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Abstract

Let
�

be a �������
	��� data matrix, with entries partly missing in the last
� columns. A problem of practical relevance is that of imputing the missing
values in such an incomplete data set. We propose to use (partially) predictive
matching coupled with a flexible fit, such as provided by a neural network.
The merits and demerits of the approach suggested are discussed.
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1 Introduction

Let
�

be a ��������	��� data matrix, with entries partly missing in the last �
columns. This situation may arise, for instance, if

�
contains data collected

in two surveys given to ������� and ����� � subjects respectively ( ��� �����!�"	
����� � ), and complete data is available for the ���#��� subjects interviewed in the
first survey while the last � questions were not asked to the �$��� � subjects
interviewed in the second survey. The layout of observed and missing data is
shown in Figure 1.

A problem of practical relevance is that of drawing inferences from such
an incomplete data set, and a considerable body of literature exist on this
issue. A landmark is the monograph [13], setting up a methodology and
advocating the use of multiple imputation. [18] develops algorithms for im-
putation based on the EM algorithm and data augmentation.

The methods in [18] require the specification of a parametric model and
a (possibly non-informative) prior on the parameters. There exist implemen-
tations as stand-alone programs and S-PLUS

c
%

functions dealing with the
normal, multinomial and mixed cases. Some of these functions have been
ported to the statistical package R. Alternatives include MICE (see [23],
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Figure 1: Regular pattern of missingness. The shaded area corresponds to observed
data.
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Figure 2: Trees ������� and ������� . Next to each non terminal node is the condition
used to split.
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[22] for instance) or NIBAS (see [16]), which addresses the harder problem
of statistical matching).

When the underlying models provide a good approximation to the mech-
anism generating the data, there is probably little motivation to go beyond
those methods, which have a solid theoretical grounding. Nevertheless situ-
ations exist where a nonparametric approach might be adequate.

One possibility that has some appeal is the use of binary trees. It has
a drawback, though: one is forced to discretize continuous responses. In
Section 3 a method is proposed better suited to impute continuous variables.
Its motivation, merits and demerits are better seen against the background of
our previous work with trees ([3], [4], for instance; see also [14] and [15]).
A summary account is therefore given in Section 2.

2



Figure 3: Partitions induced in � by trees � � ��� and ������� .
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Figure 4: “Joint” partition induced in � by trees � ����� and � ��� � .
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2 Multivariate imputation with binary trees

In order to impute a multivariate response, [4] proposed to use a collection
of ordinary (scalar response) binary trees, one for each component of the re-
sponse. They are built with the methodology described in [5] as implemented
by [21].

We denote by
��� ! � a tree “regressing” � on the predictors in � —the re-

sponse � might just as well be qualitative, and the tree a classification rather
than a regression tree. Assume we have a training sample as shown in Fig-
ure 1 Call

� �#��� the vector of the � variables fully observed (for all �$�#��� 	 ��� � �
subjects) and

� ��� � the vector of the � variables incompletely observed (miss-
ing for the last ����� � subjects). We denote

�
the space spanned by the �

components of
� ����� . The case where observations are missing irregularly

can also be handled (using surrogate splits), but we will only deal with the
regular case as described in the Introduction.

In [4], the following imputation strategy (the “forest climbing algorithm”)
is proposed:

1. Build trees
���	��
�"!������������������ ���	��
�� !��������

using the ���#��� complete ob-
servations.

2. Drop each of the ����� � incomplete cases down the � trees constructed.
Let case � fall in the terminal nodes labelled �����! � �������"� �#�! $  of (respec-
tively) trees

��� ��
� !��%��������������� ��� ��
�� !��%�����
. Call ���"�! &�' �)( ����� ( �#�! &�'*$ 

the subset of the ���#��� complete cases which also end in said leaves. If
���#�! &�' ��( ����� ( �#�! &�'*$ ,+�.- , impute the missing values of case � by those
of one complete case which also ends in �����! &�' �/( ����� ( �#�0 &�'*$  . If mul-
tiple imputations are desired, sample 1 cases out of that intersection.

3. If ���#�0 &�' �2( ����� ( �"�! &�'*$  �3- , iteratively replace leaves by their ances-
tors (“climb the trees”) until a non empty intersection is found. Then,
proceed as in step 2 above.

The idea is quite simple and better understood referring to the simple
example in Figures 2 and 3. There, we assume � � � �54 and therefore
two trees for the responses

%76
,
%98

, both with predictors
% �

,
%10

. Figure 2
displays the two trees and Figure 3 the respective partitions induced in the
predictor space. Take any tree

���%:�!���;0<>=
, � 2 1@? ��	 � . The leaves of that

tree are classes of a partition of the predictor space such that, within each
class, knowledge of

� ����� cannot help us in further refining our prediction of%7A
(otherwise, the leave would have been split). It then makes sense that

if subject � with unknown
%BA

ends in leave �"�! A when dropped down the
tree

�%��:	!��%;C<>=
, its

%7A
value be predicted by a function of the

%@A
values of

subjects in the training sample which ended in the same leave. This function
can be the mean, median or other summary statistic; or else we can sample
from that leave if multiple imputations are desired.

Since we want to jointly impute all values in
� � � � for the subject at hand,

we would like to use complete cases in �����! &�' �D( ����� ( �"�! &�'*$  , and this is
exactly what the algorithm above does. The only additional caveat is that the
relevant intersection might be empty —not one of the subjects in the training
sample ended in exactly the same leaves than the subject to impute. If that is
the case, the algorithm replaces nodes by their ancestors (“climbs the trees”),
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until a non empty intersection is found. The order of climbing is governed
by the deviance —we climb first the tree where the replacement of a node by
its ancestor leads to the least possible increase in deviance. Inasmuch as the
deviance is scale-dependent, this is only an ad-hoc device.

As a side issue, notice that the forest climbing algorithm was designed
to jointly impute a vector

� ��� � with scalar response trees. There has been
some work since on multivariate response trees (see [20]) that could be used
instead.

3 An algorithm for continuous responses

The forest climbing algorithm described in the previous section has a number
of desirable features and some drawbacks. Among the desirable features are
the following:

1. It can adapt to any response surface and easily account for interactions.

2. Since imputation is done using one (or more) complete cases in the
training sample, consistency of the imputed values is guaranteed, as in
any hot-deck method. It is a “real donor” method in the terminology of
[15].

3. The neighbourhoods —the intersections of leaves— from which we
draw replacement cases are adaptive and their size and morphology
are related to the responses. It is a predictive matching method.

The main drawback arises from the discrete approximation inherent to the
use of binary trees: when the responses are continuous, their values are fitted
by a piecewise constant function. It is natural then to explore alternatives
which provide a smoother approximation of a map � &���� � $ , and several
come to mind.

If we can assume an underlying model, the methods mentioned in the
Introduction are of course clear favourites. In particular, data augmentation
via the the S-PLUS package1 norm could be used in the case of a ����	 �� -
multivariate normal distribution of predictors and responses.

If we want to stay in the realm of nonparametric or partially nonpara-
metric procedures, the most direct generalisation of binary trees would be
provided by MARS (see [6]). Other alternatives include the S-PLUS func-
tion transcan (in library the Hmisc, documented in [2], and ported also
to R) or aregImpute (in the same library), or neural networks. The last
provide about the most flexible and simple method to approximate a general
� &���� � $ mapping, and has been used in the following. The method we
propose is sketched as Algorithm 1 in page 6 and briefly described in the
following.

In step 2 we set two tunable parameters that we discuss below.
In step 3 we fit a neural network using sum of squared errors as a criterion

to minimize. Data will have been normalized beforehand, which is also ad-
visable to improve the convergence when training by back-propagation; see
[10], Sec. 4.6. Scaled principal components can also replace the data.

1A port to R by Alvaro Novo is available at CRAN, http://cran.r-project.org.
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Algorithm 1 – Predictive matching with a neural network
1: ����� Complete cases � ; ����� Incomplete cases �
2: �	� Tunable parameter ; 
������� Tunable parameter
3: Train a neural network to approximate the mapping ����������������� � with the� ����� cases in � . Use cross-validation to choose network topology and/or decay.

Set  !� {Number of weights in neural network} - " .
4: for each case #%$&� do
5: Use the network to compute predicted values '��(*),+��� � .
6: Find the set -/.0#213
���4�65 containing the 
87:93; nearest neighbours (= predic-

tive matches) of '�<(*),+��� � among '�<(>=3+��� � for ?@$�� .

7: Let '�<(>=�AB+��� � 1DCECDCE1F'� (>=�GIHKJ0LM+��� � be the predictive matches ordered by increasing dis-

tance to '��(*),+��� � .
8: N!�O"QPSR
9: repeat

10: TUWVYX[Z]\_^a` .0� (>=Bbc+��� � �d'� (>=Bbc+��� � 5D.0� (>=Bbc+��� � �d'� (>=Bbc+��� � 5fe
11: TU:ghX[Z]\_^a` .I� (>=4bc+��� � � '� (*),+��� � 5D.I� (>=4bi+��� � � '� (*),+��� � 5fe
12: N!�jN%P[R
13: until either �lknmpo8qars.3t4TUWV t uvt4TU:g t 5:wyx �z4{ ��|~} or 
8�������N
14: Impute case # from '� (>= A +��� � 1DCECECD1 '� (>=���+��� �
15: end for

In fitting a feed-forward neural network, we must decide how many neu-
rons to use, and in how many layers to arrange them. This can be done using
cross-validation. (Same can be said of the choice of decay, to a certain extent
a way to control the fit with a constant number of neurons: see [24], p. 301.)

After the neural network has been trained, we generate predictions ��Y� �p�� � �
for each incomplete case. A total of 1 ����� near neighbours among predictions
for the complete cases are selected (step 6).

The loop embracing steps 9–13 attempts to select a suitable neighbour-
hood. The idea, quite simple, is illustrated in Figure 5. For subsets of
�
	�� � � 	 4 ������� predictive matches increasingly distant from ��&� �p���� � we com-

pute ��n� (the moment matrix of said complete cases about ��Y� �_�� � � ) and ��F� ,

a moment matrix measuring the dispersion of the near neighbours of ��Y� �p�� � �
about the respective fits as given by the neural network. Therefore, ��F� is (af-
ter suitable scaling) an estimate of the covariance matrix of the errors, while
��n� is a rescaled estimate of the moment matrix about �� � �p���� � of both the signal
and the error.

We have to select the size of the neighbourhood (or number of neigh-
bours) such that ���2�� �>� �� � �0��� ������ � �p�� � �I� . We pick those points for which ��n� is
not “much larger” than ��F� . As a criterion,

� 4��i�M�6� �4�f��F� � �~�f��n� � 
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Figure 5: The thick line represents the neural network fit. '� (*),+��� � is the fit for case # .
For predictive matches in the vicinity, the distances � (>=3+��� � �d'�<(*)_+�n� � (solid lines) and

� (>=3+��� � � '� (>=3+�n� � (dotted lines) are shown. The respective sums of squares for varying
number of neighbours are TU g and TU V .

PSfrag replacements

'� (*),+��� �
� (>=3+��� � � '� (*),+��� �

�<(>=3+��� � � '��(>=3+��� �

is used, and we check whether it is above a constant � . As a (very rough) rule
of thumb, we have used in the examples below � ���

0
��� ��� & with � �
	 � 	��

(the 0.95 quantile of a central �
0
� distribution, with degrees of freedom  set

to the number of parameters in the neural network minus � ).

4 An example

To illustrate the method, an �
0
��� �

0
function has been evaluated over a

�8� ���6� grid and the results corrupted by additive normal noise. The variance
of the of the noise was set to have a signal to noise ratio (SNR) of 10. A
sample with 2601 observations was used to train a neural network with one
layer of three hidden neurons and linear output units. All programming was
done within the statistical and graphical package R (see [11]). We used the
library nnet (see [24]) for the training of the neural network.

When the network was trained (with three hidden neurons, minimizing
the sum of squared errors and with linear output units), a pattern � % � � %10  �
��	 � 4 � 	 � 4  was presented and 1�� �f������	 nearest neighbours selected. These
are represented in the two top panels of Figure 6. Notice that at ��	 � 4 � 	 � 4 
the contour levels of

% 6 ���$� % � � %10  and
%98 ���$� % � � %10  are oriented

differently. Predictive matching tends to pick matches along a contour level;
here, a compromise gives a nearly circular neighbourhood.

When we select the size of the neighbourhood as described before (loop
repeat-until in steps 9–13 of Algorithm 1), with � ��	 � 	�� ) a much smaller
set of nearest neighbours was chosen (two bottom panels of Figure 6).
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Figure 6: Contour levels of the “true” map .�� � 1�� � 5���� .���� 1����M5 . Superim-
posed, 
 max

X
	��
predictive matches for point .�� � 1�� � 5 X . � Cik 1 � Cik�5 (top panels)

and those selected with � X� C ��� in (bottom panels). SNR=0.10. No locality in the
input space enforced.
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Figure 7 displays the behaviour of the method when presented with pat-
tern � % � � %10 "� ��	 ���� 	 � �  . In the surrounding region,

%78
is quite flat while% 6

is not. The 1�� �f� ��� 	 nearest neighbours selected are chosen along the
contour level of

%76
.

Since the match is performed using only the predicted values of the re-
sponses, it occurs in this case that a few “nearest neighbours” are selected
which are quite distant in the � % � � %10  space (upper right corner of all four
panels in Figure 7). This may be thought undesirable, and possible remedies
are discussed below.

5 Discussion

A method has been presented that is well suited to the imputation of contin-
uous variables (predictors may just as well be continuous, categorical or a
mixture thereof). We have pointed already to its advantages: flexibility, near
automatic character, absence from distributional assumptions, possibility to
draw multiple imputations and therefore to assess the variability introduced
in the imputation process. We now discuss the relationship of the method to
similar ones that have been proposed in the literature, the shortcomings and
possible ways to remedy them.

5.1 Related or similar work

Nearest neighbour imputation has been extensively used. The use of trees to
generate imputation cells has also been proposed (e.g. in [3], [4], or [14]).
It has the appeal of defining subsets of donors whose “nearness” is partially
or totally predictive: case � is close to case � if their respective predictions
�� � �_�� � � and �� �>� ���� � are close, in the sense that they cannot be told apart using

information in the predictor set. This happens with cases falling in the same
leaf of a tree. We call this a “response induced topology” in the predictor
space

�
.

Similar ideas arise also in other contexts. For instance, the propensity
score (see [17], [8]) has been proposed as a criterion for stratification and
matching. [12] propose an approximate Bayesian bootstrap, sampling within
classes homogeneous with respect to the propensity score of being missing
(but see [1] for a critique).

Using predictive matching plus some sampling scheme has also been
studied, for instance in [19]: they propose to use predictive matching fol-
lowed by sampling residuals of near observations (LAD, “local residual draw”);
we prefer taking a donor (or more) and use its values to impute

��� �p���� � en block,
since this guarantees consistency. They also propose and adaptive method to
choose the number of possible donors. They do not address the problem of
non-locality in the

�
space of predictive matches.

In a post to the IMPUTE list, [9] proposed an strategy for imputation
which also bears close resemblance to the method proposed in Section 3:
rather than adjusting the size and orientation of the neighbourhood from
which to draw donors, he suggested transforming suitably the predictors and

9



Figure 7: Contour levels of the “true” map .�� � 1�� � 5���� .���� 1����M5 . Superim-
posed, 
 max

X
	��
predictive matches for point .�� � 1�� � 5 X . � C�� 1 � C RM5 (top panels)

and those selected with � X � C � � (bottom panels). SNR=0.10. No locality in the
input space enforced, as shown by the few matches at the upper right corner of
each panel.
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responses and using neighbourhoods of fixed width � (but no hints were given
on the choice of � ).

5.2 Shortcomings and possible solutions

Non-locality of matches in � . It has been mentioned before that pre-
dictive matching gives, on occasion, matches which are quite far in the

�
space of predictors from the case to be imputed. This is annoying. One
possible solution is to look for closest matches in a different space. When
imputing case � , rather than looking for complete cases � with small distance
� � � � �  � �i���� � �p���� � � �� �>� ���� � �*�

0
we can look for complete cases with small

� � � � �  � �f� ��� 3�i���� � �p���� � � �� �>� ���� � �*�
0
	 � �i� � ���!� � �p� � � ����� �>� � �i�

0 �
which forces the matches to be close in both

�
and the space of predic-

tions. Fairly small values of � suffice in the experiments we have done, but
of course this is one more parameter to calibrate in the imputing process.
Further, the problem remains that non-locality of the matches is not so easy
to spot when we deal with highly dimensional spaces.

Variables of mixed type. The method presented is motivated by the poor
approximation of continuous variables afforded by binary trees. Nonetheless,
it is usually desirable to impute a vector

� � � � not all of whose components
are continuous variables. One has then to define a suitable distance, which
can be done (see for instance [7]); but this hinders the use of off-the-shelf
software to train the neural network involved.

Irregular patterns of missingness. One of the beauties of the algo-
rithms presented in [18] is the flexibility with which they cope with irregular
patterns of missingness, through clever use of the sweep operator. We are
discussing here the simplest monotone pattern of missingness, but it would
be desirable to generalize to irregular patterns. It is not clear how to do that,
short of training many different networks, which seems awkward and out of
the question.
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