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Abstract. Let X be a N X (p + ¢) data matrix, with entries partly missing
in the last g columns. A problem of practical relevance is that of drawing
inferences from such an incomplete data set. We propose to use a sequence of
trees to impute missing values. Essentially, the two algorithms we introduce
can be viewed as predictive matching methods. Among their advantages, their
flexibility, which makes no assumptions about the type or distribution of the
variables.
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1 Introduction

Let X be a N x (p + q) data matrix, with entries partly missing in the
last ¢ columns. This includes: i) Scattered missing entries which were never
recorded, or were subsequently lost; ii) A full block missing, say the nmis X g
block consisting of the last ny;s rows and ¢ columns. The second situation
may arise, for instance, if X contains data collected in two surveys given to
Nobs and Tmis subjects respectively (N = nobs + Mmis), and complete data is
available for the n,ns subjects interviewed in the first survey while the last
g questions were not asked to the nn;s subjects interviewed in the second
survey. Only case ii) is dealt with in this paper, although generalization is
possible.

A problem of practical relevance is that of drawing inferences from such an
incomplete data set, and a considerable body of literature exist on this issue.
A landmark is the monograph Little and Rubin(1987), setting up a method-
ology and advocating the use of multiple imputation. A recent monograph
is Schafer(1997) which develops algorithms for imputation based on the EM
algorithm and data augmentation.

2 Goals

The methods in Schafer(1997) require the specification of a parametric model
and a (possibly non-informative) prior on the parameters. Our intent has
been to produce a good all-purpose nonparametric method, capable of coping
with situations where little is known about the underlying data generation
mechanism.

Our research was initially motivated by the problem of completing a par-
tially observed sample with regular structure (problem ii) in the Introduc-
tion). For instance, we might have a file with N = ngps + nimis subjects. The



first mons subjects have been totally observed on (p + ¢) variables. For the
remaining n.,;s subjects, only the first p variables have been observed. We
would like to impute the missing ¢ variables on these np;s subjects with a
method:

1. Making as little assumptions as feasible on the joint distribution of the
(p + q) variables;

2. Allowing for multiple imputation, and

3. Taking into account the structure of the ¢ variables that are imputed.

This last point was of particular interest to us. We had an application where
the g variables to impute where the times devoted by each subject to differ-
ent tasks, and were required to add up to twenty four hours (see Béarcena
and Tusell(1998,1999)). It was clear that those ¢ variables had to be jointly
imputed to ensure mutual compatibility.

Binary trees are a flexible tool to capture the relationship between a re-
sponse and a set of predictors. However, neither in the seminal work Breiman
et al.(1984) nor in the large body of literature that followed could we find
examples in which the response was multivariate! and jointly imputed.

Next section describes two algorithms built around univariate response bi-
nary trees and designed to meet the three goals above.

3 Algorithms

We use a collection of ordinary (scalar response) binary trees. They are built
with the methodology described by Breiman et al.(1984) as implemented by
Therneau and Atkinson(1997); but a different strategy can be used (e.g.,
Murthy et al.(1994)). We denote by ), , a tree “regressing” z on the predic-
tors in z —the response z might just as well be qualitative, and the tree a
classification rather than a regression tree. Assume we have a training sample
of neps subjects, fully observed in (p + ¢) variables, while for the remaining
Timis Subjects we only observe the first p variables. Call X5 the vector of the
p variables fully observed (for all nops + 7mis subjects) and X5 the vector
of the ¢ variables incompletely observed (missing for the last n;s subjects).
The case where observations are missing irregularly can also be handled (us-
ing surrogate splits), but we will only deal with case ii) of the Introduction
in the following. We propose the following imputation strategies.

3.1 The forest climbing algorithm
It can be summarized as follows:

1. Build trees Vx,, ;| X pos- -2V Xpiq Xon, Using the CART methodology
and the nyps complete observations.

2. Drop each of the ny;s incomplete cases down the ¢ trees constructed. Let
case i fall in the terminal nodes labelled (4;1,...,%; ) of (respectively)
trees Vx, .1 Xoper -1 VXpsgl Xone- Call (€51 N ... N4 ) the subset of the

P
nobs complete cases which also end in said leaves. If (¢;1N... N4 4) # 0,
impute the missing values of case ¢ by those of one complete case which
also ends in (¢;1 N...N¥4;4). If multiple imputation is desired, sample &
cases out of that intersection.

! Note the work Ciampi(1991): it does require the specification of a likelihood,
though. Recently, Siciliano and Mola(2000) address the problem of constructing
trees with multivariate response in a non-parametric way.



3. If (¢;,1N...N¥¢; ) = 0, iteratively replace leaves by their ancestors (“climb
the trees”) until a non empty intersection is found from which one or more
complete cases can be drawn.

The idea is disarmingly simple. Take any tree Vx,|x,,., ? < kK < p+q. The
leaves of that tree are classes of a partition of the predictor space such that,
within each class, knowledge of X5 cannot help us in further refining our
prediction of X (otherwise, the leave would have been splited). It then makes
sense that if subject ¢ with unknown X}, ends in leave /; ;, when dropped down
the tree Vx, | x.,., its Xj value be predicted by a function of the X} values of
subjects in the training sample which ended in the same leave. This function
can be the mean, median or other summary statistic; or else we can sample
from that leave if multiple imputation is desired.

Since we want to jointly impute all values in X,,;s for the subject at hand,
we would like to use complete cases in (£;1 N...N¥¢; ), and this is exactly
what the algorithm above does. The only additional caveat is that the relevant
intersection might be empty —not one of the subjects in the training sample
ended in exactly the same leaves than the subject to impute. If that is the
case, the algorithm replaces nodes by their ancestors (“climbs the trees”),
until a non empty intersection is found. The order of climbing is governed by
the deviance —we climb first the tree where the replacement of a node by
its ancestor leads to the least possible increase in deviance. Inasmuch as the
deviance is scale-dependent, this is only an ad-hoc device.

We can think of the forest climbing algorithm as a nearest neighbour
method in which “nearness” is defined as “falling in the same leaves than”.
Similar ideas exist in the literature, under the name of predictive mean match-

ing.

3.2 The cascade algorithm

The cascade algorithm is directed at finding subjects in the training sample
that are simultaneously “close” to the subject to impute in the metrics defined
by all trees, obviating the need to climb.

Again the idea is quite simple. Jointly imputing X,,;s given the values in
X,bs is €asy as soon as we have the conditional distribution f(Xis|Xobs):
we only have to draw from that distribution to perform multiple imputation.
By successively conditioning, we can write

f(xmiS|XobS) = f(Xp+q|X0bSa Xp+1v s aXp+q—1)
X f(Xp+q—1|XobsaXp+1a TR Xp+q72)
X P
X f(Xpt1]Xobs)

We can regard a tree as a mechanism generating observations with a given
conditional distribution. For instance, if we construct the tree V; x . we can
generate approximate random drawings from f(X|Xops) by dropping Xops
down Y, x,,. and sampling from the leave where it ends.

To generate observations with approximate distribution f(Xmis|Xobs) we
can do the following:

1. Construct trees yXP+1| Xobs ? yXP+2| Xobs Xpt13 ***9 yXP+q| Xobs Xpt1s s Xpiq_1®
2. For each incomplete observation with observed Xy,



(a) Drop X,ps down the first tree. Sample the leave where it ends to
obtain a value X, ;.

(b) For j = 2,...,q do likewise: drop Xgps, ..., Xptj—1 down the j-th
tree and sample the leave where it ends to obtain a vector of imputed
values Xpi1,..., Xpyj-

Note that while a joint distribution can be factored in any order, in the
tree cascade algorithm just sketched order does matter. The ideal would be to
reorder variables X, 1,..., X, in such a way that we have first those which
can be best predicted from X,ps and last those which cannot be predicted
well from X5 yet are closely related to previously predicted variables. These
are potentially conflicting criteria, and there is no clear choice. We have
investigated two different alternatives: best first and best last. In the first
case, the trees are used in order of decreasing goodness of fit; the rationale
being that, since each imputed variable can be input in subsequent trees, we
want the values imputed earlier to be of the best possible quality.

On the other hand, in order to ensure consistency of the imputed variables,
the whole vector X,,1,...,X,,, is imputed at the last step, which makes
desirable a high quality tree at the end of the cascade.

4 TImplementation and simulated results

We have written functions to implement our methods in the statistical lan-
guage R (see Venables et al.(1997) for a description). We have used the func-
tions in the rpart package (see Therneau and Atkinson(1997)) as building
blocks. For the purpose of comparison, we used the routines in the pack-
age norm, a port? to R of the programs of the same name described in
Schafer(1997).

We have generated data from a multivariate normal distribution N15(0, X)
with ¥ exhibiting moderate correlation among variables. The variables were
standardized to have variance equal to one. Each of the two hundred replica-
tions generated contains N = 500 observations. The last npyi;s = 50 observa-
tions of the last ¢ = 5 variables were deleted and then their values imputed
using the remaining n,ps = 450 complete observations as the training sample.

We have simulated the behaviour of the forest climbing algorithm (FC) and
the cascade algorithm, both with best first (BF) and best last (BL) orderings
and joint imputation (that is, all of the missing values are imputed at once,
thus ensuring compatibility of the imputed values). We have also simulated
the behaviour of the cascade algorithm with BF order and individual impu-
tation of each variable (IND). Finally, we have simulated Schafer’s method
(NOR), using the EM algorithm to find the maximum likelihood estimates
of the parameters conditional on X,,s and subsequently drawing random
observations from that conditional distribution f(Xmis|Xobs)-

Figure 1 shows the mean square error (MSE) of imputation for four of
the variables, averaged over the 200 replications of the experiment (the fifth
variable, not shown for lack of space, behaves similarly). Notice that a naive
strategy of imputing with a random complete subject from the sample (cold
deck) would give a MSE of 2. Naive imputation using the mean would give a
MSE of 1. Since data is generated following a multivariate normal model, we
can expect the parametric method (NOR) to perform best, and this is indeed
the case. What is interesting is that the forest climbing algorithm is always a

2 By Alvaro Novo, and available at CRAN, http://cran.ar.r-project.org.



Fig.1. Imputation results for four variables and two hundred replications with
Nobs = 450, Nmis = 50, p = 10, ¢ = 5 and multivariate normally distributed data.

See text for description of the methods.
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second best. When imputing using the cascade algorithm, the minimum MSE
is of course obtained imputing each variable separately. Of the remaining two
cascade algorithms, neither order BF or BL seems uniformly better (see for
example the results for variable X11 and X12 in Figure 1). Additional more

extensive results are available from the authors.




5 Some remarks

As mentioned previously, both the forest climbing and cascade algorithms
can be seen as ad hoc methods of predictive matching: they replace in block
the missing values of a subject with those of another subject in the training
sample that is close. “Close” is taken to mean that both would have similar
predicted values when dropped down the set of trees constructed. It is im-
portant to notice that this notion of closeness is ambiguous, because we are
jointly imputing Xp41,..., Xpyqe. If the scales vary widely and/or there is
strong correlation, it makes sense to rescale the variables and/or transform
them to principal components before using the intersection method. The cas-
cade method explicitly takes into account the relation among the responses:
the ambiguity resurfaces in the ordering of the trees in the cascade.

Both methods scale well, and can be used with fairly large samples. The
largest portion of time is devoted to constructing the trees. Subsequent im-
putation is very fast. Typically, only a fraction of cases require climbing in
the forest climbing algorithm: in an application with a training sample of
2521 subjects p = 5 predictors and ¢ = 24 variables to impute, under 2% of
the subjects imputed required climbing. Once the ¢ trees needed have been
constructed, the (time) complexity of the algorithms is O(gnm;s), i-e. linear
in the product of variables to impute times the number of cases to impute.

Both algorithms presented meet the goals enumerated in Section 2: they
are all-around methods making almost no assumptions, take into account
the structure of the variables to impute and provide for easy multiple impu-
tation. We remark in closing that generalizations are possible to the case of
irregularly missing observations.
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