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Abstract

We describe an algorithm for the fitting of multivariate responses using classification and regression trees,
named the intersection-seeking algorithm. Although motivated by problems of record linkage and
imputation of missing values in surveys, the algorithm may be used in other contexts.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the case in which a vector response Y = (Y1, ..., Y,) depends on the vector
of predictors X = (X, ..., X,). We have a training sample of N, cases in which both X and Y
are observed. For an additional Np cases, only X is observed and we are required to produce
fitted values for Y. Thus, we have N = N4+ Np observations with the structure shown in
Fig. 1.

This is a common problem arising when we want to produce a single file with regular
structure out of different files with only a common subset of variables observed (for example,
two files may contain data from two sample surveys which share a common set of questions).
The next section describes an algorithm designed to produce fits using univariate response binary
trees.
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Fig. 1. Structure of the problem. The unshaded area of the table is missing.

2. The intersection-seeking algorithm

Consider the case i, ie{N,+1,...,N}, for which an imputation of Y; is sought. To
simultaneously impute Y; = (Yj, ..., ¥j,), we use the univariate trees @9} constructed for each of
the variables Y;, j=1,...,q, on the predictors in X. They are built with the methodology
described by Breiman et al. (1984) as implemented by Therneau and Atkinson (1997); but a
different strategy can be used (e.g., Murthy et al., 1994).

Assume that when case i is dropped down the trees built for each of the variables in Y, it ends in
the leaves @f.ll), ...,@g]) and hence belongs to the intersection:

1 2
Ci,....i, :@gl)m@gz)m...m@gﬁ‘ N

The simple idea in our method is to impute Y; as a function of the values Y from cases in the
training sample (file A) which also belong to %, ... ;. Those cases have values for each variable
Y1, ..., Y, which, as far as the relevant trees can ascertain, are indistinguishable from the ones of
the case to impute. We can impute using one Y sampled randomly from %, .. ; or several if
multiple imputation is desired.

For instance, let ¢ = 2 and let the trees @()}) and @(ﬁ) have the simple form depicted in Fig. 2.
Let 2 be the space of all possible values of X. A tree of Y on the X induces a partition of Z such
that in each class we have like values of Y. In Fig. 3 the partitions of the Z space induced by trees
@gp and @g?) are shown.

Consider a case to impute 7 such that ¢’ < Xj <a and X, <b”; it will end in leaves @(21) and @(72)
when dropped down the trees @(,}) and @(,?). The intersection of those leaves,

%27 =WV Y'Y 2)

is shown in Fig. 4. We propose to impute Y; using the values of Y observed for cases in the
training sample that also fall in %, 7. The partition of Z° made of all intersections is the coarsest
one such that each intersection contains cases falling in the same leaves when dropped down the
trees @()}) and @()?).

A problem may arise if no cases in the training sample belong to a particular intersection
,,,,, i,—not one of the subjects in the training sample ended in exactly the same leaves as the
subject to impute. When this happens, the intersection needs to be gradually enlarged to a
nonempty set: starting from the leaves @511), ...,@g’) where i ended, our algorithm ““climbs’ the
trees, replacing one node at a time by its “father”. In doing so, we have at each step a choice of ¢
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Fig. 2. Trees @gp and @g?). Next to each nonterminal node is the condition whose fulfillment sends a case through the
right son.
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Fig. 3. Partitions of the 2 space induced by trees %/’ and #).

Xq

Fig. 4. Overlay of partitions of 2" induced by trees @()}) and @(}?), and intersection %5 7.
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trees that we may climb. The goal is to choose each step in such a way that the quality of the
imputation suffers least. Thus, the order of climbing is governed by the deviance—we first climb
the tree where the replacement of a node by its ancestor leads to the least possible increase in
deviance.

3. Simulations

We considered situations with categorical and continuous predictors and responses that were
always continuous. The p-dimensional vector (W, Z) of fully observed variables (the X columns in
Fig. 1) is made of pcart categorical variables (W) and pcon continuous variables (Z). The ¢-
dimensional vector Y of responses (the Y columns in Fig. 1) were generated as functions of the
P = pcat + pcon predictors plus noise: Y = f(W, Z) + ¢, with f() linear or quadratic.

The X = (W, Z) are generated according to the following scheme (the general location model,
briefly described next: see also Olkin and Tate, 1961). The vector W is drawn from a multinomial
distribution. Let d, be the number of levels of variable W, in W (/ =1, ..., pcat); then, W can
take one of D = [[<Y" d, states. If W takes state d, (del, ..., D), then Z|W ~ N(u,, 2). Therefore,
Z is multivariate normal with common covariance matrix and possibly a different mean vector ;
for each combination of levels of the categorical variables.

When f() in Y = f(W,Z) + ¢ is linear, the full vector (X, Y) is generated according to the
general location model; when f() is quadratic, the general location model is only an
approximation. We have investigated both cases. The noise vector ¢ has covariance matrix 1
(correlated noise made little difference and is not reported). The function f() was scaled so that the
signal-to-noise ratio (SNR)—the square root of the ratio of variances of the signal f(W, Z) and
the noise e—could be set at different levels.

Each combination of parameters, picked from each column of Table 1, was used to generate
n = 500 artificial samples. From each sample of size N, the g responses from the last s = 50
observations were deleted and then reconstructed once using two methods:

e The intersection-seeking algorithm (Inter). We imputed once by drawing a single observation
from the intersection.

e The EM algorithm plus data augmentation based on the general location model, as
implemented in the mix library by J. Schafer (available at http://www.stat.psu.edu/"jls/). With
this method, the imputations are values drawn from the distribution of the missing data, given
the observed data and the parameters set at their maximum likelihood estimated values:

Table 1

Summary of simulation setup. Parameters in curly brackets represent alternatives

PCAT PCON q Levels of W SNR N

3 2 3 (3,2,3) {3,5,10} {200,500,1000}
5 0 5 (8,4,4,3,2) {3,5,10} {200,500,1000}
5 5 5 (8,4,4,3,2) {3,5,10} {200,500,1000}
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f (Xinis| Xobs» éML). We are not taking into account the variability of éML (obtained with the EM
algorithm). Hence, these are not ‘“‘bayesianly proper’” imputations (see Schafer, 1997, p. 105).

The first method is non parametric and the second is parametric and assumes data generated by
the general location model. Our objective was to benchmark the intersection-seeking algorithm
and see how much one loses in exchange for the flexibility and relative generality of a non
parametric method, both when the parametric competitor is “right” (f(W, Z) linear) and when it
is not (f(W, Z) quadratic). Each of the methods was trained on N — s observations, then used to
impute the remaining s = 50. The criterion to assess the quality of imputation was the square root
of the average square error of imputation (RMSE), defined as

1 N q ~ 2
RMSE = 5q Zi:N—s—H Zj:l(Y?/ - ¥y

Since the variance of the variables in ¥ is SNR? + 1, the theoretical RMSE, while imputing

each observation by another one randomly chosen from the sample, is y/2(SNR? + 1). The larger

the drop below that achieved by an imputation method, the better.

We used a port to R (described in Thaka and Gentleman, 1996) of the library mix and we have
also written our own functions in R for the intersection-seeking method. We made extensive use
of library rpart (described in Therneau and Atkinson (1997) available from CRAN, http://
cran.at.r-project.org).

Here we report on a subset of results which convey the essential of what we found. Table 2 lists
the average square root of RMSE defined above for different combinations of SNR, sample size
N, pcaT, pcon, ¢ and different types of functional relationship f().

When the general location model is adequate (there is a small number of parameters involved
and the dependency among predictors and responses is linear), the EM estimation plus imputation
by data augmentation (in mix) performs quite well. This happens with Case 1 in Table 2. The
intersection-seeking algorithm does not perform nearly as well.

When the general location model is not adequate (like in Case 2, where the functional
relationship linking responses and predictors is quadratic), the parametric method (mix) is hardly
better than random deck imputation. The performance of the intersection-seeking algorithm also
suffers, but is still better than random imputation, except for the smallest sample size: the trees are
flexible enough to capture at least partially the relationship among predictors and responses.

We have found that even when responses and predictors are related as the general location
model assumes, the intersection-seeking algorithm may be best when N is not large relative to
D =T[5 d, (d, is the number of levels of W,). The last two columns of Table 2 epitomize two
such situations.

Case 3 considers the case with ten predictors (five categorical, five multivariate normal) and five
multivariate normal responses. The smallest sample size (N = 200) has been dropped from the
simulation as it was insufficient to use either method. Even though the observations have been
generated according to the gemneral location model, the non-parametric, intersection-seeking
algorithm does nearly as well for the largest sample size (N = 1000) and looks even slightly better
for N = 500. The reason for this seemingly counter-intuitive result is the following: pcat = 5
categorical predictors with 8, 4, 4, 3 and 2 levels give a total of D = H;zl d, = 768 cells. The
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Table 2
Each figure is the average RMSE of imputation on n = 500 replications
SNR N Case 1 Case 2 Case 3 Case 4
Inter mix Inter mix Inter mix Inter mix
3 200 2.14 1.41 4.95 4.58 — — 2.14 2.97
3 500 1.94 1.42 3.84 4.61 2.32 2.57 1.90 2.60
3 1000 1.92 1.43 3.40 4.56 2.32 2.13 1.92 2.15
2(SNR? + 1) 4.47 4.47 4.47 4.47
5 200 3.05 1.43 8.00 7.40 — — 3.06 4.66
5 500 2.67 1.42 5.90 7.25 3.39 3.94 2.59 3.96
5 1000 2.59 1.42 5.25 7.40 3.38 3.04 2.61 3.02
2(SNR? + 1) 7.21 7.21 7.21 7.21
10 200 5.67 1.41 16.10 14.80 — — 5.63 9.13
10 500 4.77 1.42 11.90 14.60 6.44 7.60 4.58 7.60
10 1000 4.57 1.42 10.40 14.60 6.35 5.57 4.59 5.56
2(SNR? + 1) 14.21 14.21 14.21 14.21
DCAT 3 3 5 5
With levels: (3,2,3) (3,2,3) (8,4,4,3,2) (8,4,4,3,2)
PCON 2 2 5 0
q 3 3 5 5
Dependency: Linear Quadratic Linear Linear

The parameters pcat,pcon and ¢ and the type of dependency among predictors and responses is given below each

column. {/2(SNR?+ 1) is the RMSE achieved imputing with a case randomly chosen among those completely

T

observed.

general location model prescribes one mean vector u, for each cell, totally unrelated to each other.
Clearly, with N = 500 observations, a large portion of those mean vectors cannot be estimated.
The mix library replaces the global mean vector g when there is need to impute a case with a
combination of the pcat levels not seen in the training sample. No advantage is taken of the fact
that, perhaps, a ““similar’” though not equal combination of levels is present in the training sample.

As compared to this, the intersection-seeking algorithm imputes from a pool of similar cases in
an intersection of leaves. If the intersection is empty in the first instance, it will be enlarged
gradually and a case will be drawn from the first nonempty intersection, rather than from
the whole training sample; this accounts for its superiority when N is not large relative to
D =TI d.

This superiority is all the more noticeable when there are no continuous predictors (Case 4).
The general location model has a clear advantage at capturing linear relationships among
continuous variables; trees can only give a coarser, step-like approximation to those relations. But
when there are no continuous predictors and N is not large relative to D (Case 4 in Table 2), the
intersection-seeking algorithm performs at its best although the general location model recovers
some ground as the sample size increases.
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One of the referees pointed to us that binary trees are known to be biased towards splitting on
categorical variables with many levels (see for instance Loh, 2002). Our predictors in W have
always a modest number d, of levels: increasing those would no doubt make the job of the trees
harder, but would also make D = [[/Y" d, much larger. Short of using a huge sample size, the
contingency table generated by W would have most of its cells empty, and most of the mean
vectors u,; would not be estimable. Hence, the mix library would be predicting most of the time
with the global mean vector u, and the comparison would no longer be fair.

4. Summary and conclusions

A method for multivariate approximation has been presented. It can cope with a large variety
of problems, because of the generality of the tool used for approximation—classification or
regression trees. It makes few assumptions, is computationally feasible, and appears to give good
results: in simulated data, the method works well whenever the common variables X are good
predictors for the Y's (see Fig. 1) and the functional relationship among predictors and responses
can be approximated reasonably well by a tree.

The method has been tested on simulated and real data sets of relatively large size (see Barcena
and Tusell, 1999, 2000) and can also be extended to cope with irregular patterns of missingness in
the data (see Barcena, 2001).
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