Package 'ggridges'

September 15, 2017

Type Package
Title Ridgeline Plots in 'ggplot2'
Version 0.4.1
Description Ridgeline plots provide a convenient way of visualizing changes in distributions over time or space. This package enables the creation of such plots in 'ggplot2'.
URL https://github.com/clauswilke/ggridges
Depends R (>= 3.2), ggplot2 (>= 2.2.0),
Imports grid (>= 3.0.0), plyr (>= 1.8.0), scales (>= 0.4.1)
License GPL-2 | file LICENSE
LazyData true
Suggests covr, gridExtra, ggplot2movies, forcats, knitr, tidyverse, testthat, vdiffr, viridis
VignetteBuilder knitr
Collate 'data.R' 'ggridges.R' 'geoms.R' 'geoms-geomsv.R' 'geoms-gradient.R'
'scale-cyclical.R' 'stats.R' 'theme.R' 'utils_ggplot2.R'
'utils.R'
RoxygenNote 6.0.1
NeedsCompilation no
Author Claus O. Wilke [cre, aut],
RStudio [cph] (Copyright for ggplot2 code copied to ggridges)
Maintainer Claus O. Wilke <wilke@austin.utexas.edu>
Repository CRAN
Date/Publication 2017-09-15 07:36:48 UTC

R topics documented:

 Catalan_elections .. 2
 geom_density_ridges .. 2
 geom_ridgeline .. 5
 geom_ridgeline_gradient .. 6
geom_density_ridges

Create ridgeline plot

Description

geom_density_ridges arranges multiple density plots in a staggered fashion, as in the cover of the famous Joy Division album Unknown Pleasures.

geom_density_ridges2 is identical to geom_density_ridges except it draws closed polygons rather than ridgelines.

Index

Catalan_elections Results from Catalan regional elections (1980-2015)

Description

Data from Catalan regional elections for 949 municipalities, from 11 elections spanning the years 1980-2015. The data was obtained and processed from Idescat.cat by Marc Belzunces (Twitter: @marcbeldata).

Usage

Catalan_elections

Format

A tibble with 20764 rows and 4 variables:

Municipality
Year
Option The voter option; either "Indy" or "Unionist"
Percent The percentage of the voters choosing the given option
geom_density_ridges

Usage

```r
gem_density_ridges(mapping = NULL, data = NULL, stat = "density_ridges",
panel_scaling = TRUE, na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...)

gem_density_ridges2(mapping = NULL, data = NULL, stat = "density_ridges",
panel_scaling = TRUE, na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...)
```

Arguments

- **mapping**: Set of aesthetic mappings created by `aes()` or `aes_()`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
- **data**: The data to be displayed in this layer. There are three options: If `NULL`, the default, the data is inherited from the plot data as specified in the call to `ggplot()`. A data.frame, or other object, will override the plot data. A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data.
- **stat**: The statistical transformation to use on the data for this layer, as a string.
- **panel_scaling**: If `TRUE`, the default, relative scaling is calculated separately for each panel. If `FALSE`, relative scaling is calculated globally.
- **na.rm**: If `FALSE`, the default, missing values are removed with a warning. If `TRUE`, missing values are silently removed.
- **show.legend**: logical. Should this layer be included in the legends? `NA`, the default, includes if any aesthetics are mapped. `FALSE` never includes, and `TRUE` always includes.
- **inherit.aes**: If `FALSE`, overrides the default aesthetics, rather than combining with them.
- **...**: other arguments passed on to `layer()`. These are often aesthetics, used to set an aesthetic to a fixed value, like `color = "red"` or `size = 3`. They may also be parameters to the paired geom/stat.

Details

By default, this geom calculates densities from the point data mapped onto the x axis. If density calculation is not wanted, use `stat="identity"` or use `geom_ridgeline`. The difference between `geom_density_ridges` and `geom_ridgeline` is that `geom_density_ridges` will provide automatic scaling of the ridgelines (controlled by the `scale` aesthetic), whereas `geom_ridgeline` will plot the data as is. Note that when you set `stat="identity"`, the height aesthetic must be provided.

Note that the default `stat_density_ridges` makes joint density estimation across all datasets. This may not generate the desired result when using faceted plots. As an alternative, you can set `stat = "density"` to use `stat_density`. In this case, it is required to add the aesthetic mapping `height = ..density..` (see examples).
Aesthetics

Required aesthetics are in bold.

- **x**
- **y**
- **group** Defines the grouping. Not needed if a categorical variable is mapped onto **y**, but needed otherwise. Will typically be the same variable as is mapped to **y**.
- **height** The height of each ridgeline at the respective x value. Automatically calculated and provided by `stat_density_ridges` if the default stat is not changed.
- **scale** A scaling factor to scale the height of the ridgelines relative to the spacing between them. A value of 1 indicates that the maximum point of any ridgeline touches the baseline right above, assuming even spacing between baselines.
- **rel_min_height** Lines with heights below this cutoff will be removed. The cutoff is measured relative to the overall maximum, so rel_min_height=0.01 would remove everything that is 1% or less than the highest point among all ridgelines. Default is 0, so nothing is removed.

Examples

```r
# set the 'rel_min_height' argument to remove tails
ggplot(iris, aes(x = Sepal.Length, y = Species)) +
  geom_density_ridges(rel_min_height = 0.005) +
  scale_y_discrete(expand = c(0.01, 0)) +
  scale_x_continuous(expand = c(0.01, 0)) +
  theme_ridges()

# set the 'scale' to determine how much overlap there is among the plots
ggplot(diamonds, aes(x = price, y = cut)) +
  geom_density_ridges(scale = 4) +
  scale_y_discrete(expand = c(0.01, 0)) +
  scale_x_continuous(expand = c(0.01, 0)) +
  theme_ridges()

# the same figure with colors, and using the ggplot2 density stat
ggplot(diamonds, aes(x = price, y = cut, fill = cut, height = ..density..)) +
  geom_density_ridges(scale = 4, stat = "density") +
  scale_y_discrete(expand = c(0.01, 0)) +
  scale_x_continuous(expand = c(0.01, 0)) +
  scale_fill_brewer(palette = 4) +
  theme_ridges() + theme(legend.position = "none")

# use `geom_density_ridges2()` instead of `geom_density_ridges()` for solid polygons
ggplot(iris, aes(x = Sepal.Length, y = Species)) +
  geom_density_ridges2() +
  scale_y_discrete(expand = c(0.01, 0)) +
  scale_x_continuous(expand = c(0.01, 0)) +
  theme_ridges()
```
geom_ridgeline

Plot a ridgeline (line with filled area underneath)

Description

Plots the sum of the y and height aesthetics versus x, filling the area between y and y + height with a color. Thus, the data mapped onto y and onto height must be in the same units. If you want relative scaling of the heights, you can use geom_density_ridges with stat = "identity".

Usage

geom_ridgeline(mapping = NULL, data = NULL, stat = "identity", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_. If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
A data.frame, or other object, will override the plot data.
A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data.
stat The statistical transformation to use on the data for this layer, as a string.
position Position adjustment, either as a string, or the result of a call to a position adjustment function.
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
... other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like color = "red" or size = 3. They may also be parameters to the paired geom/stat.

Aesthetics

Required aesthetics are in bold.

• x
• y
• height Height of the ridgeline, measured from the respective y value. Assumed to be positive, though this is not required.
• group Defines the grouping. Required when the dataset contains multiple distinct ridgelines. Will typically be the same variable as is mapped to y.
• scale A scaling factor to scale the height of the ridgelines. A value of 1 indicates that the heights are taken as is. This aesthetic can be used to convert height units into y units.
• min_height A height cutoff on the drawn ridgelines. All values that fall below this cutoff will be removed. The main purpose of this cutoff is to remove long tails right at the baseline level, but other uses are possible. The cutoff is applied before any height scaling is applied via the scale aesthetic. Default is 0, so negative values are removed.
• color Color of the ridgeline
• fill Fill color of the area under the ridgeline
• alpha Transparency level of color and fill
• group Grouping, to draw multiple ridgelines from one dataset
• linetype Linetype of the ridgeline
• size Line thickness

Examples

d <- data.frame(x = rep(1:5, 3), y = c(rep(0, 5), rep(1, 5), rep(3, 5)),
height = c(0, 1, 3, 4, 0, 1, 2, 3, 5, 4, 0, 5, 4, 1))
ggplot(d, aes(x, y, height = height, group = y)) + geom_ridgeline(fill="lightblue")

geom_ridgeline_gradient

Plot ridgelines and ridgeline plots with fill gradients along the x axis

Description

The geoms `geom_ridgeline_gradient` and `geom_density_ridges_gradient` work just like `geom_ridgeline` and `geom_density_ridges` except that the fill aesthetic can vary along the x axis. Because filling with color gradients is fraught with issues, these geoms should be considered experimental. Don’t use them unless you really need to. Note that due to limitations in R’s graphics system, transparency (alpha) has to be disabled for gradient fills.

Usage

gem_ridgeline_gradient(mapping = NULL, data = NULL, stat = "identity",
position = "identity", na.rm = FALSE, gradient_lwd = 0.5,
show.legend = NA, inherit.aes = TRUE, ...)

geom_density_ridges_gradient(mapping = NULL, data = NULL,
stat = "density_ridges", panel_scaling = TRUE, na.rm = TRUE,
gradient_lwd = 0.5, show.legend = NA, inherit.aes = TRUE, ...)
geom_ridgeline_gradient

Arguments

mapping Set of aesthetic mappings created by \texttt{aes()} or \texttt{aes().} If specified and \texttt{inherit.aes = TRUE} (the default), it is combined with the default mapping at the top level of the plot. You must supply \texttt{mapping} if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If \texttt{NULL}, the default, the data is inherited from the plot data as specified in the call to \texttt{ggplot().}
A \texttt{data.frame}, or other object, will override the plot data.
A function will be called with a single argument, the plot data. The return value must be a \texttt{data.frame}, and will be used as the layer data.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjustment function.

na.rm If \texttt{FALSE}, the default, missing values are removed with a warning. If \texttt{TRUE}, missing values are silently removed.

gradient_lwd A parameter to needed to remove rendering artifacts inside the rendered gradients. Should ideally be 0, but often needs to be around 0.5 or higher.

show.legend logical. Should this layer be included in the legends? \texttt{NA}, the default, includes if any aesthetics are mapped. \texttt{FALSE} never includes, and \texttt{TRUE} always includes.

inherit.aes If \texttt{FALSE}, overrides the default aesthetics, rather than combining with them.

... other arguments passed on to \texttt{layer().} These are often aesthetics, used to set an aesthetic to a fixed value, like \texttt{color = "red"} or \texttt{size = 3}. They may also be parameters to the paired \texttt{geom/stat}.

panel_scaling Argument only to \texttt{geom_density_ridges_gradient().} If \texttt{TRUE}, the default, relative scaling is calculated separately for each panel. If \texttt{FALSE}, relative scaling is calculated globally.

Examples

```r
# Example for `geom_ridgeline_gradient()`
library(viridis)
d <- data.frame(x = rep(1:5, 3) + c(rep(0, 5), rep(0.3, 5), rep(0.6, 5)),
                 y = c(rep(0, 5), rep(1, 5), rep(3, 5)),
                 height = c(0, 1, 3, 4, 0, 1, 2, 3, 5, 4, 0, 5, 4, 1))
ggplot(d, aes(x, y, height = height, group = y, fill = factor(x+y))) +
  geom_ridgeline_gradient() +
  scale_fill_viridis(discrete = TRUE, direction = -1) +
  theme(legend.position = 'none')

# Example for `geom_density_ridges_gradient()`
ggplot(lincoln_weather, aes(x = 'Mean Temperature [F]', y = 'Month', fill = ..x..)) +
  geom_density_ridges_gradient(scale = 3, rel_min_height = 0.01) +
  scale_x_continuous(expand = c(0.01, 0)) +
  scale_y_discrete(expand = c(0.01, 0)) +
  scale_fill_viridis(name = "Temp. [F]", option = "C") +
  labs(title = 'Temperatures in Lincoln NE in 2016') +
  theme_ridges(font_size = 13, grid = TRUE) + theme(axis.title.y = element_blank())
```
geom_vridgeline

Plot a vertical ridgeline (ridgeline rotated 90 degrees)

Description

Plots the sum of the x and width aesthetics versus y, filling the area between x and x + width with a color. Just like `geom_ridgeline()`, but with y and x replaced.

Usage

```r
geom_vridgeline(mapping = NULL, data = NULL, stat = "identity",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...)
```

Arguments

- **mapping**
 - Set of aesthetic mappings created by `aes()` or `aes()`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

- **data**
 - The data to be displayed in this layer. There are three options:
 - If `NULL`, the default, the data is inherited from the plot data as specified in the call to `ggplot()`.
 - A `data.frame`, or other object, will override the plot data.
 - A function will be called with a single argument, the plot data. The return value must be a `data.frame`, and will be used as the layer data.

- **stat**
 - The statistical transformation to use on the data for this layer, as a string.

- **position**
 - Position adjustment, either as a string, or the result of a call to a position adjustment function.

- **na.rm**
 - If `FALSE`, the default, missing values are removed with a warning. If `TRUE`, missing values are silently removed.

- **show.legend**
 - Logical. Should this layer be included in the legends? `NA`, the default, includes if any aesthetics are mapped. `FALSE` never includes, and `TRUE` always includes.

- **inherit.aes**
 - If `FALSE`, overrides the default aesthetics, rather than combining with them.

- **...**
 - Other arguments passed on to `layer()`. These are often aesthetics, used to set an aesthetic to a fixed value, like `color = "red"` or `size = 3`. They may also be parameters to the paired geom/stat.

Aesthetics

Required aesthetics are in bold.

- **x**
- **y**
- **width** Width of the ridgeline, measured from the respective x value. Assumed to be positive, though this is not required.
• group Defines the grouping. Required when the dataset contains multiple distinct ridgelines. Will typically be the same variable as is mapped to x.

• scale A scaling factor to scale the widths of the ridgelines. A value of 1 indicates that the widths are taken as is. This aesthetic can be used to convert width units into x units.

• min_width A width cutoff on the drawn ridgelines. All values that fall below this cutoff will be removed. The main purpose of this cutoff is to remove long tails right at the baseline level, but other uses are possible. The cutoff is applied before any width scaling is applied via the scale aesthetic. Default is 0, so negative values are removed.

• color Color of the ridgeline

• fill Fill color of the area under the ridgeline

• alpha Transparency level of color and fill

• group Grouping, to draw multiple ridgelines from one dataset

• linetype Linetype of the ridgeline

• size Line thickness

Examples

d <- data.frame(y = rep(1:5, 3), x = c(rep(0, 5), rep(1, 5), rep(3, 5)),
 width = c(0, 1, 3, 4, 0, 1, 2, 3, 5, 4, 0, 5, 4, 4, 1))
ggplot(d, aes(x = y, width = width, group = x)) + geom_vridgeline(fill = "lightblue")

ggplot(iris, aes(x = Species, y = Sepal.Width, width = ..density.., fill = Species)) +
geom_vridgeline(stat = "ydensity", trim = FALSE, alpha = 0.85, scale = 2)

Description

ggridges.

lincoln_weather

Weather in Lincoln, Nebraska in 2016.

Description

A dataset containing weather information from Lincoln, Nebraska, from 2016. Originally downloaded from Weather Underground by Austin Wehrwein, http://austinwehrwein.com/. The variables are listed below. Most are self-explanatory. Max, mean, and min measurements are calculated relative to the specific day of measurement.
Usage

lincoln_weather

Format

A tibble with 366 rows and 24 variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST</td>
<td>Day of the measurement</td>
</tr>
<tr>
<td>Max Temperature [F]</td>
<td></td>
</tr>
<tr>
<td>Mean Temperature [F]</td>
<td></td>
</tr>
<tr>
<td>Min Temperature [F]</td>
<td></td>
</tr>
<tr>
<td>Max Dew Point [F]</td>
<td></td>
</tr>
<tr>
<td>Mean Dew Point [F]</td>
<td></td>
</tr>
<tr>
<td>Min Dewpoint [F]</td>
<td></td>
</tr>
<tr>
<td>Max Humidity</td>
<td></td>
</tr>
<tr>
<td>Mean Humidity</td>
<td></td>
</tr>
<tr>
<td>Min Humidity</td>
<td></td>
</tr>
<tr>
<td>Max Sea Level Pressure [In]</td>
<td></td>
</tr>
<tr>
<td>Mean Sea Level Pressure [In]</td>
<td></td>
</tr>
<tr>
<td>Min Sea Level Pressure [In]</td>
<td></td>
</tr>
<tr>
<td>Max Visibility [Miles]</td>
<td></td>
</tr>
<tr>
<td>Mean Visibility [Miles]</td>
<td></td>
</tr>
<tr>
<td>Min Visibility [Miles]</td>
<td></td>
</tr>
<tr>
<td>Max Wind Speed [MPH]</td>
<td></td>
</tr>
<tr>
<td>Mean Wind Speed[MPH]</td>
<td></td>
</tr>
<tr>
<td>Max Gust Speed [MPH]</td>
<td></td>
</tr>
<tr>
<td>Precipitation [In]</td>
<td></td>
</tr>
<tr>
<td>CloudCover</td>
<td></td>
</tr>
<tr>
<td>Events</td>
<td>Specific weather events, such as rain, snow, or fog</td>
</tr>
<tr>
<td>WindDir [Degrees]</td>
<td></td>
</tr>
<tr>
<td>Month</td>
<td>The month in which the measurement was taken</td>
</tr>
</tbody>
</table>
reduce

Reduce a list to a single value by iteratively applying a binary function

Description

Inspired by reduce() from the purrr package

Usage

reduce(.x, .f, ..., .init)

Arguments

.x A list or atomic vector.
.f A 2-argument function. The function will be passed the accumulated value as the first argument and the "next" value as the second argument.
... Additional arguments passed on to .f.
.init If supplied, will be used as the first value to start the accumulation, rather than using x[[1]]. This is useful if you want to ensure that reduce returns a correct value when .x is empty. If missing, and x is empty, will throw an error.

Author(s)

Jonathon Love jon@thon.cc

scale_cyclical

Create a discrete scale that cycles between values

Description

The readability of ridgeline plots can often be improved by alternating between fill colors and other aesthetics. The various cyclical scales make it easy to create plots with this feature, simply map your grouping variable to the respective aesthetic (e.g., fill) and then use scale_fill_cyclical to define the fill colors between you want to alternate. Note that the cyclical scales do not draw legends by default, because the legends will usually be wrong unless the labels are properly adjusted. To draw legends, set the guide argument to "legend", as shown in the examples.
Usage

scale_colour_cyclical(..., values)

scale_fill_cyclical(..., values)

scale_alpha_cyclical(..., values)

scale_linetype_cyclical(..., values)

scale_size_cyclical(..., values)

Arguments

... Common discrete scale parameters: name, breaks, labels, na.value, limits and guide. See discrete_scale for more details.

values The aesthetic values that the scale should cycle through, e.g. colors if it is a scale for the color or fill aesthetic.

Examples

By default, scale_cyclical sets 'guide = "none"', i.e., no legend
is drawn
ggplot(diamonds, aes(x = price, y = cut, fill = cut)) +
 geom_density_ridges(scale = 4) +
 scale_fill_cyclical(values = c("#303000", "#9090F0"))

However, legends can be turned on by setting 'guide = "legend"
ggplot(diamonds, aes(x = price, y = cut, fill = cut)) +
 geom_density_ridges(scale = 4) +
 scale_fill_cyclical(values = c("#303000", "#9090F0"),
 guide = "legend", name = "Fill colors",
 labels = c("dark blue", "light blue"))

Cyclical scales are also available for the various other aesthetics
ggplot(diamonds, aes(x = price, y = cut, fill = cut, color = cut, size = cut, alpha = cut, linetype = cut)) +
 geom_density_ridges(scale = 4, fill = "blue") +
 scale_fill_cyclical(values = c("blue", "green")) +
 scale_color_cyclical(values = c("black", "white")) +
 scale_size_cyclical(values = c(2, 1)) +
 scale_alpha_cyclical(values = c(0.4, 0.8)) +
 scale_linetype_cyclical(values = c(1, 2))

stat_binline Stat for histogram ridgeline plots
\textbf{Description}

Works like \texttt{stat_bin} except that the output is a ridgeline describing the histogram rather than a set of counts.

\textbf{Usage}

\begin{verbatim}
stat_binline(mapping = NULL, data = NULL, geom = "density_ridges",
 position = "identity", ..., binwidth = NULL, bins = NULL,
 center = NULL, boundary = NULL, breaks = NULL, closed = c("right",
 "left"), pad = TRUE, draw_baseline = TRUE, na.rm = FALSE,
 show.legend = NA, inherit.aes = TRUE)
\end{verbatim}

\textbf{Arguments}

- \texttt{mapping}: Set of aesthetic mappings created by \texttt{aes} or \texttt{aes_}. If specified and \texttt{inherit.aes} = \texttt{TRUE} (the default), it is combined with the default mapping at the top level of the plot. You must supply \texttt{mapping} if there is no plot mapping.

- \texttt{data}: The data to be displayed in this layer. There are three options:
 - If \texttt{NULL}, the default, the data is inherited from the plot data as specified in the call to \texttt{ggplot}.
 - A data frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See \texttt{fortify} for which variables will be created.
 - A function will be called with a single argument, the plot data. The return value must be a data frame, and will be used as the layer data.

- \texttt{geom}: Use to override the default connection between \texttt{geom_histogram/geom_freqpoly} and \texttt{stat_bin}.

- \texttt{position}: Position adjustment, either as a string, or the result of a call to a position adjustment function.

- \texttt{...}: other arguments passed on to \texttt{layer}. These are often aesthetics, used to set an aesthetic to a fixed value, like \texttt{color = "red"} or \texttt{size = 3}. They may also be parameters to the paired geom/stat.

- \texttt{binwidth}: The width of the bins. The default is to use bins bins that cover the range of the data. You should always override this value, exploring multiple widths to find the best to illustrate the stories in your data.

 The bin width of a date variable is the number of days in each time; the bin width of a time variable is the number of seconds.

- \texttt{bins}: Number of bins. Overridden by binwidth. Defaults to 30

- \texttt{center}: The center of one of the bins. Note that if center is above or below the range of the data, things will be shifted by an appropriate number of widths. To center on integers, for example, use \texttt{width = 1} and \texttt{center = 0}, even if 0 is outside the range of the data. At most one of center and boundary may be specified.

- \texttt{boundary}: A boundary between two bins. As with center, things are shifted when boundary is outside the range of the data. For example, to center on integers, use \texttt{width = 1} and \texttt{boundary = 0.5}, even if 0.5 is outside the range of the data. At most one of center and boundary may be specified.
breaks Alternatively, you can supply a numeric vector giving the bin boundaries. Over-rides binwidth, bins, center, and boundary.

closed One of "right" or "left" indicating whether right or left edges of bins are included in the bin.

pad If TRUE, adds empty bins at either end of x. This ensures that the binline always goes back down to 0. Defaults to TRUE.

draw_baseline If FALSE, removes lines along 0 counts. Defaults to TRUE.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Examples

```r
ggplot(iris, aes(x = Sepal.Length, y = Species, group = Species, fill = Species)) + geom_density_ridges(stat = "binline", bins = 20, scale = 2.2) + scale_y_discrete(expand = c(0.01, 0)) + scale_x_continuous(expand = c(0.01, 0)) + theme_ridges()

ggplot(iris, aes(x = Sepal.Length, y = Species, group = Species, fill = Species)) + stat_binline(bins = 20, scale = 2.2, draw_baseline = FALSE) + scale_y_discrete(expand = c(0.01, 0)) + scale_x_continuous(expand = c(0.01, 0)) + scale_fill_grey() + theme_ridges() + theme(legend.position = 'none')

require(ggplot2movies)
require(viridis)

ggplot(movies[movies$year>1989,], aes(x = length, y = year, fill = factor(year))) + stat_binline(scale = 1.9, bins = 40) + theme_ridges() + theme(legend.position = "none") + scale_x_continuous(limits = c(1, 180), expand = c(0.01, 0)) + scale_y_reverse(expand = c(0.01, 0)) + scale_fill_viridis(begin = 0.3, discrete = TRUE, option = "B") + labs(title = "Movie lengths 1990 - 2005")

count_data <- data.frame(group = rep(letters[1:5], each = 10),
mean = rep(1:5, each = 10))
count_data$group <- factor(count_data$group, levels = letters[5:1])
count_data$count <- rpois(nrow(count_data), count_data$mean)
ggplot(count_data, aes(x = count, y = group, group = group)) + geom_density_ridges2(stat = "binline", aes(fill = group), binwidth = 1, scale = 0.95) + geom_text(stat = "bin",
aes(y = group+0.9*.count../max(.count.),
label = ifelse(.count.>0, .count., "")),
vjust = 1.2, size = 3, color = "white", binwidth = 1) +
```
stat_density_ridges

Stat for density ridgeline plots

Description

This stat is the default stat used by `geom_density_ridges`. It is very similar to `stat_density`, however there are a few differences. Most importantly, the density bandwidth is chosen across the entire dataset.

Usage

```r
stat_density_ridges(mapping = NULL, data = NULL, geom = "density_ridges",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, bandwidth = NULL, from = NULL, to = NULL,
calc_ecdf = FALSE, quantiles = 5, ...)
```

Arguments

- `mapping` Set of aesthetic mappings created by `aes()` or `aes_()`. If specified and `inherit.aes = TRUE` (the default), it is combined with the default mapping at the top level of the plot. You must supply `mapping` if there is no plot mapping.
- `data` The data to be displayed in this layer. There are three options: If `NULL`, the default, the data is inherited from the plot data as specified in the call to `ggplot()`. A `data.frame`, or other object, will override the plot data. A function will be called with a single argument, the plot data. The return value must be a `data.frame`, and will be used as the layer data.
- `geom` The geometric object to use to display the data.
- `position` Position adjustment, either as a string, or the result of a call to a position adjustment function.
- `na.rm` If `FALSE`, the default, missing values are removed with a warning. If `TRUE`, missing values are silently removed.
- `show.legend` logical. Should this layer be included in the legends? `NA`, the default, includes if any aesthetics are mapped. `FALSE` never includes, and `TRUE` always includes.
- `inherit.aes` If `FALSE`, overrides the default aesthetics, rather than combining with them.
- `bandwidth` Bandwidth used for density calculation. If not provided, is estimated from the data.
from, to The left and right-most points of the grid at which the density is to be estimated, as in `density()`. If not provided, there are estimated from the data range and the bandwidth.

calc_ecdf If TRUE, `stat_density_ridges` calculates an empirical cumulative distribution function (ecdf) and returns a variable ecdf and a variable quantile. Both can be mapped onto aesthetics via `.ecdf` and `.quantile` respectively.

quantiles Sets the number of quantiles the data should be broken into if `calc_ecdf` = TRUE. If it is an integer then the data will be cut into that many equal quantiles. If it is a vector of probabilities then the ecdf will cut by them.

other arguments passed on to `layer()`. These are often aesthetics, used to set an aesthetic to a fixed value, like `color = "red"` or `size = 3`. They may also be parameters to the paired geom/stat.

Examples

```r
# Examples of coloring by ecdf or quantiles
library(viridis)
ggplot(iris, aes(x=Sepal.Length, y=Species, fill=factor(.quantile..))) +
  geom_density_ridges_gradient(calc_ecdf = TRUE, quantiles = 5) +
  scale_fill_viridis(discrete = TRUE, name = "Quintiles") + theme_ridges() +
  scale_y_discrete(expand = c(0.01, 0))

ggplot(iris, aes(x=Sepal.Length, y=Species, fill=0.5 - abs(0.5 - .ecdf..))) +
  geom_density_ridges_gradient(calc_ecdf = TRUE) +
  scale_fill_viridis(name = "Tail probability", direction = -1) + theme_ridges() +
  scale_y_discrete(expand = c(0.01, 0))

ggplot(iris, aes(x=Sepal.Length, y=Species, fill=factor(.quantile..))) +
  geom_density_ridges_gradient(calc_ecdf = TRUE, quantiles = c(0.05, 0.95)) +
  scale_fill_manual(name = "Probability\nranges",
                    values = c("red", "grey80", "blue")) +
  theme_ridges() + scale_y_discrete(expand = c(0.01, 0))
```

theme_ridges

A custom theme specifically for use with ridgeline plots

Description

This theme has some special modifications that make ridgeline plots look better, such as properly aligned y axis labels. It can draw plots with and without background grids (see examples).

Usage

```r
theme_ridges(font_size = 14, font_family = "", line_size = 0.5,
              grid = TRUE, center_axis_labels = FALSE)
```
theme_ridges

Arguments

tabular

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>font_size</td>
<td>Overall font size. Default is 14.</td>
</tr>
<tr>
<td>font_family</td>
<td>Default font family.</td>
</tr>
<tr>
<td>line_size</td>
<td>Default line size.</td>
</tr>
<tr>
<td>grid</td>
<td>If TRUE (default), a background grid is drawn. If FALSE, background is left empty.</td>
</tr>
<tr>
<td>center_axis_labels</td>
<td>If TRUE, axis labels are drawn centered. If FALSE (default), axis labels are drawn right/top-aligned.</td>
</tr>
</tbody>
</table>

Value

The theme.

Examples

Example with background grid
ggplot(iris, aes(x = Sepal.Length, y = Species, group = Species)) + geom_density_ridges(rel_min_height = 0.005) + scale_y_discrete(expand = c(0.01, 0)) + scale_x_continuous(expand = c(0.01, 0)) + theme_ridges()

Example without background grid
ggplot(iris, aes(x = Sepal.Length, y = Species, group = Species)) + geom_density_ridges() + scale_y_discrete(expand = c(0.01, 0)) + scale_x_continuous(expand = c(0.01, 0)) + theme_ridges(grid = FALSE)
Index

*Topic datasets

Catalan_elections, 2
geom_density_ridges, 2
geom_ridgeline, 5
geom_ridgeline_gradient, 6
geom_vridgeline, 8
lincoln_weather, 9
scale_cyclical, 11
stat_binline, 12
stat_density_ridges, 15

aes, 13
aes(), 3, 5, 7, 8, 15
aes_., 13
aes_(), 3, 5, 7, 8, 15

borders, 14
Catalan_elections, 2
cyclical_scale (scale_cyclical), 11
density(), 16
discrete_scale, 12

fortify, 13
geom_density_ridges, 2, 5, 6, 15
geom_density_ridges2
 (geom_density_ridges), 2
geom_density_ridges_gradient
 (geom_ridgeline_gradient), 6
geom_ridgeline, 3, 4, 5, 6
geom_ridgeline(), 8
geom_ridgeline_gradient, 6
geom_vridgeline, 8
GeomDensityRidges
 (geom_density_ridges), 2
GeomDensityRidges2
 (geom_density_ridges), 2
GeomDensityRidgesGradient
 (geom_ridgeline_gradient), 6

GeomRidgeline (geom_ridgeline), 5
GeomRidgelineGradient
 (geom_ridgeline_gradient), 6
GeomVridgeline (geom_vridgeline), 8
ggplot, 13
ggplot(), 3, 5, 7, 8, 15
ggridges, 9
ggridges-package (ggridges), 9
layer, 13
layer(), 3, 5, 7, 8, 16
lincoln_weather, 9

reduce, 11
scale_alpha_cyclical (scale_cyclical), 11
scale_color_cyclical (scale_cyclical), 11
scale_colour_cyclical (scale_cyclical), 11
scale_cyclical, 11
scale_fill_cyclical (scale_cyclical), 11
scale_linetype_cyclical
 (scale_cyclical), 11
scale_size_cyclical (scale_cyclical), 11
ScaleCyclical (scale_cyclical), 11
stat_binline, 12
stat_density, 3, 15
stat_density_ridges, 3, 4, 15
StatBinline (stat_binline), 12
StatDensityRidges
 (stat_density_ridges), 15

theme_ridges, 16