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� Signal extraction for volatility estimation in LMSV.
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� Time domain methods (Harvey, 1998).

� Frequency domain methods.

� Finite sample behaviour.

� Application to Dow Jones Industrial index.
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• Why Long Memory in Stochastic Volatility?
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• Why Long Memory in Stochastic Volatility?

� Persistent autocorrelation in proxys of the volatility of financial time

series (squares or other powers of absolute values)⇒ Long memory

in volatility is a stylized fact.
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• Why Long Memory in Stochastic Volatility?

� Persistent autocorrelation in proxys of the volatility of financial time

series (squares or other powers of absolute values)⇒ Long memory

in volatility is a stylized fact.

� SV models more flexible than ARCH based models (for example,

contrary to ARCH extensions, covariance stationarity and long

memory in squares is possible).
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• Why ARCH based models more popular among empirical researchers?
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• Why ARCH based models more popular among empirical researchers?

� Estimation : MLE much easier in ARCH ⇒ Recent advances in

LMSV using Whittle QMLE (Breidt et al, 1998, Zaffaroni, 2009, JoE).
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• Why ARCH based models more popular among empirical researchers?

� Estimation : MLE much easier in ARCH ⇒ Recent advances in

LMSV using Whittle QMLE (Breidt et al, 1998, Zaffaroni, 2009, JoE).

� Volatility estimation : Conditional variances (volatility) are very

easily obtained in ARCH based models because they are

deterministic functions of the past.
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• Why ARCH based models more popular among empirical researchers?

� Estimation : MLE much easier in ARCH ⇒ Recent advances in

LMSV using Whittle QMLE (Breidt et al, 1998, Zaffaroni, 2009, JoE).

� Volatility estimation : Conditional variances (volatility) are very

easily obtained in ARCH based models because they are

deterministic functions of the past.

Goal of this paper: propose a simple to implement, general and

robust technique of volatility extraction in LMSV
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The series (returns) is defined as

zt = σσtǫt

� σ > 0 a scale factor,

� ǫt ∼ iid(0, 1),

� σt = exp(xt/2) for xt a long memory process with a spectral

density (pseudo spectral density in the nonstationary case) function

fx(λ) = λ−2dgx(λ) , 0 < λ ≤ π

� 0 < d < 1 (stationary or nonstationary but mean reverting xt),

� gx(λ) positive, finite, symmetric around the origin and twice

continuously differentiable.
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Denoting yt = log z2t
�

�

�

�
yt = µ+ xt + ut

where

� µ = log σ2 + E log ǫ2t

� ut = log ǫ2t − E log ǫ2t is a mean zero white noise process with

finite variance σ2u.
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Denoting yt = log z2t
�

�

�

�
yt = µ+ xt + ut

where

� µ = log σ2 + E log ǫ2t

� ut = log ǫ2t − E log ǫ2t is a mean zero white noise process with

finite variance σ2u.

The estimation of the volatility component xt is then just a particular case

of signal extraction in a long memory signal plus white noise process.
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A.1: If 0 < d0 < 1/2 then xt = vt and for 1/2 ≤ d0 < 1 then

xt = x0 +
∑t

s=1 vs for x0 a random variable not depending on t and

vt =
∑∞

j=0 bjεt−j ,
∑∞

j=0 b
2
j <∞ where E(εt|Ft−1) = 0,

E(ε2t |Ft−1) = 1, E(ε3t ) <∞, E(ε4t ) <∞.

A.2: The spectral density of vt is

fv(λ) = λ−2dvgv(λ) , 0 < λ ≤ π ,

0 < dv = d0 < 1/2 (if xt stationary) and −1/2 ≤ dv = d0 − 1 < 0
(nonstationary xt).
A.3: ut is zero i.i.d. with finite fourth moment.

A.4: ut and εs are uncorrelated at all leads and lags (correlation between

ε and ǫ allowed).

A.5: cum(εt, εs, ul, um) = k <∞ if t = s = l = m and 0 otherwise.
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� A parametric specification of xt is needed.

� Huge dimension of the state space representation in long memory

series (Chan and Palma, 1998).
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� A parametric specification of xt is needed.

� Huge dimension of the state space representation in long memory

series (Chan and Palma, 1998).

� Alternatively : Use a truncated AR (better than MA because AR

coefficients converge faster to 0) and use smoothing for volatility

estimation.
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� A parametric specification of xt is needed.

� Huge dimension of the state space representation in long memory

series (Chan and Palma, 1998).

� Alternatively : Use a truncated AR (better than MA because AR

coefficients converge faster to 0) and use smoothing for volatility

estimation.

Problems:

� The number of parameters to be estimated increases with the

truncation.

� Large dimension of the state space model (a large truncation is

needed), large number of parameters to be estimated and

large sample sizes ⇒ KF quite computationally demanding

and subject to numerical inaccuracies.
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• Harvey (1998), for the stationary case, proposed a linear estimator of xt
based on a Wiener-Kolmogorov filter that minimizes the mean square error

x̃ = (I − σ2uΣ
−1
y )(y − µ)

where Σy is the variance covariance matrix of y and σ2u is the variance of

the noise.
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• Harvey (1998), for the stationary case, proposed a linear estimator of xt
based on a Wiener-Kolmogorov filter that minimizes the mean square error

x̃ = (I − σ2uΣ
−1
y )(y − µ)

where Σy is the variance covariance matrix of y and σ2u is the variance of

the noise. Problems:

� Requires inversion of Σy , which can be rather computationally

demanding if n is large.

� Variances and covariances have to be estimated and the quality of

the estimates significantly affects the signal extraction.

� Only valid under stationary long memory.
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• We consider a frequency domain minimum MSE linear estimator of xt
defined as

xt|∞ =

∞
∑

j=−∞

ψj(yt−j − µ)

where

ψj =
1

2π

∫ π

−π

fxy(λ)

fy(λ)
eijλdλ = 1j=0 −

1

π

∫ π

0

θ

fy(λ)
cos(jλ)dλ

due to uncorrelation of signal and noise, fy(λ) and fyx(λ) are the

(pseudo) sdf of yt and cross sdf ofyt and xt, θ = σ2u/2π is the (constant)

sdf of the noise and 1j=0 = 1 if j = 0 and 1j=0 = 0 otherwise.

• The gain of this filter is fx(λ)/fy(λ).
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• A feasible plug-in version of ψj is ψ̂j = ψ̂j(θ̂, f̂y) where

ψ̂j(θ̂, f̂y) = 1j=0 −
1

n∗

n∗
∑

p=1

θ̂

f̂y(λp)
cos(jλp)

for n∗ = [n/2], [] denoting “the integer part of”, n is the sample size,

λp = 2πp/n are Fourier frequencies.
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• A feasible plug-in version of ψj is ψ̂j = ψ̂j(θ̂, f̂y) where

ψ̂j(θ̂, f̂y) = 1j=0 −
1

n∗

n∗
∑

p=1

θ̂

f̂y(λp)
cos(jλp)

for n∗ = [n/2], [] denoting “the integer part of”, n is the sample size,

λp = 2πp/n are Fourier frequencies.

• For consistency of ψ̂j we need:

� A consistent estimator of θ =⇒ Local Whittle (Hurvich et al. 2005).

� An estimator of fy(λp) consistent uniformly over p = 1, ..., n∗, that

is consistent for constant frequencies (p = O(n)) and for Fourier

frequencies collapsing to zero (p = o(n)), no matter how far from or

close to the spectral pole.
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• Uniformly consistent estimator of fy(λ) (Hidalgo and Yajima, 2002):
�




�

	
f̂y(λv) =

|λv |−2d̂

2m∗+1

∑m∗

j=−m∗ |λv + λj |
2d̂Iy(λv + λj)

for d̂ an estimator of d0 such that (d̂− d0) = op(log
−1m∗) (for example

the local Whitle), λv = 2πv/n, v = 1, ..., n∗ and m∗ satisfying
1
m∗ + m∗

n → 0 as n→ ∞.
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• Uniformly consistent estimator of fy(λ) (Hidalgo and Yajima, 2002):
�




�

	
f̂y(λv) =

|λv |−2d̂

2m∗+1

∑m∗

j=−m∗ |λv + λj |
2d̂Iy(λv + λj)

for d̂ an estimator of d0 such that (d̂− d0) = op(log
−1m∗) (for example

the local Whitle), λv = 2πv/n, v = 1, ..., n∗ and m∗ satisfying
1
m∗ + m∗

n → 0 as n→ ∞.

Theorem (consistency for 0 < d < 1): Under linearity (in a martingale

difference) of the (stationary part of) the signal and finite fourth moments

of the noise and innovations of the signal, as n→ ∞, uniformly over

v = 1, ..., n∗

�

�

�

�
f̂y(λv) = fy(λv) (1 + op(1)))
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Theorem : Let θ̂ be a consistent estimator of θ and f̂y(λp) estimate

consistently fy(λp) uniformly over p = 1, ..., n∗. Then as n→ ∞

ψ̂j = ψj(1 + op(1))

for j satisfying |j|2d+1/n→ 0 as n→ ∞.
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• The plug in estimator of the volatility component xt is then

x̂t|n =

min(t−1,M)
∑

j=max(t−n,−M)

ψ̂j(yt−j − µ̂)

for M satisfying M−1 + n−1M2d+1 → 0 as n→ ∞.
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• The plug in estimator of the volatility component xt is then

x̂t|n =

min(t−1,M)
∑

j=max(t−n,−M)

ψ̂j(yt−j − µ̂)

for M satisfying M−1 + n−1M2d+1 → 0 as n→ ∞.

• We restrict the lags of the observable to a maximum of M :

� Consistency of ψ̂j is guaranteed.

� Since ψj = O(j−1−2d), weights for larger lags are virtually zero.

� Relatively low values of M allow a symmetric feasible filter to be

applied for a large number of intermediate observations, avoiding in

that way undesirable phase shifts.
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An estimate of the constant µ is needed for feasible signal extraction.

� Under stationarity (d < 1/2) the sample mean µ̂ = ȳ is consistent.

� If d ≥ 1/2 the sample mean is not consistent. Following Shimotsu

(2010) µ̂ = y1 or any mean of a fixed number of observations,

which are Op(1) such that the (nonstationary) signal asymptotically

dominates the constant µ.
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Step 1: Get d̂, θ̂ by local Whittle. The bandwidth m is selected within a

stable region of estimates (Taqqu and Teverovsky, 1996).

Step 2: Get f̂y(λp) for p = 1, 2, ..., n∗ with m∗ selected based on the

smoothness of the spectral density at frequencies far from the

origin. The higher the smoothness the larger m∗.

Step 3: Construct the weights ψ̂j . Chose M as the lowest value such

that for j > M then |ψ̂j | < η for a prespecified η > 0.

Step 4: With this M get x̂t|n.

Step 5 (Validation) : Check that the standardized residuals

ε̂t|n = zt exp(−x̂t|n/2) are i.i.d. (e.g. portmanteau test on ε̂2t|n).
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yt = xt + ut t = 1, 2, ..., n,

for xt = κx∗t , (1− L)d0x∗t = wt and:

Model 1: d0 = 0.4, wt = w∗
t and ut = log ǫ2t with

(

εt
w∗
t−1

)

∼ NID

[(

0
0

)

,

(

1 ρ
ρ 1

)]

Model 2: As Model 1 but with (1− 0.8L)wt = w∗
t .

Model 3: As Model 1 but with (1− 0.2L+ 0.8L2)wt = w∗
t .

Model 4: As Model 1 but with d0 = 0.8.

Model 5: Higher order dependence. d0 = 0.4 and (wt, ut)
′ = H

1/2
t ηt

for ηt ∼ N(0, I2), Ht = diag(a1h1t, a2h2t),
hit = α0 + α1w

2
t−1 + α2u

2
t−1 for i = 1, 2, and a1, a2 are

constants chosen to maintain the unconditional variances of signal

and noise as in Model 1.
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� α = (α0, α1, α2) = (0.0001, 0.25, 0.04) (as in Wong and Li,

1997, Biometrika).

� ρ = 0,−0.8, the latter corresponding to a large negative correlation

(leverage).

� κ is chosen to satisfy fu(0)/κ
2fw(0) = π2, 5π2, which are two

long run NSR close to those empirically found in financial time

series (Breidt et al. 1998, Pérez and Ruiz 2001).

� The constant µ is estimated in Models 1, 2, 3 and 5 by the sample

mean and by the average of the first 10 observations in Model 4

(Shimotsu, 2010, ET)).

� n = 2048 comparable with the size of many financial series.

� 1000 replications.
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1. x̂
(1)
t|n with M = 100, (m∗,m) = (80, 1000) for Models 1, 2, 4 and

5 and (60, 300) in Model 3.

2. x̂
(2)
t|n with M = 100 and true fy and θ.

3. x̂
(3)
t|n is x̃ with true variances and covariances. Following Harvey

(1998) we consider weights for a sample size n = 256. Prior first

differencing and posterior integration back in the nonstationary case.

4. x̂
(4)
t|n is as before but with the covariances of yt estimated by their

sample counterparts and σ2u by local Whittle with m as in x̂
(1)
t|n.

5. x̂
(5)
t|n is obtained by the Kalman filter applied to an AR(10).

6. The naive x̂
(6)
t|n = yt − µ̂, often used as proxy of the volatility.
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Two criteria for global comparison:

� The average over the 1000 replications of the sample correlation

between xt and x̂
(i)
t|n, i = 1, 2, ..., 6.

� The global typified Monte Carlo Mean Square Error defined as

MCMSE(i) =
1

σ2
1

2048

2048
∑

t=1

1

1000

1000
∑

l=1

(x̂
(i)
t,l − xt,l)

2

where σ2 = σ2x in Models 1, 2, 3 and 5, σ2 = σ2v in Model 4, t, l
indicates observation t in Monte Carlo replication l.

� Number of times that the Ljung-Box statistic does not reject the

hypothesis that the first 100 autocorrelations of the squared

standardized residuals ε̂
2(i)
t|n = exp(yt − x̂

(i)
t|n) are null at 5%

significance level.
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Table 1: Sensitivity to the choice of m and m∗. Model 2
NSR = π

2

m=40 m=100 m=300 m=600 m=800 m=1000
m

∗
= 40 5.659 3.634 1.367 0.882 0.793 0.771

(0.317) (0.438) (0.575) (0.633) (0.647) (0.655)
m

∗
= 60 5.603 3.619 1.351 0.862 0.773 0.749

(0.330) (0.451) (0.591) (0.653) (0.668) (0.677)
m

∗
= 80 5.563 3.614 1.348 0.857 0.767 0.744

(0.339) (0.458) (0.599) (0.663) (0.678) (0.687)
m

∗
= 100 5.530 3.614 1.351 0.860 0.770 0.746

(0.347) (0.463) (0.604) (0.668) (0.684) (0.693)

NSR = 5π
2

m
∗
= 40 18.500 15.389 10.408 7.177 6.428 5.987

(0.193) (0.236) (0.281) (0.302) (0.309) (0.310)
m

∗
= 60 18.446 15.372 10.381 7.142 6.391 5.949

(0.205) (0.252) (0.302) (0.326) (0.334) (0.335)
m

∗
= 80 18.452 15.405 10.414 7.168 6.416 5.972

(0.211) (0.259) (0.310) (0.336) (0.344) (0.345)
m

∗
= 100 18.488 15.457 10.475 7.222 6.471 6.024

(0.213) (0.262) (0.313) (0.339) (0.347) (0.348)

MCMSE and correlation with true signal (between round brackets) of x̂
(1)
t|n

with different m and m
∗ .
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Table 2: Sensitivity to the choice of m and m∗. Model 3.
NSR = π

2

m=40 m=100 m=300 m=600 m=800 m=1000
m

∗
= 40 1.088 0.767 0.512 0.723 0.876 1.041

(0.590) (0.692) (0.740) (0.626) (0.505) (0.555)
m

∗
= 60 1.072 0.763 0.508 0.707 0.844 1.019

(0.595) (0.695) (0.743) (0.630) (0.518) (0.567)
m

∗
= 80 1.060 0.763 0.509 0.698 0.821 1.004

(0.598) (0.695) (0.742) (0.629) (0.525) (0.574)
m

∗
= 100 1.053 0.765 0.514 0.693 0.805 0.994

(0.598) (0.693) (0.739) (0.625) (0.528) (0.579)

NSR = 5π
2

m
∗
= 40 3.269 2.620 1.890 1.297 1.438 2.325

(0.353) (0.398) (0.431) (0.293) (0.363) (0.384)
m

∗
= 60 3.264 2.622 1.891 1.280 1.430 2.321

(0.353) (0.397) (0.431) (0.291) (0.364) (0.385)
m

∗
= 80 3.271 2.635 1.905 1.279 1.437 2.330

(0.347) (0.390) (0.423) (0.282) (0.358) (0.379)
m

∗
= 100 3.284 2.653 1.925 1.286 1.451 2.343

(0.340) (0.380) (0.411) (0.269) (0.348) (0.370)

MCMSE and correlation with true signal (between round brackets) of x̂
(1)
t|n

with different m and m
∗ .
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Table 3: Global MSE and correlation

x̃t|∞ x̂
(1)

t|n x̂
(2)

t|n x̂
(3)

t|n x̂
(4)

t|n x̂
(5)

t|n x̂
(6)

t|n

Model 1

NSR = π
2 0.523 0.788 0.711 0.719 1.299 1.166 4.948

(0.556) (0.545) (0.579) (0.572) (0.331) (0.158) (0.379)
[842] [923] [916] [422] [28] [377]

NSR = 5π
2 0.662 4.017 0.871 0.875 6.032 2.718 23.983

(0.357) (0.289) (0.376) (0.372) (0.116) ( 0.082) (0.178)
[678] [923] [918] [164] [153] [375]

Model 2

NSR = π
2 0.286 0.744 0.638 0.656 1.620 1.616 8.528

(0.713) (0.687) (0.734) (0.716) (0.389) (0.083) (0.271)
[717] [869] [861] [122] [0] [387]

NSR = 5π
2 0.443 5.972 0.798 0.803 9.453 4.257 41.468

(0.488) (0.345) (0.504) (0.498) (0.115) (0.038) (0.123)
[650] [907] [890] [116] [133] [409]

Note: MCMSE, global correlation between xt and x̂
(i)
t|n

(between round brackets) and nonrejections of no correlation in squared

standardized residuals (between square brackets). Optimals in italic (benchmark) and best feasibles in bold.
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Table 4: Global MSE and correlation
x̃t|∞ x̂

(1)

t|n x̂
(2)

t|n x̂
(3)

t|n x̂
(4)

t|n x̂
(5)

t|n x̂
(6)

t|n

Model 3

NSR = π
2 0.368 0.508 0.427 0.428 0.661 0.865 1.439

(0.777) (0.743) (0.779) (0.778) (0.652) (0.416) (0.636)
[775] [879] [872] [677] [299] [413]

NSR = 5π
2 0.654 1.891 0.714 0.715 2.444 1.340 6.959

(0.544) (0.431) (0.545) (0.544) (0.297) (0.206) (0.345)
[676] [925] [909] [351] [47] [379]

Model 4

NSR = π
2 86.088 85.970 85.509 91.806 109.608 94.156

(0.968) (0.970) (0.970) (0.926) (0.567) (0.847)
[820] [856] [899] [102] [8] [321]

NSR = 5π
2 91.255 90.235 85.254 124.873 118.380 135.317

(0.933) (0.942) (0.943) (0.747) (0.288) (0.603)
[692] [786] [844] [33] [0] [323]

Model 5

NSR = π
2 0.523 0.811 0.709 0.709 1.317 1.188 4.944

(0.556) (0.545) (0.581) (0.581) (0.336) (0.158) (0.379)

NSR = 5π
2 0.662 4.521 0.865 0.869 6.507 2.960 24.010

(0.357) (0.293) (0.382) (0.382) (0.119) ( 0.085) (0.180)
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Figure 1: Dow Jones Industrial returns (12/12/1996-11/14/2012)
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• Step 1: Estimation of d and θ by Local Whittle (selection of m)

Figure 2: Local Whittle estimates
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• Step 2: Estimate fy(λp) (select m∗)

Figure 3: Estimates of fy(λp) for p ≥ 40
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• Step 3: Construct the weights ψ̂j (selection of M )

Figure 4: Weights ψ̂j and M
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M selected as the lowest value such that |ψ̂j | ≤ 0.002, ∀j > M :

(M=1250 (m∗ = 10), 120 (m∗ = 60), 45 (m∗ = 120)).
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• Step 4: We estimate the variance of the returns conditional on the

volatility component in a LMSV model as

σ̂2t = σ̂2 exp(x̂
(1)
t|n)

where

σ̂2 =
1

n

n
∑

t=1

z2t exp(−x̂
(1)
t|n).
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Figure 5: Estimation of the conditional variance
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• Step 5: Validation:

� The standardized residuals, ε̂t|n = zt/
√

σ̂2t should be close to

i.i.d (not necessarily Gaussian) and in particular their squares

should be uncorrelated.

Table 5: Ljung-Box test for 100 ac (p-values)

m∗ = 10 m∗ = 60 m∗ = 120

ε̂2t|n 0.000 0.113 0.138
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� We have proposed a robust, general and simple to implement

Wiener-Kolmogorov signal extraction technique based on a local

spectral specification of the signal (either stationary or

nonstationary).
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� We have proposed a robust, general and simple to implement

Wiener-Kolmogorov signal extraction technique based on a local

spectral specification of the signal (either stationary or

nonstationary).

� For that, we propose a pre-whitened (in the frequency domain) sdf

estimator and show its consistency in the whole band of Fourier

frequencies for stationary and nonstationary signals.
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� We have proposed a robust, general and simple to implement

Wiener-Kolmogorov signal extraction technique based on a local

spectral specification of the signal (either stationary or

nonstationary).

� For that, we propose a pre-whitened (in the frequency domain) sdf

estimator and show its consistency in the whole band of Fourier

frequencies for stationary and nonstationary signals.

� It can be used for signal extraction in a general context: economic

mechanisms with different factors for short run and long run

behaviour, measurement errors, rational expectation models,

Realized Volatility contaminated by market microstructure noise etc.



Conclusions

Introduction.

Semiparametric
estimation of volatility

Finite sample behaviour

Application: Dow Jones

Conclusions

IIIt Workshop in Time Series Econometrics Josu Arteche – 32 / 33

� We have proposed a robust, general and simple to implement

Wiener-Kolmogorov signal extraction technique based on a local

spectral specification of the signal (either stationary or

nonstationary).

� For that, we propose a pre-whitened (in the frequency domain) sdf

estimator and show its consistency in the whole band of Fourier

frequencies for stationary and nonstationary signals.

� It can be used for signal extraction in a general context: economic

mechanisms with different factors for short run and long run

behaviour, measurement errors, rational expectation models,

Realized Volatility contaminated by market microstructure noise etc.

� Next step: use the volatility series for asset pricing, risk

management, forecasting, comparison with ARCH based

methods....
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