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We address the estimation of cost of living indices from time series which are incomplete, in a way
that exploits all available information, while also giving an indication of the uncertainty associated
with the estimation. The method used allows for multiple sources of prices for a single item, extend-
ing over the same or partially overlapping time ranges. We describe summarily the methodology and
demonstrate its use in the estimation of a cost of living index for Biscaye (North of Spain), for the
period 1862–1940.

1. Introduction
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be the vector of prices of n items at time t. Similarly, let
qt be the vector of quantities (or weights) of said items, also at time t. Two popular
index numbers are those named after Laspeyres and Paasche. Those indices at time
t = 1 with base at time t = 0 are given by
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The numerators in formulae (1)–(2) are the values of a basket made of items
i = 1, . . . , n at the prices prevailing at time t = 1. The denominator is the value of
the same basket at the prices prevailing at time t = 0. The difference between the
two indices is in the basket object of valuation, which is made of quantities

Note: We thank, for constructive comments and ideas, Esther Ruiz and Juan Romo, two anony-
mous referees, the editor and participants at seminars in Bilbao, Pamplona and Madrid. P. M.
Pérez-Castroviejo was supported by MCyT (grant BEC2002-03927) and UPV/EHU (grant UPV-
12.321-H-14860). F. Tusell was supported by (grant 9/UPV 00038.321-13631/2001) and MCyT (grant
BEC2003-02273).

*Correspondence to: Fernando Tusell, Departamento de Econometría y Estadística, Facultad de
CC.EE. y Empresariales, Avenida Lendakari Aguírre, 83, E-48015 Bilbao, Spain (fernando.tusell@
ehu.es).

Review of Income and Wealth
Series 53, Number 4, December 2007

© 2007 The Authors
Journal compilation © 2007 International Association for Research in Income and Wealth Published
by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden,
MA, 02148, USA.

673



q1
0
, . . . , qn

0
for ILasp and quantities q1
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1
for IPaas. There are proposals

theoretically superior to ILasp and IPaas, like the so-called “ideal index number of
Fisher” (see Vogt and Barta, 1996, p. 14),

I I IF
def

P LISHER AAS ASP
= ⋅ ;

but the differences between IFisher and either of ILasp or IPaas are usually small (cf.
Feinstein, 1998, p. 639).

Whether we use ILasp, IPaas, IFisher or, indeed, most anything else which has been
put forward as an index number, we need the full vector of prices for both t = 1 and
t = 0, if we are going to compare the index values at those time points. This poses
a problem, for that information is usually unavailable, either because the sources
are incomplete—as is frequently the case with historical registers—or because the
price series are intrinsically unobservable—as is the case of agricultural prices,
only observed seasonally.

A solution, admittedly ad hoc but frequently used, is to set the missing prices
at plausible values. Sometimes, resort is made to simple linear interpolation (Reher
and Ballesteros, 1993, note 31). Another solution is to restrict the computation in
both numerator and denominator of (1)–(2) to items for which we have prices
available. This is easy to implement but not exempt from problems: it makes the
index numbers inhomogeneous over time. In extreme cases, the value of the index
at time points with scarce information may reflect the prices of only a tiny minority
of the items.

Our proposal proceeds differently: we impute unobserved prices, so expres-
sions (1)–(2) are always computed for the same basket of items, with partly
observed and partly imputed prices. This preserves the conceptual homogeneity of
the index, which is always the ratio of values of the same basket of items at two
different points in time.

Clearly, this is not problem free: for one thing, we cannot consider on an equal
footing prices really observed and imputed prices. The imputation process creates
the fiction that all the prices have been observed, when in fact some of them have
been “fabricated.” We have to account for the uncertainty introduced in the
imputation process.

We present in the following a methodology to deal with incomplete and
overlapping time series in the computation of price indices. In order to make the
description concrete, we consider a particular historical data set, whose pecu-
liarities epitomize well the problems and features the historian or economist is
likely to find in the construction of indices. It will become apparent in the sequel
that the methodology proposed is quite general and not limited to the example
shown.

The rest of this paper is structured as follows. Section 2 describes the
sources of several data sets with prices from the province of Biscaye (North of
Spain) in the period 1862–1940. Section 3 introduces the model and the tech-
nique used. Section 4 presents and comments on the results obtained. Finally,
Section 5 provides some context of our work and mentions refinements, appli-
cations and extensions.

Review of Income and Wealth, Series 53, Number 4, December 2007

© 2007 The Authors
Journal compilation © International Association for Research in Income and Wealth 2007

674



2. Data

Some modelling decisions have been made in the light of the data, and require
an understanding of it. We therefore revert to the common practice of proposing
a model, then illustrating its use, and describe first the problem to better motivate
the model later.

2.1. Prices

The information used has been described at length in Pérez-Castroviejo
(2006). It consists of price time series from different sources in Biscaye. They
extend over different intervals in the range 1862–1940. Table 1 and Figure 1 give a
synopsis of the number of series available from each source and the years they
cover. We comment briefly on the sources and features of the data.

The time series from the Cooperativa de Altos Hornos de Vizcaya1 give prices
charged to workers for basic food staples and other items. Presumably, these prices
were lower than those charged in retail shops to the public at large.

Another source of data is the Ayuntamiento2 de Barakaldo,3 which compiled
statistics of average annual retail prices for a variety of consumption items, stretch-
ing over the periods 1891–99 and 1906–27. In the second period, the statistics
covers more items. The Ayuntamiento de Bilbao also published series of average
annual retail prices for 1913–40.

The time series from the Hospital Civil de Basurto4 come from the account
books of that institution. These are prices that can be assumed below street prices,
given the large quantities purchased by the hospital.

The Boletín Oficial de Vizcaya5 also provides time series with average annual
retail prices at two locations, Bilbao and nearby Valmaseda, for the period 1862–90.

1Altos Hornos de Vizcaya was established in 1902, the outcome of a merger of several preexisting
iron and steel producing companies. It has since been the flagship of the steel industry in Biscaye, up
until the end of the 20th century. The Cooperativa offered workers consumption goods at preferential
prices. Prices predating 1902 come from similar cooperatives in existence at the merged companies.

2Local Council.
3Barakaldo is an industrial town, close to Bilbao. It hosts in particular a large part of the

operations of Altos Hornos de Vizcaya.
4The Hospital Civil de Basurto opened its doors as a privately promoted charity in 1908. The

archives contain information from the former Hospital de Bilbao (Achuri) prior to 1908.
5A publication of the Diputación de Vizcaya, the provincial authority. It carried statistical infor-

mation among other things.

TABLE 1

Summary of Data Sources

Source Period Series

Boletín Oficial de Vizcaya (Valmaseda) 1862–1890 10
Boletín Oficial de Vizcaya (Bilbao) 1862–1890 10
Hospital Civil de Basurto 1879–1935 25
Santa Casa de Misericordia de Bilbao 1881–1924 13
Ayuntamiento de Barakaldo 1891–1899 18
Cooperativa Altos Hornos de Vizcaya 1893–1903 22
Ayuntamiento de Barakaldo 1906–1927 45
Boletín Estadística Ayto. de Bilbao 1913–1940 36
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Finally, the account books of the Santa Casa de Misericordia de Bilbao6 also
provide information on prices. As with the Hospital Civil de Basurto, these are
neither retail nor wholesale prices, but can be assumed lower than retail prices for
equal qualities.7

Pérez-Castroviejo and Martínez-Mardones (1996) provide some background
for several of the sources mentioned. The paper also contains information on the
evolution of consumption patterns in the period 1840–1940.

Some of the series have been discarded, either because the information they
provide is extremely sparse or because they are manifestly incoherent with the rest
of the prices for the same item. The number of series finally used is thus consid-
erably reduced from that presented in Table 1. The upper panel of Figure 2 shows

6The Santa Casa de Misericordia de Bilbao, a charity, was established in its present location in
1872, but the institution was in existence before. It served first as orphanage, then as a house for elderly
persons.

7Aside from their buying power, institutions such as the Hospital de Basurto and Santa Casa de
Misericordia likely made their purchases through medium or long term contracts. As Ballesteros (1997)
points out, such practice makes prices less responsive to short term fluctuations. Since data consist for
the most part of average annual prices, we do not think this is a problem, as it would have been had we
tried to compute, say, a monthly price index.

YearYearYearYearYearYearYearYearYearYear

CoopAHV

Baracaldo

Basurto

Bilbao

Bilbao (Ayto)

Misericordia

Valmaseda

1860 1880 1900 1920 1940

Figure 1. Time Span of the Time Series Provided by Each Source
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the number of series used for each year of the period 1862–1940. The lower panel
shows the total weight over time of the items entering the indices which have been
observed from at least one source. (We have computed two price indices, with
weights aimed at approximating the consumption structure circa 1876 and 1906
respectively.)

It is apparent that statistical information is very sparse for the years from
1862 to 1872, and completely non-existent from 1873 to 1875 (Carlist war). On the
other hand, from 1920 onwards virtually all prices have been observed from at
least one source (and usually more than one).

It is worth pausing for a moment to consider the peculiarities of the time series
just described, as they will condition our choice of method later. First, all of the
time series extend over only part of the period 1862–1940, sometimes overlapping
(except for 1873–1875, as mentioned).

Second, even for items nominally the same—beef, wine, coffee—different
series provide in general different prices. On the one hand, we are using a mixture
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Figure 2. Number of Time Series Available by Year (Top Panel) and Total Percentage Weight of
Items Observed from At Least One Source, for Each of the Two Weightings Used (Bottom Panel)
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of sources, giving retail, cooperative and institutional prices. On the other hand, it
is possible (and likely) that there are differences in the qualities surveyed by the
different sources. Sometimes the differences are apparent from the sources (e.g.
“beef with bones” and “beef with no bones”); sometimes they can only be sus-
pected.

Thus, about the only thing we can expect for time series referring to the same
item but coming from different sources is that they display a similar profile,
even if at a different level. For instance, if it were the case that a certain item was
offered by the Cooperativa de Altos Hornos de Vizcaya to its workers at a price
pt

AHV
about 15 percent less than retail prices pt, we would expect p pt t

AHV ≈ 0 85.
over the range where pt and pt

AHV
were both observed. As we shall see, the

statistical model used for merging information from different sources allows (and
automatically performs) the adjustments needed.

As an example, Figure 3 shows the price time series available for wheat bread.
It can be seen that there is good agreement among the profiles of all series, even if
some of them appear shifted with respect to the others.

A final comment refers to the fact that prices are either yearly averages,
presumably computed from a sample, or prices obtained from the records of
institutions which, however large, account for only a tiny fraction of the total
volume negotiated in the market. In either case it makes sense to view those prices
as composed of “signal plus noise.” In other words, we take pit = sit + eit, where pit,
the observed price at time t of item i, is the “true” average price sit (the “signal,”
which we might compute, at least in principle, had we exhaustive knowledge of all
transactions carried in the market) plus a random variable eit accounting for the
observation error.
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Figure 3. Wheat Bread Prices from Different Sources
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2.2. Expenditure Structure

The computation of indices such as those in expressions (1)–(2) requires the
specification of a vector of quantities or coefficients qt giving a measure of the
relative importance of each item in family expenditure. Pérez-Castroviejo (2006)
provides two different weightings, for the periods starting in 1876 and 1906. They
have been obtained through consideration of over 20 dietaries of working class
families and the budgets and accounts of the Santa Casa de Misericordia. The
weights arrived at are shown in Table 2.

The reason we have opted for two different sets of weights is that, starting
in the first decade of the 20th century, new items became commonplace in the
budgets of working class families. Somewhat later, the same items could be
observed in the documentation from the institutions, which, albeit with a lag,
reproduced external expenditure patterns (Pérez-Castroviejo and Martínez-
Mardones, 1996; Pérez-Castroviejo, 2006).

Food accounted for the largest share of expenditure in workers’ families. The
basic diet included only a few staples (bread, meat, vegetables, wine, rice, oil and
potatoes). In the first decade of the 20th century, this diet was enlarged and
diversified to include fresh fish, milk, eggs and sugar. Bread, meat and vegetables
remained the basis of the diet in both periods, though. Expenditure on food

TABLE 2

Weights for the Cost of Living Indices in Biscaye. Two Different Sets of Weights are Given,
for the Periods 1876–1905 and 1906–36

Group/Item

1876–1905 Weight in 1906–1936 Weight in

Index Group Index Group

Food 70.00 100.00 63.00 100.00
Bread 26.60 38.00 17.64 28.00
Meat 13.30 19.00 13.23 21.00
Wine 7.70 11.00 5.67 9.00
Oil 4.20 6.00 5.04 8.00
Vegetables 10.50 15.00 6.93 11.00
Rice 2.80 4.00 2.52 4.00
Potatoes 4.90 7.00 5.04 8.00
Sugar 1.26 2.00
Fresh fish 2.52 4.00
Milk 1.89 3.00
Eggs 1.26 2.00
Housing 13.00 100.00 14.00 100.00
Rents 13.00 100.00 14.00 100.00
Clothing 7.00 100.00 10.00 100.00
Cotton cloth 7.00 100.00 6.00 60.00
Linen cloth 2.00 20.00
Wool cloth 2.00 20.00
Toiletries 4.00 100.00 5.00 100.00
Soap 4.00 100.00 5.00 100.00
Fuel and energy 6.00 100.00 8.00 100.00
Charcoal and firewood 6.00 100.00 3.60 45.00
Coal 3.60 45.00
Electricity 0.80 10.00

Source: Table 1 in Pérez-Castroviejo (2006).
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declined from about 70 percent in the last quarter of the 19th century to about 63
percent in the first third of the 20th century.

Even though food was all important, the indices constructed also weight
expenditure in housing (rents), toiletries (soap) and energy (coal, charcoal and
firewood in the first period, with electricity entering in the second period). Expen-
diture on these items increased seven percentage points from the first period to the
second, to make up for the decline of the same magnitude in food expenditure.

3. The Statistical Model For Imputation

In principle, any model giving a good fit can be used for the imputation of
missing data, with the requirement that it keeps the number of parameters to be
estimated moderate relative to the number of effective observations. We have
found particularly useful local level and local linear trend models (Harvey, 1989;
Harvey et al., 2004), which can be cast as state–space models. The estimation by
maximum likelihood of such models is simplified by the use of the Kalman filter
(Harvey, 1989; Durbin and Koopman, 2001). We describe in the following several
alternative models which seem plausible, and the alterations we have made to have
them suit our needs. While these models are adequate for the problem at hand, it
should be remarked that further elaboration is possible. For instance, seasonal
effects could be handled if we had monthly data. See Harvey and Chung (2000) for
an application which demands a more elaborate model than ours.

Local Level Model

Let yit be an observation at time t of the price of item i, 1 � i � p. We can
consider such observation generated as:

yit it it= +α ε(3)

(see last paragraph of Section 2.1), where ait is the “state,” in principle unobserv-
able, of the average price of item i at time t; eit is the observation error. Stacking
equations (3) for 1 � i � p in a single matrix expression we have the observation
equation

y Zt t t t t t= + = +a e a e(4)

with Zt = I.
Let us assume et ~ N (0, Ht). We can choose the covariance matrix Ht so that

the observation errors are correlated or uncorrelated. (We can also take Ht = 0, if
we consider that yit are observations of ait with no error whatsoever.) In our
application, it seems natural to consider observation errors uncorrelated and hence
diagonal Ht.

Our goal will be to obtain estimates �a t of at, the state vector, for all t. One
possibility is to assume the state vector evolves with a particular simple dynamics,
given by the state equation
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a a ht t t+1 = + ;(5)

ht is a random vector driving the price vector from time t to t + 1. We shall assume
ht ~ N (0, Qt).

The choice of the covariance matrix Qt controls, among other things, the
degree of correlation between components of the state vector ait, ajt, i � j. We can
opt for independent (diagonal Qt) or non-independent (general Qt) random walks.
In our application, it seems natural to consider non-diagonal Qt: we expect average
prices of the different items to evolve in a similar fashion, hence showing positive
correlation.

The model made up of equations (4)–(5) with the assumptions mentioned is
simple, flexible and intuitively appealing. In general, though, the covariance matri-
ces Ht and Qt will be unknown and hence require estimation; and this will almost
invariably force some compromises.

First, we will consider only time invariant covariance matrices: Ht = H and
Qt = Q for all t, and, as stated previously, we will take H diagonal.

Second, even if we set Qt = Q invariant over time, the number of parameters
to estimate may be quite substantial. A simplifying assumption which drastically
reduces the number of parameters is to prescribe identical correlation between
components ait, ajt, for all i, j, i � j. For a state vector at of dimension p this takes
down the number of parameters in Q from p(p + 1)/2 to p + 1. Assuming identical
correlations is consistent with the idea that prices move, on average, in the same
direction.8 We will call the local level model with this assumption the equicorrelated
local level model.

If there were prices evolving in a markedly different way, we could consider
equicorrelation by groups of products, with a less dramatic, but still substantial,
drop in the number of parameters to be estimated. Matrix Qt = Q would then have
p variances plus one correlation to estimate for each homogeneously correlated set
of prices; we will refer to this model as the group equicorrelated local level model.
This is pursued in Section 4.

Local Linear Trend Model

We can choose a different dynamics instead of the simple random walk of
equation (5). We might consider replacing (5) with

a a b ht+ t t t1 = + +(6)

b b dt+ t t1 = + .(7)

If bt were fixed, we would have a random walk with drift for at. If, however,
bt evolves according to a random walk, we have a local linear trend; bt plays the
role of a local slope at time t. Now equation (4) is replaced with

8Aside from being a reasonable assumption, it makes it easy to check that Q is positive semidefinite
(Abadir and Magnus, 2005, Problem 8.74). This is helpful when we use an iterative algorithm to
estimate Q and want to check at the end of each iteration that we are within the feasible set.
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y I Z *t
t

t
t t t t= [ ]⎡

⎣⎢
⎤
⎦⎥

+ = +0
a
b

e a e* ,(8)

where in the new vector state a t* we have stacked at and bt. The state evolves now
as

a a nt t t tT *+1* = +(9)

with Tt an upper block triangular matrix made of unit matrices Ip and
n b dt

T
t
T

t
T= [ ]T (see details in Durbin and Koopman (2001) or Harvey (1989)). We

shall assume nt ~ N (0, Nt), with covariance matrix Nt that we can (and will) restrict
conveniently, to prevent proliferation of parameters.

Multiple Sources and Repeated Observations

A common problem, conspicuously present in what follows, is the availability
of price observations coming from different sources for the same item i and time t.

If observations were entirely homogeneous, there would be no problem: we
could take the average of all observed prices for each item and point of time.
However, as discussed in Section 2.1, this is not the case here. Prices observed
correspond to (possibly) different qualities and different contractual conditions:
institutional prices akin to wholesale prices, retail prices, cooperative prices, some-
where in between the two previous categories, etc.

Thus, it is not practical or even possible, unless we have very detailed infor-
mation of the different qualities, markups, etc, to try to manually synthesize all
information from different sources to come up with a single price time series for
each item. If, however, we can make the already mentioned assumption of pro-
portionality of prices coming from different sources, a simple alteration in our
model will let us use all available information, aligning redundant time series as
part of the estimation process.

Consider, for instance, two different sources, A and B, both giving prices for
item i at time t. Assume that source A provides retail prices yit

A for the finest
quality of item i, while B provides wholesale prices yit

B for a lesser quality. We can
imagine yit

A and yit
B being generated as follows:

yit
A

it it
A= ⋅ +1 α ε

yit
B

iB it it
B= ⋅ +δ α ε

with diB a coefficient to be estimated. (In a situation such as the one described, we
would expect diB < 1.) In the model made up of equations (4)–(5) or (8)–(9) we only
have to take an appropriate Zt. The coefficient diB can be estimated with the rest of
the parameters in the model.

The procedure sketched nicely generalizes some ad hoc methods used in price
indices, when there are changes in the quality of the items surveyed (see OECD
(1984, p. 16) for a description of common practices).
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Various other models suggest themselves. One referee proposed a local linear
trend model with prices in the log scale as a plausible a priori alternative, and this
has also been considered in the following. When modeling the log of prices,
however, the observation equation has to be modified somewhat: rather than
yt = Ztat + et with adjusting parameters in Zt multiplying elements of the state
vector, additive adjusting parameters are required. Thus, the state space model
becomes

a a ht t t tT+1 = +(10)

y Z G ut t t t t t= + +a e ,(11)

where entry gij in matrix Gt is the additive parameter required to align the i-th
component of yt. Matrix Zt has a 1 in position (i, j) if element i of yt is the price of
one of the variants of item j, and ut is a vector of dummy variables (Harvey (1989,
§ 8.6) offers examples of the multivariate state space model with explanatory
variables).

In the model given by (10)–(11) or any of the variants previously discussed, it
is assumed that time series giving prices for the same item follow trajectories that
are approximately proportional to each other (or parallel, when working with log
prices). The observation matrix Zt (or Gt) accounts for the differences in level, as
discussed previously. It is also assumed that et and ht are zero mean uncorrelated
Gaussian sequences (hence, at are yt are also Gaussian). In the absence of Gaus-
sianity, the algorithms used (Kalman filter and smoother) still give estimates of
the state vector which are optimal in the least squares sense among all linear
estimators.

The model with equicorrelated matrix Q may seem unduly restrictive. While
we feel that a common trend in prices is the overwhelming effect to account for,
there is room for some more structure. A general Q is out of the question, as its
specification would require far more parameters than the length of the series
allows; but the hypothesis of groups of products displaying higher correlation
among themselves than with the rest can be entertained.

Products can be grouped on a priori grounds (foods, energy, clothing . . . ) or
on the basis of empirical correlations. We have followed the last route, fitting the
simplest local level model, and computing estimates of the state disturbances
ˆ ˆ ˆh a at t t= −+1 . The distance between items i, j is then defined as dij ij= −1 ρ̂ , where
ρ̂ij is the estimated correlation between η̂it and η̂ jt . Then, an agglomerative
cluster algorithm with complete linkage (see, for instance, Kaufman and Rous-
seeuw, 1990) is run to produce the dendrogram in Figure 4.

There seems to be some structure: most foodstuffs appear clustered together,
with the exception of rice. Some non-food items like housing rents, cotton cloth
and charcoal appear in a cluster by themselves. As a compromise, partly account-
ing for the correlation structure but keeping the number of new parameters to a
minimum, we have taken three broad clusters, with foodstuffs and some non-food
items in one cluster, rice and electricity in the second, and housing rents, cotton
cloth and charcoal in the third.
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4. Results

After discarding series too short to justify inclusion or clearly of very poor
quality, we were left with 52 series extending over (part of) 79 years. If all time
series were fully observed, there would be 4,108 observations; instead, we only
have 1,849 non-missing observations, i.e. 45.01 percent of the total.

The number of items considered is 19 (see Table 2). This requires a state
dimension of 19 for a local level model, or 38 for a local linear trend model, and
that many variances in Q need to be estimated. Equicorrelation of group equicor-
relation with three groups adds (respectively) one or three correlations to be
estimated. In all cases, we have 52 variances to be estimated in H. To this, we have
to add the adjusting parameters in Z (or G, if the model is specified in the log scale
and the adjustment of varieties of the same item is through additive constants for
each variety: these total 52 - 19 = 33 parameters). Thus, for instance, we have for
the local level model with simple equicorrelation a total of 19 + 1 + 52 + 33 = 105
parameters. Group equicorrelated models use an extra two correlations. Local
linear trend models use a state vector twice as large, hence 38 variances rather than
19 in Q. Other than that, two correlations are used (one for the “level” components
of at, another one for the slope components) instead of one, hence an extra 20
parameters over the local level counterparts.

We fitted the models summarized in Table 3. All computations were pro-
grammed in R (described in R Development Core Team, 2007). Code is available
from the second author.

In Table 3, the third column gives the value of the maximized likelihood.
Although the numeric values are similar, they are only comparable among models
specifying the response in the same scale (original or in logs). The fourth column
p gives the number of parameters as described above; we might call these hyper-
parameters. The fifth column, “edf,” gives the “equivalent degrees of freedom” as
described in the following.
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Consider the simplest possible univariate state space model,

yt t t= +α ε(12)

α α ηt+ t t1 + .=(13)

If sh = 0 and se > 0, clearly a1 = a2 = . . . = aT = a say, and the best fit of yt

for t = 1, . . . , T is α̂ : we are using a model which effectively reduces to fitting a
single parameter to all yt and thus consumes a single degree of freedom. On the
other hand, if sh is large compared to se, at can closely track yt. In the limit, when
sh/se, •, we would be effectively fitting one α̂t to each yt for a total of T effective
degrees of freedom used (and none left).

Similarly, for a general state-space model, stacking y1, . . . , yT on a vector y,
doing likewise with �a1 , . . . , �aT , and making Z a block-diagonal matrix with
blocks Z1, . . . , ZT, it can be shown (cf. Durbin and Koopman, 2001, § 4.6) that,

� �y Z Sy= =a(14)

for a certain smoother matrix S which is dependent on the covariance matrices Q
and H. If S were a unit matrix, we would have a perfect fit—and no degrees of
freedom left. We can take trace (S) as a reasonable measure of the “equivalent
degrees of freedom” used by the state-space model (for the rationale of that, see
Hodges and Sargent (2001); see also Hastie and Tibshirani (1991 § 3.5).

If the observations are of dimension k, S is a kT ¥ kT matrix whose direct
computation involves an inverse of possibly very large size. Fortunately, only the
trace is needed, and it can be shown that the diagonal blocks of S can be obtained

TABLE 3

Summary of Models Fitted

Model Response log f x, q̂( ) p edf AICc

Local level
Qt = equicorrelated,
Ht = diagonal

yt 1,442.08 105 525 -1,416.55

Local level
Qt = group equicorrelated,
Ht = diagonal

yt 1,404.32 107 671.1 -699.74

Local level
Qt = equicorrelated,
Ht = diagonal

log(yt) 1,543.04 105 738.3 -625.49

Local level
Qt = group equicorrelated,
Ht = diagonal

log(yt) 1,651.47 107 691.8 -1,090.33

Local linear trend
Qt = equicorrelated,
Ht = diagonal

yt 1,576.09 125 627.9 -1,249.22

Local linear trend
Qt = equicorrelated,
Ht = diagonal

log(yt) 1,763.22 125 811.1 -633.75
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as a by-product of running the Kalman filter and smoother (Fahrmeir and Wagen-
pfeil, 1997). In our case, the diagonal blocks of S are given by Z V Z Ht t t

T
t
, where Vt

is the covariance matrix of the smoothed state given by the Kalman smoother.
The fifth column of Table 3 gives the equivalent degrees of freedom used by

the different models computed as

trace traceS Z V Z Ht t t
T

t( ) = ( )
=
∑
t

T

1

.

As can be seen, models are very heavily parameterized, using between 525.0
and 811.1 equivalent degrees of freedom.

From the value of maximized likelihood and the equivalent degrees of
freedom used (or “equivalent parameters”), we could compute the AIC criterion
(Akaike, 1972), to help choose a model (at least, among those with the response in
the same scale). AIC is known to perform poorly with heavily parameterized
models (which is the case here). Hence, we have turned to a similar criterion, AICc
(Hurvich and Tsai, 1989); see also Bengtsson and Cavanaugh (2006). This is the
value in the last column of Table 3.

We settled for the local level equicorrelated model with yt as response. It looks
clearly best in terms of AICc among models having yt as response. Regarding the
models fitted to log(yt), they all use a larger number of equivalent parameters,
which is uncomfortable since the effective size of the sample is relatively small.
Aside from that, while having some advantages, use of the log scale also has
inconveniences. One is that the smoothed state vectors �a t give estimates of the
underlying log prices and their variances. Given a set of weights wi, there is no
problem in computing the index as:

I
w

w
t

i iti

p

i ii

p=
( )

( )
=

=

∑
∑

exp

exp
.

�

�

α

α
1

1 0

(The expression above would introduce a small bias both in numerator and
denominator, due to Jensen’s inequality, of no consequence whatsoever.)
However, we have the covariance matrices for �a t , not for exp �a t( ) . Thus we are
forced to some manipulation to come up with approximate variances and confi-
dence intervals for the index itself.

After the parameters in the selected local level model are estimated, a smooth-
ing algorithm (Durbin and Koopman, 2001, § 4.3) gives an estimate of the trajec-
tory of the state vector and the covariance matrices at each point in time.

The components of the state vector model the “underlying prices” of the items
in the indices. For each item i, the estimated “underlying price” at time t—the i-th
component of �a t —takes into account the observed price(s) at time t of item i, if
any, the observed prices at time t of all other items and the full set of prices
observed at times other than t: �a t is the best estimate (in the least squares sense)
of at given all information (and best linear if the hypothesis of Gaussianity is
dropped).

Thus, we have estimations for the full set of prices at each moment, which
make use of all available information. Even at times when no direct observations
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of the price of an item are available, we have an estimation of the underlying price
on which to base the computation of indices.

As an illustration, Figure 5 shows the different time series of prices available
for beef, the state or “underlying price” and the 95 percent confidence interval for
the same. It can be seen that the width of the confidence interval is quite variable,
reflecting the lack of data for some periods (like 1873–75) and the varying volatility
over time of the price series available.

The prices of items thus estimated can be scaled to value 100 at the base year
(which we have chosen to be 1913) and multiplied by the coefficients in the chosen
weighting scheme to compute a price index. The confidence interval of the index is
derived in the obvious manner.

As mentioned previously, we have used two different sets of weights, to reflect
the changing expenditure patterns over time. The results using the two sets of
weights are difficult to tell apart, and can be seen in the two panels of Figure 6.
Their general appearance is similar to results obtained for the whole of Spain by
other researchers: see Maluquer (2005, figure 16.5, p. 1267) or Prados de la
Escosura (2003), for instance. What the method used adds is an explicit indication
of the uncertainty associated with the index at each point in time, supplying a
confidence interval.9

Intervals in Figure 6 show that there is little that can be confidently said
prior to 1900: the fluctuations observed are non-significant in view of the width

9This confidence interval is optimistic in that it ignores the fact that the parameters in the model
generating estimates of at have themselves been the object of estimation, which adds (unaccounted)
uncertainty. Work in progress seeks to account also for this uncertainty by using multiple imputation
(see Little and Rubin, 2002).
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Figure 5. Beef Prices from Different Sources (dotted lines), State Estimation or “Underlying Price”
(thick line) and 95% Confidence Interval for the State (dashed lines)
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of the intervals. A constant level of prices is essentially compatible with the
estimated indices. From 1914 onwards, both indices display unmistakably the
phenomenal inflation brought about by World War I, nearly doubling prices,
then the smooth decline of prices which extended for the Depression period
following 1929; a decline, however, which failed to return prices to their pre-war
level. The Spanish Civil War 1936–39 ignited inflation again, roughly doubling
prices once more.
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Figure 6. Cost of Living Indices for Biscaye with Two Different Weightings, Reflecting
Consumption Patters in 1876 and 1906. Base 1913 = 100 for both indices
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5. Discussion

We have described a technique for the construction of indices from time series
allowing both overlapping observations and missing data. The technique resorts to
state space modelling and is demonstrated by constructing price indices for
Biscaye, with two different weightings.

Although motivated by the problem of constructing price indices, the tech-
nique is much more general, and apt to find use in many other settings: whenever
we find any combination of overlapping sources that we need to reconcile and/or
missing data.

Antecedents to our work can be found in the literature (see, for instance,
Harvey and Pierse, 1984; Dagum et al., 1998; Harvey and Chung, 2000; Feder,
2001, and references therein). We have presented a novel use of existing tools,
exploiting the flexibility of state space models to provide an approach to index
construction. A benefit of our approach is that it provides an explicit indication
of the uncertainty in the index values. In particular, for the case analyzed, it
shows that the fluctuations in our price indices until the end of the 19th century
are rather small relative to their variance, and hence do not support any elabo-
rate interpretation.

There is an issue that needs further discussion: the nature of missing
observations. We made the assumption that they were missing completely at
random (MCAR). This implies that the fact that an observation is missing
is entirely unrelated to the value we might have observed, or any others: it is not
the case, for instance, that high values are more likely to be missing than low
values.

This is a hypothesis that may be suspect in some cases. For instance, there is
a total absence of data for the period 1873–75, coincident with the last Carlist war.
Our model deals with this lack of data, doing what is in essence an interpolation.
The implicit assumption is that prices in that period were generated by the same
mechanism than prices before or after. However, the analyst must be aware that
the lack of data for those years is not merely incidental: it is no doubt related to the
war which, we might hypothesize, brought about scarcity, hardship and higher
prices. Therefore, data absence here probably correlates with the values we would
have observed, invalidating the MCAR assumption (and even the weaker MAR
assumption).

Nevertheless, we are using a statistical model which makes up for missing data
exploiting observed regularities: contemporaneous correlations between prices of
different items and correlations between prices of the same and different items over
time. The model, though, cannot detect, nor account for, exceptional periods
where these regularities break.

There is not much we can do about this. But the analyst should be fully aware
of both the power and limitations of the tool used. In the case of our indices, we
feel we should at least warn the reader that the values for the years 1873–75 should
be read with circumspection.

It has been pointed out to the authors that a model containing fewer unob-
servable components might be easier to estimate. A plausible hypothesis would be
that prices are cointegrated (Engle and Granger, 1987; Harvey, 1989). At the very
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least one should be able to achieve a considerable reduction in the dimension of the
problem, fitting only a few unobservable components.

This is no doubt true. However, we want to compute an index for a specific set
of weights. This requires the estimation of a full set of prices to multiply by those
weights. If we fit a reduced rank model we could end up with estimated trajectories
for, say, three unobservable components which are not in clear connection with
items or groups of items. There is no obvious way to weight those unobservable
components. Thus, we are trading simplicity in exchange for interpretability and
usability of our index for purposes like deflating nominal wages.
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