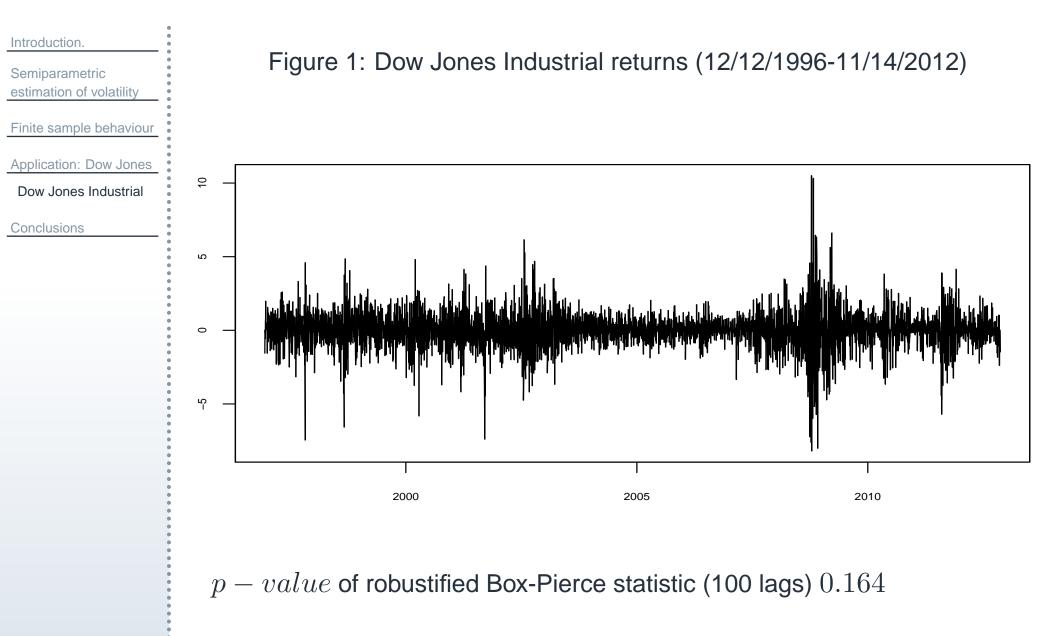
Note: MCMSE, global correlation between x_t and $\hat{x}_{t|n}^{(i)}$ (between round brackets) and nonrejections of no correlation in squared standardized residuals (between square brackets). Optimals in italic (benchmark) and best feasibles in bold.

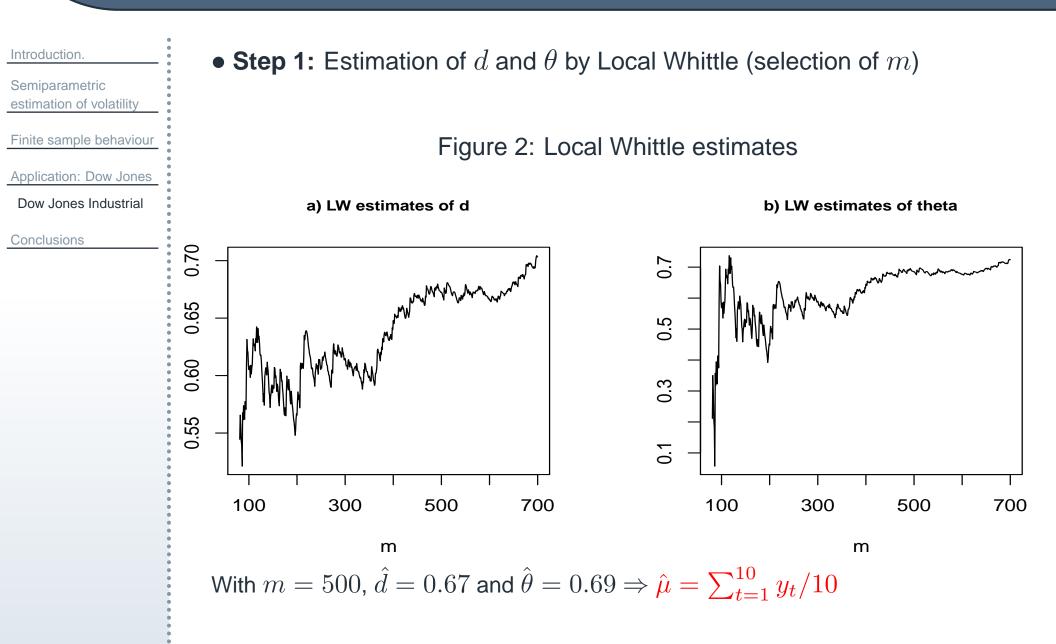
Table 4: Global MSE and correlation								
Introduction.		$\tilde{x}_{t \infty}$	$\hat{x}_{t n}^{(1)}$	$\hat{x}_{t n}^{(2)}$	$\hat{x}_{t n}^{(3)}$	$\hat{x}_{t n}^{(4)}$	$\hat{x}_{t n}^{(5)}$	$\hat{x}_{t n}^{(6)}$
Semiparametric estimation of volatility				Model 3				
Finite sample behaviour	$NSR = \pi^2$	0.368	0.508	0.427	0.428	0.661	0.865	1.439
Monte Carlo		(0.777)	(0.743)	(0.779)	(0.778)	(0.652)	(0.416)	(0.636)
Sensitivity analysis			[775]	[879]	[872]	[677]	[299]	[413]
Global Comparison	$NSR = 5\pi^2$	0.654	1.891	0.714	0.715	2.444	1.340	6.959
Application: Downlong		(0.544)	(0.431)	(0.545)	(0.544)	(0.297)	(0.206)	(0.345)
Application: Dow Jones			[676]	[925]	[909]	[351]	[47]	[379]
Conclusions				Model 4				
	$NSR = \pi^2$		86.088	85.970	85.509	91.806	109.608	94.156
•			(0.968)	(0.970)	(0.970)	(0.926)	(0.567)	(0.847)
•			[820]	[856]	[899]	[102]	[8]	[321]
•	$NSR = 5\pi^2$		91.255	90.235	85.254	124.873	118.380	135.317
•			(0.933)	(0.942)	(0.943)	(0.747)	(0.288)	(0.603)
•			[692]	[786]	[844]	[33]	[0]	[323]
•				Model 5				
•	$NSR = \pi^2$	0.523	0.811	0.709	0.709	1.317	1.188	4.944
		(0.556)	(0.545)	(0.581)	(0.581)	(0.336)	(0.158)	(0.379)
•	$NSR = 5\pi^2$	0.662	4.521	0.865	0.869	6.507	2.960	24.010
•		(0.357)	(0.293)	(0.382)	(0.382)	(0.119)	(0.085)	(0.180)

 III_t Workshop in Time Series Econometrics

Josu Arteche – 24 / 33

Daily Dow Jones Industrial



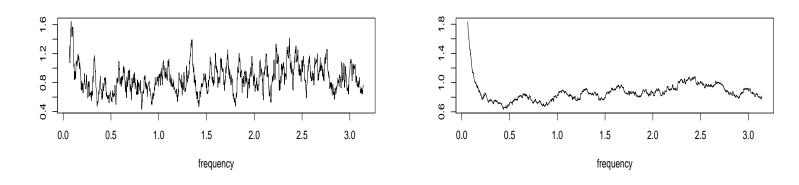


Introduction. Semiparametric estimation of volatility Finite sample behaviour Application: Dow Jones Dow Jones Industrial

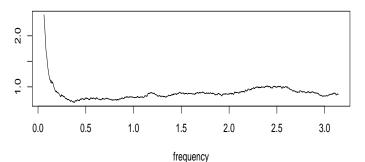
Conclusions

• Step 2: Estimate $f_y(\lambda_p)$ (select m^*)

Figure 3: Estimates of $f_y(\lambda_p)$ for $p \ge 40$ (a) $m^* = 10$ (b) $m^* = 60$

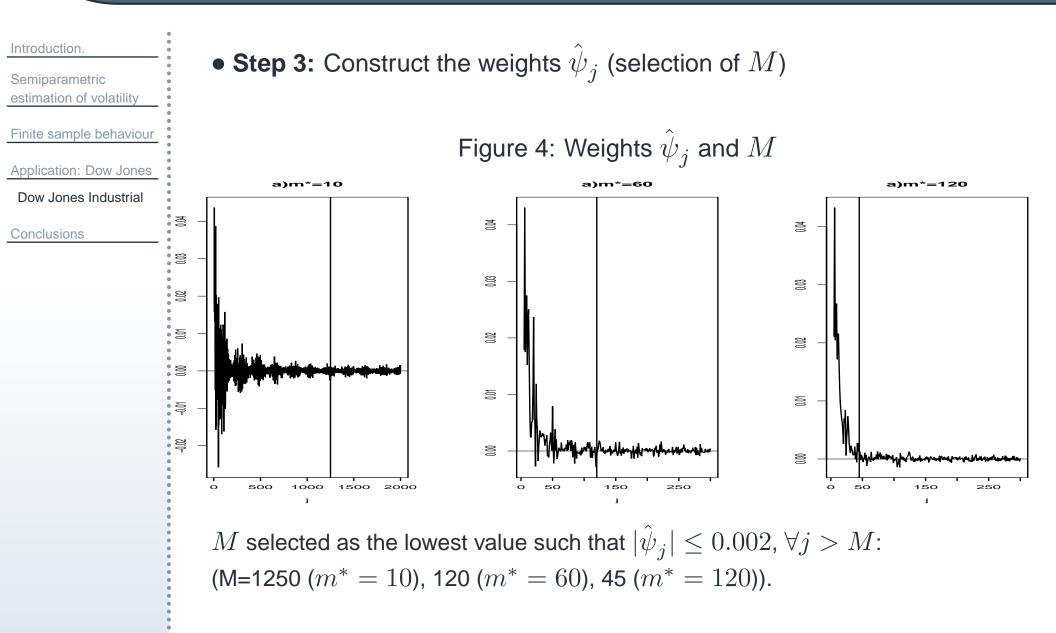


(c) $m^* = 120$



 III_t Workshop in Time Series Econometrics

Daily Dow Jones Industrial: FD strategy



Introduction. Semiparametric estimation of volatility Finite sample behaviour Application: Dow Jones

Dow Jones Industrial

Conclusions

• **Step 4:** We estimate the variance of the returns conditional on the volatility component in a LMSV model as

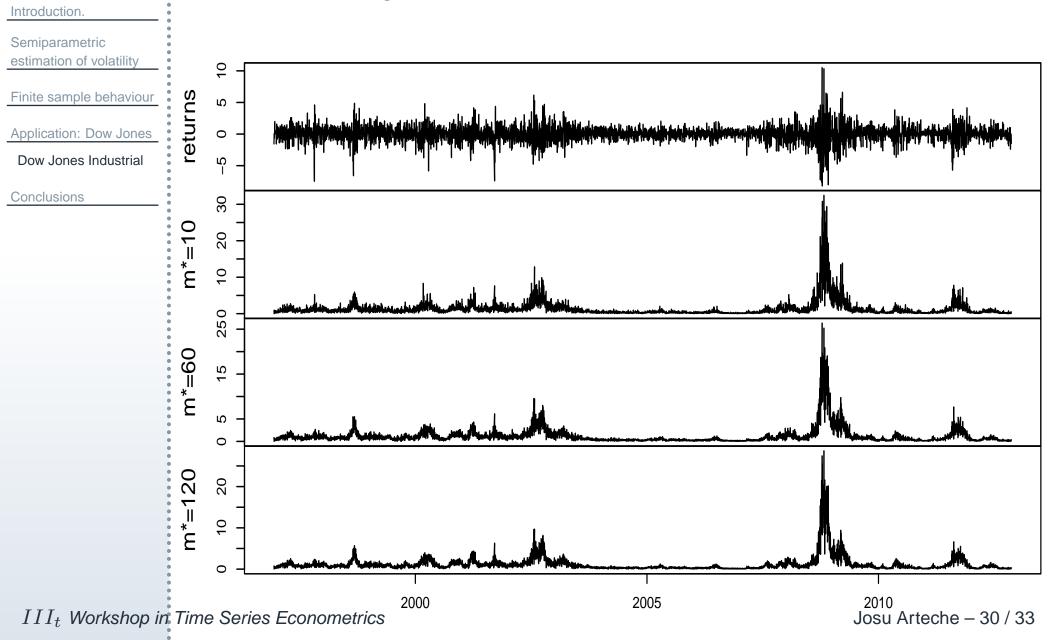
$$\hat{\sigma}_t^2 = \hat{\sigma}^2 \exp(\hat{x}_{t|n}^{(1)})$$

where

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{t=1}^n z_t^2 \exp(-\hat{x}_{t|n}^{(1)}).$$

Daily Dow Jones Industrial: FD strategy

Figure 5: Estimation of the conditional variance



Daily Dow Jones Industrial: Validation

Introduction. Semiparametric estimation of volatility Finite sample behaviour Application: Dow Jones Dow Jones Industrial

Conclusions

The standardized residuals, $\hat{\varepsilon}_{t|n} = z_t / \sqrt{\hat{\sigma}_t^2}$ should be close to i.i.d (not necessarily Gaussian) and in particular their squares should be uncorrelated.

Table 5: Ljung-Box test for 100 ac (p-values)

	$m^* = 10$	$m^* = 60$	$m^* = 120$
$\hat{arepsilon}_{t n}^2$	0.000	0.113	0.138

• Step 5: Validation:

Conclusions

	•
Introduction.	•
	•
Semiparametric	•
estimation of volatility	
	•
Finite sample behaviour	•
	•
Application: Dow Jones	•

Conclusions

We have proposed a robust, general and simple to implement Wiener-Kolmogorov signal extraction technique based on a local spectral specification of the signal (either stationary or nonstationary).

Introduction.
Semiparametric
estimation of volatility
Finite sample behaviour
Application: Dow Jones
Conclusions

- We have proposed a robust, general and simple to implement Wiener-Kolmogorov signal extraction technique based on a local spectral specification of the signal (either stationary or nonstationary).
- For that, we propose a pre-whitened (in the frequency domain) sdf estimator and show its consistency in the whole band of Fourier frequencies for stationary and nonstationary signals.

Introduction.
Sominoromotrio
Semiparametric
estimation of volatility
Finite sample behaviour
Application: Dow Jones
Conclusions

- We have proposed a robust, general and simple to implement Wiener-Kolmogorov signal extraction technique based on a local spectral specification of the signal (either stationary or nonstationary).
- For that, we propose a pre-whitened (in the frequency domain) sdf estimator and show its consistency in the whole band of Fourier frequencies for stationary and nonstationary signals.
- It can be used for signal extraction in a general context: economic mechanisms with different factors for short run and long run behaviour, measurement errors, rational expectation models, Realized Volatility contaminated by market microstructure noise etc.

Introduction.
Semiparametric
estimation of volatility
Finite sample behaviour
Application: Dow Jones
Conclusions

- We have proposed a robust, general and simple to implement Wiener-Kolmogorov signal extraction technique based on a local spectral specification of the signal (either stationary or nonstationary).
- For that, we propose a pre-whitened (in the frequency domain) sdf estimator and show its consistency in the whole band of Fourier frequencies for stationary and nonstationary signals.
- It can be used for signal extraction in a general context: economic mechanisms with different factors for short run and long run behaviour, measurement errors, rational expectation models, Realized Volatility contaminated by market microstructure noise etc.
 - Next step: use the volatility series for asset pricing, risk management, forecasting, comparison with ARCH based methods....

Introduction.
Semiparametric
estimation of volatility
Finite sample behaviour
Application: Dow Jones
Conclusions

