
Introduction Stochastic Volatility SSA Monte Carlo Empirical Applications Conclusions

Singular Spectrum Analysis for Signal Extraction

in Stochastic Volatility Models

Josu Arteche & Javier Garcia
University of the Basque Country UPV/EHU

VIt Workshop in Time Series Econometrics

Zaragoza, April 2016



Introduction Stochastic Volatility SSA Monte Carlo Empirical Applications Conclusions

Introduction

Two main streams for the modelling of conditional
heteroscedasticity:

• (G)ARCH and extensions: one series of innovations drive both
levels and conditional variances, and the latter (volatilities)
are exact functions of the past.

• SV models: Different series of innovations for levels and
volatilities.
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Introduction

• SV are more flexible and usually provide better fits to financial
time series (Carnero et al., 2004, Franses et al. 2008)
• However, much less popular than (G)ARCH-based models among
empirical researchers because:

• Difficult estimation.

• Difficult extraction of the volatility component. ⇒

SSA is here proposed for estimation of the volatility
in a SV context.
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Stochastic Volatility

SV models are defined as

zt = σtεtwhere

• εt ∼ iid(0, 1),

• σt = σ exp(vt/2) for σ a positive constant scale factor, vt is
the volatility component.
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Stochastic Volatility

Linearizing, yt = log z2t
✞

✝

☎

✆
yt = µ+ vt + ut

where

• µ = log σ2 + E log ǫ2t
• ut = log ǫ2t − E log ǫ2t is a mean zero white noise process with
finite variance σ2

u.
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Stochastic Volatility

Linearizing, yt = log z2t
✞

✝

☎

✆
yt = µ+ vt + ut

where

• µ = log σ2 + E log ǫ2t
• ut = log ǫ2t − E log ǫ2t is a mean zero white noise process with
finite variance σ2

u.

Aim of this work: Extract vt from yt .
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Stochastic Volatility

Characteristics of vt :

• Persistence in the form of:
• Weak dependence (e.g. AR(1)).
• Stationary or nonstationary long memory.
• Level shifts.

In all these cases the periodogram shows a peak at the origin.

• Seasonal or cyclical behaviour in intraday data. The
periodogram shows peaks at seasonal/cyclical frequencies.

In any case the periodogram shows a distinctive behaviour that
allows identification of the signal separatly from the noise.



Introduction Stochastic Volatility SSA Monte Carlo Empirical Applications Conclusions

Stochastic Volatility

Some strategies to extract vt :

• Parametric techniques: Kalman Filter, (Optimal)
Wiener-Kolmogorov filter either in the time domain or frequency
domain....
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Stochastic Volatility

Some strategies to extract vt :

• Parametric techniques: Kalman Filter, (Optimal)
Wiener-Kolmogorov filter either in the time domain or frequency
domain....

• Semiparametric techniques: Semiparametric
Wiener-Kolmogorov for long memory SV models....

• Nonparametric technique: model-free SSA, robust to
misspecification and valid for short memory, long memory and level
shifts with no need to know the kind of behaviour that produces
the peaks in the periodogram.
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Singular Spectrum Analysis

• Main idea: Decompose the series as the sum of a finite number
of components ⇒ Estimate vt by selecting those components that
share spectral characteristics similar to those in the latent signal.
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Singular Spectrum Analysis

• Main idea: Decompose the series as the sum of a finite number
of components ⇒ Estimate vt by selecting those components that
share spectral characteristics similar to those in the latent signal.

• The spectral characteristics of vt can be assessed by those of yt
because, under full uncorrelation between vt and ut :

fy (λ) = fv (λ) +
σ2
u

2π

• Instrument: Periodogram of yt .
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Singular Spectrum Analysis

• Step 1: Let y∗t = yt − ȳ , t = 1, 2, ..., n, the trajectory matrix
Y = [Y1 : ... : YK ] for Yj = (y∗j , ..., y

∗
j+L−1)

′ where 1 < L < n,
is the window length and K = n − L+ 1 (L ≤ K ).

• Step 2: Apply the Singular Value Decomposition (SVD) to Y

Y =
∑

j∈J

√
µjUjV

′
j , Vj =

1
√
µj

Y ′Uj , J = {j such that µj > 0},

where µj and Uj are the j-th eigenvalue and eigenvector of
YY ′. Uj is an L× 1 vector known as Empirical Orthogonal
Function (EOF).

• Step 3: Reconstruction. Select a subgroup ג and form

Yג =
∑

j∈ג

√
µjUjV

′
j .

ג contains the SVD components with EOF’s sharing the same
spectral characteristics as the latent signal.
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Singular Spectrum Analysis

• Step 4: Estimate vt by Hankelization of the matrix Yג as

v̂ ssat =





1

t

t∑

l=1

cl ,t−l+1 1 ≤ t ≤ L,

1

L

L∑

l=1

cl ,t−l+1 L < t ≤ K ,

1

n − t

L∑

l=t−K+1

cl ,t−l+1 K < t ≤ n,

where cj ,k is the (j , k)-th element of the matrix Yג.

• Step 5: The estimated variance of the returns conditional on
the volatility component in a general SV model is

σ̂2
t = σ̂2 exp(v̂ ssat ) , σ̂2 =

1

n

n∑

t=1

z2t exp(−v̂ ssat ).
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Singular Spectrum Analysis

• Step 6: Validation. If the signal extraction is correct the
standardised series ε̂t = zt/σ̂t , should be close to i .i .d .. In
particular their squares should be uncorrelated and a
portmanteau test in the squared standardized series can be
used to check this property. Failure to satisfy this condition
may indicate wrong signal extraction, due perhaps to an
inadequate choice of the set ,ג and the procedure returns to
Step 3. If no improvement is achieved by changing the
components in the reconstruction, the SV model should be
rejected as an appropriate model for the series under
consideration.
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Singular Spectrum Analysis

Selection of tuning parameters:

• The window length L is selected close to and smaller than [n/2]
and multiple of the periodicity of the series (Golyandina et al.
2001).

• ג is selected based on the form of the periodogram of yt :

Iy (λj) =
1

2πn

∣∣∣∣∣

n∑

t=1

yt exp(−itλj)

∣∣∣∣∣

2

at Fourier frequencies λj = 2πj/n, j = 1, 2, ..., [n/2].
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SSA:Selection of ג

Consider a single peak at frequency λ̄. Define the accumulated
periodogram in the interval [λ̄− ω1, λ̄+ ω2], for ω1, ω2 ≥ 0 and a
general series a1, ..., an as

APa(λ̄, ω1, ω2) =

[nω2/2π]∑

j=−[nω1/2π]

Ia(λ̄+ λj)
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Consider a single peak at frequency λ̄. Define the accumulated
periodogram in the interval [λ̄− ω1, λ̄+ ω2], for ω1, ω2 ≥ 0 and a
general series a1, ..., an as

APa(λ̄, ω1, ω2) =

[nω2/2π]∑

j=−[nω1/2π]

Ia(λ̄+ λj)

and the Relative Spectral Contribution (RSC) of frequencies in
that interval as

RSCa(λ̄, ω1, ω2) =
APa(λ̄, ω1, ω2)

APa(0, 0, π)

ג contains those EOF’s with RSCUj
(λ̄, ω1, ω2) > RSCy (λ̄, ω1, ω2).

If λ̄ = 0, ג contains EOF’s with RSCUj
(0, 0, ω2) > RSCy (0, 0, ω2).
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SSA:Selection of ג

Consider now that k spectral peaks at frequencies λ̄i , i = 1, .., k
are identified. The EOFs selected in ג are those showing some of
those peaks in their periodograms.
Define the Multiple Relative Spectral Contribution (MRSC) of
frequencies in the interval [λ̄i − ωi1, λ̄i + ωi2] as

MRSCa(λ̄i , ωi1, ωi2) =
APa(λ̄i , ωi1, ωi2)

APa(0, 0, π)−
∑k

l 6=i ; l=1 APa(λ̄l , ωl1, ωl2)
.

Note that if k = 1 then MRSCa = RSCa. The EOFs selected
satisfy MRSCUj

(λ̄i , ωi1, ωi2) > MRSCy (λ̄i , ωi1, ωi2) for some
i = 1, ..., k .
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SSA:Selection of ג

Consider now that k spectral peaks at frequencies λ̄i , i = 1, .., k
are identified. The EOFs selected in ג are those showing some of
those peaks in their periodograms.
Define the Multiple Relative Spectral Contribution (MRSC) of
frequencies in the interval [λ̄i − ωi1, λ̄i + ωi2] as

MRSCa(λ̄i , ωi1, ωi2) =
APa(λ̄i , ωi1, ωi2)

APa(0, 0, π)−
∑k

l 6=i ; l=1 APa(λ̄l , ωl1, ωl2)
.

Note that if k = 1 then MRSCa = RSCa. The EOFs selected
satisfy MRSCUj

(λ̄i , ωi1, ωi2) > MRSCy (λ̄i , ωi1, ωi2) for some
i = 1, ..., k .

Finally, ωi1, ωi2 can be selected from among those passing the
validation.



Introduction Stochastic Volatility SSA Monte Carlo Empirical Applications Conclusions

Monte Carlo Analysis

n = 2048, σ = 1 and ut = logχ2
1. Processes for vt :

Model 1: (1− B)dvt = σ1wt for d = 0.4.

Model 2: (1− 0.8B)vt = σ2wt .

Model 3: vt = v1t + µt where v1t is the AR(1) in Model 2 and
µt is a level shift of the form:

3a) Deterministic level shift: at = It>n/4 and µt = at − ā.

3b) Stochastic level shifts: µt =
∑t

j=1δjηj .

Model 4: (1 + B2)dvt = σ1wt for d = 0.4.

Model 5: (1− 0.8B2)vt = σ2wt .

Model 6: (1− B)dvt = σ1wt for d = 0.8.

wt and ηj are independent standard normal and δj ∼ B(1, 10/n).
wt , ηr and δs are mutually independent for all t, r , s. Two
NSR = π2 and 5π2 (σ1 =

√
0.5,

√
0.1 and σ2 is adjusted to

equalize variances of vt).
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Monte Carlo Analysis

Tuning parameters:

• L = 1008 (other values give similar results).

• w1 = w2 =
2πk
n

for k = 20, 50 and 100.
Also an automatic criterion: w2 is the largest frequency such
that the peridogram of yt at frequencies lower than w2 are
larger than the first (Q1), second (Q2) and third (Q3)
quartiles of the periodogram ordinates of yt .
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Monte Carlo Analysis

Criteria for finite sample performance evaluation:
• Global typified MCMSE:

MCMSE =
1

n

n∑

t=1

1

σ2
v ,t

1

1000

1000∑

k=1

(v̂t,k − vt,k)
2 (1)

where the subindex t, k indicates observation t in the Monte Carlo
replication k and we standardise by the variance of vt for Models 1
to 5 ( σ2

v ,t = var(v1t) + tp(1− p) in Model 3b). In Model 6 σ2
v ,t is

the variance of the first differences of vt .
• Correlation between the true signal and its SSA estimation.
• Validation: number of times that the squared standardised series
show no autocorrelation (LB(100)).
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Monte Carlo Analysis

Table : MCMSE and correlation between signal and SSA estimates

Low NSR High NSR
SSA SSA SSA SSA WK SSA SSA SSA SSA WK

(k=20) (k=50) (k=100) (Q3) (k=20) (k=50) (k=100) (Q3)
Model 1

0.825 0.872 0.984 0.842 0.788 1.676 2.295 3.162 1.707 4.017
(0.505) (0.521) (0.516) (0.477) (0.545) (0.306) (0.293) (0.276) (0.297) (0.289)
[818] [815] [750] [717] [842] [669] [540] [432] [731] [678]

Model 2
0.770 0.741 0.782 0.859 1.973 1.651 2.154 2.924 2.134 8.536
(0.505) (0.572) (0.608) (0.457) (0.507) (0.304) (0.338) (0.347) (0.261) (0.243)
[402] [699] [824] [265] [568] [689] [611] [506] [592] [732]

Model 3a
0.788 0.740 0.769 0.847 0.885 1.312 1.819 2.619 1.164 1.311
(0.584) (0.641) (0.667) (0.535) (0.642) (0.640) (0.603) (0.561) (0.654) (0.646)
[337] [679] [825] [225] [749] [802] [752] [582] [717] [713]

Model 3b
1.036 1.014 1.012 1.043 4.194 1.334 1.354 1.398 1.332 3.418
(0.758) (0.793) (0.807) (0.742) (0.815) (0.859) (0.847) (0.819) (0.856) (0.857)
[188] [511] [782] [172] [778] [609] [780] [750] [483] [721]

Model 4
0.681 0.790 1.002 0.666 - 2.237 3.239 4.553 1.670 -
(0.539) (0.540) (0.522) (0.517) - (0.308) (0.289) (0.268) (0.315) -
[873] [741] [241] [821] - [511] [175] [25] [745] -

Model 5
0.791 0.819 0.970 0.837 - 2.448 3.243 4.493 2.225 -
(0.543) (0.591) (0.595) (0.488) - (0.309) (0.326) (0.314) (0.261) -
[684] [823] [603] [478] - [481] [226] [39] [557] -
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Monte Carlo Analysis

Summary of the results:
• The signal becomes more difficult to estimate as the NSR
increases.
• The optimal WK filter (Arteche, 2015, ET) beats the SSA in
Models 1 and 6 (long memory SV).
• The SSA beats the WK in the rest of situations.
• Validation: the number of non rejections of no autocorrelation
can be close to the desired 950 for some of the selected boundaries.
• Decreasing the degree of persistence from long memory to short
memory has little effect on the estimation of the volatility.
• In general, the level shifts have a positive effect on the
estimation of the signal.
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Monte Carlo Analysis: Level shifts
Figure : Signal extraction with level shifts, 1 series

(a) Stochastic level shift (low NSR)
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Monte Carlo Analysis: Level shifts

Figure : Deterministic level shifts (Models 3a): Averages

(a) Deterministic level shift (low NSR)
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Monte Carlo Analysis: Gains

The gains are:

G (λ) =
f̂v̂ (λ)

fy (λ)
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Monte Carlo Analysis: Gains

Figure : Gains of SSA filter

(a) Models 1 and 4 (long memory)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

frequency

Gain for Models 1 & 4 (k = 20)
Gain for Models 1 & 4 (k = 50)
Gain for Models 1 & 4 (k = 100)

(b) Models 2 and 5 (short memory)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

frequency

Gain for Models 2 & 5 (k = 20)
Gain for Models 2 & 5 (k = 50)
Gain for Models 2 & 5 (k = 100)



Introduction Stochastic Volatility SSA Monte Carlo Empirical Applications Conclusions

Daily Dow Jones Industrial Index

Sample: 12/12/1996 to 14/11/2015

Figure : Dow Jones returns: Periodograms

(a) Returns (zt)
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(b) Log squared returns (yt)
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Table : SSA estimation of volatility: parameters used and validation

L ω02 p-value LB (100) p-value LB(200)

DJ Index 2268 2π100
4633 0.06 0.29
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Daily Dow Jones Industrial Index

Figure : Dow Jones returns and estimated volatility
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Ibex35 stock index

Intraday returns (every 90 minutes): 1/10/1993 to 22/03/1996.

Figure : Ibex35 filtered returns: Periodograms

(a) Filtered returns (zt)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

frequency

 

(b) Log squared returns (yt)
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Table : SSA estimation of volatility: parameters used and validation

L ω02 ω11 ω12 ω21 p-v. LB (100) p-v. LB(200)

Ibex35 1024 2π10
2400

2π100
2400

2π100
2400

2π70
2400 0.46 0.56
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Ibex35 stock index

Figure : Ibex35 filtered returns and estimated volatility
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Conclusions

• SSA has been proven to be a powerful tool for estimation of
the volatility in SV models.

• It is fully nonparametric: it does not require restrictions on the
volatility component (valid for stationary and nonstationary
series, weak and strong dependent, level shifts...)

• Tuning parameters can be selected based on a validating
criterion.

• It can be used in more general settings for signal extraction.
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