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a very well developed asymptotic theory.
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Introduction

The Local Whittle estimator (LWE) of the memory parameter has
a very well developed asymptotic theory.

However, in many situations the asymptotic distribution is a poor
approximation of the exact (finite sample) distribution. ⇒ Improve
the approximation using a bootstrap strategy.

The bootstrap has to deal with the strong dependence and lack of
mixing conditions in long memory series ⇒ traditional tools not
valid.
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Long memory

Long memory series xt with spectral density

f (λ) = |λ|−2dg(λ) λ ∈ [−π, π]

• d is the memory parameter (to be estimated):
• d ∈ (−0.5, 0.5) guarantees stationarity and invertibility.
• d ≥ 0.5: f (λ) is a pseudo-spectral density function.

• g(λ) is any function positive and bounded over λ ∈ [−π, π]
satisfying

g(λ) = g(0) + ∆(λ) , |∆(λ)| ≤ C1|λ|α

for constant C1 and local spectral smoothness parameter
α > 0 (α = 2 in ARFIMA models).
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Local Whittle estimation

• The LW estimate d̂ is obtained by minimizing

R(d) = log


 1

m

m∑

j=1

λ2d
j Ij


− 2d

m

m∑

j=1

log λj

where Ij is the periodogram of xt , t = 1, 2, ..., n, at Fourier
frequency λj = 2πj/n

Ij = I (λj) =
1

2πn

∣∣∣∣∣
n∑

t=1

xt exp(−iλj t)

∣∣∣∣∣

2

and m is the bandwidth that represents the number of frequencies
used in the estimation.
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Asymptotic Properties

• d̂
p→ d for −1 < d ≤ 1.

• d̂
p→ 1 for d > 1.

• √
m(d̂ − d)

d→ 1
2U1 for −1/2 < d < 3/4.

• √
m(d̂ − d)

d→ 1
2U1 + J(d)U2

2 for d = 3
4 .

• m2−2d(d̂ − d)
d→ J(d)U2

2 for d ∈ (3/4, 1).

• √
m(d̂ − d)

d→ −U1+
√
2U2U3

2(1+U2
3 )

for d = 1

Ui , i = 1, 2, 3, mutually independent standard normal r.v.’s and
J(d) is a function of d different for type I and II long memory.
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Asymptotic vs exact distribution (−1/2 < d < 3/4)
• Problem: Poor approximation in finite samples.

Figure : LW pdf, ARFIMA(1,0.4,0), φ = 0.3, n = 128, m = 20
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Asymptotic vs exact distribution (3/4 < d < 1 )
• Problem: Poor approximation even in large samples

Figure : LWE pdf, ARFIMA(0,0.8,0),n = 512, m = 40
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Unknown asymptotic distribution

• Problem: LW is consistent but the asymptotic distribution is
unknown:

• Non invertible ARFIMA (d < −1/2), consistency shown in
Shimotsu and Phillips (2006).

• Non linear transformations of long memory series, consistency
shown in Dalla et al. (2005).
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Unknown asymptotic distribution

• Problem: LW is consistent but the asymptotic distribution is
unknown:

• Non invertible ARFIMA (d < −1/2), consistency shown in
Shimotsu and Phillips (2006).

• Non linear transformations of long memory series, consistency
shown in Dalla et al. (2005).

In all these situations bootstrap can be a useful
tool to approximate distributional characteristics
of the LW estimator.
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Bootstrap approximation

• No need to obtain bootstrap samples of the series ⇒ Only
bootstrap replications of the Ij needed.
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Bootstrap approximation

• No need to obtain bootstrap samples of the series ⇒ Only
bootstrap replications of the Ij needed.

• Ij shows a marked structure and ordinates are not asymptotically
independent at frequencies close to 0 ⇒ resample the standardize
periodogram Ij/f (λj) (Franke and Härdle, 1992 and Dahlhaus and
Janas, 1996).



Introduction Bootstrap approximation Monte Carlo Analysis Application to Nelson-Plosser Data Conclusions

Bootstrap approximation

• No need to obtain bootstrap samples of the series ⇒ Only
bootstrap replications of the Ij needed.

• Ij shows a marked structure and ordinates are not asymptotically
independent at frequencies close to 0 ⇒ resample the standardize
periodogram Ij/f (λj) (Franke and Härdle, 1992 and Dahlhaus and
Janas, 1996).

• Consistent estimation of f (λj) is not trivial (Kim and Nordman,
2013), especially at frequencies close to zero where traditional
(kernel based) estimators are not consistent (Velasco, 2003).
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Bootstrap approximation

• Two options to standardize Ij :
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Bootstrap approximation

• Two options to standardize Ij :

1. Use the estimator proposed by Hidalgo and Yajima (2002)
whose consistency at every Fourier frequency has been recently
established in Arteche (2013),

f̂j = f̂ (λj) =
|λj |−2d̂

2m∗ + 1j>m∗

m∗∑

k=−m∗,6=−v

|λj + λk |2d̂ I (λj + λk)

for λj = 2πj/n, j = 1, ..., [n/2], d̂ the LW estimator. Resample the

Studentized periodogram v̂
(0)
j = Ij/f̂j as if they were i.i.d.
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Bootstrap approximation

2. Standardize Ij with λ−2d̂
j and resample the locally standardized

periodogram v̂
(1)
j = Ijλ

2d̂
j . Some structure remains (no i.i.d.) ⇒

local bootstrap (Paparoditis and Politis, 1999) to maintain the
structure in the bootstrap samples.



Introduction Bootstrap approximation Monte Carlo Analysis Application to Nelson-Plosser Data Conclusions

Frequency domain bootstrap: Steps
1. Obtain v̂

(i)
j , i = 0, 1, for j = 1, ..., [n/2] with a bandwidth m for

d̂ , and m∗ for f̂j .

2. Let kn = [n/2] for v̂
(0)
j and select a resampling width kn ∈ N ,

kn ≤ [n/2] for v̂
(1)
j .

3. Define i.i.d. discrete random variables S1, ..., Sm taking values in
the set {0,±1, , ...,±kn} with equal probability 1/(2kn + 1).

4. Generate B bootstrap series v̂
∗(i)
bj = v̂

(i)
|j+Sj | if |j + Sj | > 0,

v̂
∗(i)
bj = v̂

(i)
1 if j + Sj = 0 for b = 1, 2, ...,B and j = 1, ...,m.

5. Generate B bootstrap samples for the periodogram

I
∗(1)
bj = λ−2d̂

j v̂
∗(1)
bj , I

∗(0)
bj = f̂j v̂

∗(0)
bj for b = 1, 2, ...,B .

6. Obtain the B bootstrap LW estimates d̂
∗(i)
b , b = 1, ...,B by

minimizing R(d) with the periodogram Ij replaced by I
∗(i)
bj .
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Frequency domain bootstrap: Remarks

Remark 1: m remains fixed. The procedure is designed to obtain
bootstrap replicates of d for a given m.

Remark 2: The user has to select m∗ or kn:

• kn based on the form of v̂
(1)
j , the higher the structure the

lower kn should be chosen to keep the global structure of v̂
(1)
j

in the bootstrap samples.

• m∗ can be chosen similarly because f̂j is based on a moving

average of neighbour v̂
(1)
k s.
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Stationary case

Monte Carlo: Stationary series

(1− φL)(1− L)dXt = εt , t = 1, 2, ..., n,

• n = 128.

• εt ∼ NID(0, 1).

• d = 0, 0.4.

• φ = 0.3, 0.8.

• m = 5, 10, 20.

• m∗ = 3, 5, 7.

• kn = 2, 5, 10, 20.

• B = 999 bootstrap replications.

• 1000 simulations.
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Stationary case

• Asymptotic distribution vs exact distribution (−1/2 < d < 3/4).

Figure : LWE pdf, ARFIMA(1,0.4,0), φ = 0.3, n = 128, m = 20
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Stationary case

Some existing improvements

• Variance improvement: Use the Hessian based approximation:

v̂ar(d̂) =


4

m∑

j=1

(
log λj −

1

m

m∑

k=1

log λk

)2



−1

,

instead of the asymptotic variance 1/4m (Hurvich and Chen, 2000
and Arteche, 2006).
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Stationary case

Some existing improvements

• Variance improvement: Use the Hessian based approximation:

v̂ar(d̂) =


4

m∑

j=1

(
log λj −

1

m

m∑

k=1

log λk

)2



−1

,

instead of the asymptotic variance 1/4m (Hurvich and Chen, 2000
and Arteche, 2006).
• Bias improvement: Use Edgeworth expansions (Giraitis and
Robinson, 2003)

sup
y∈R

∣∣∣∣P(2
√
m(d̂ − d) ≤ y)− Φ(y)− φ(y)θ1

√
m
m2

n2

∣∣∣∣ = o

(√
m
m2

n2

)



Introduction Bootstrap approximation Monte Carlo Analysis Application to Nelson-Plosser Data Conclusions

Stationary case

Confidence Intervals
• Option 1. The asymptotic distribution

CI 11−α =
(
d̂ − 0.5m−1/2z1−α

2
; d̂ − 0.5m−1/2zα

2

)

zα is the 100 · αth percentile of the as. distribution (N(0, 1)).

• Option 2. Using Hessian based approximation of the variance

CI 21−α =

(
d̂ −

√
ˆvar(d̂)z1−α

2
; d̂ −

√
ˆvar(d̂)zα

2

)
.

• Option 3. Using Giraitis and Robinson (2003) proposal,

CI 31−α(θ̂1) =

(
d̂ +

θ̂1
2

m2

n2
− 0.5m−1/2z1−α

2
; d̂ +

θ̂1
2

m2

n2
− 0.5m−1/2zα

2

)
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Stationary case

Confidence Intervals

• Option 4(m∗). Using the global bootstrap strategy based on the

Studentized periodogram v̂
(0)
j for different m∗.

CI 4(1−α)(m
∗) =

(
d̂
∗(0)
((B+1)(α

2
))

; d̂
∗(0)
((B+1)(1−α

2
))

)
,

where d̂
∗(0)
(j) denotes the jth ordered value of the bootstrap

estimates of d .

• Option 5(kn). CI
5
(1−α)(kn) is similarly calculated but using the

local bootstrap strategy based on the locally standardized

periodogram v̂
(1)
j for different resampling widths kn.
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Stationary case

95% Confidence Intervals

Table : Coverage for an ARFIMA(1, d , 0) with φ = 0.3 (n = 128)

d=0 d=0.4

m=5 m=10 m=20 m=5 m=10 m=20

CI 10.95 0.662 0.811 0.823 0.678 0.795 0.815
(0.8779) (0.620) (0.438) (0.877) (0.620) (0.438)

CI 20.95 0.894 0.925 0.912 0.887 0.917 0.905
(1.542) (0.891) (0.553) (1.542) (0.891) (0.553)

CI 30.95(θ̂1) 0.662 0.811 0.823 0.678 0.795 0.815
(0.877) (0.620) (0.438) (0.877) (0.620) (0.438)

CI 40.95(3) 0.940 0.936 0.932 0.942 0.917 0.926
(1.713) (0.935) (0.549) (1.750) (0.929) (0.546)

CI 40.95(5) 0.967 0.950 0.937 0.960 0.948 0.943
(1.771) (0.963) (0.564) (1.800) (0.958) (0.561)

CI 40.95(7) 0.962 0.969 0.953 0.957 0.965 0.948
(1.787) (0.977) (0.574) (1.817) (0.970) (0.570)

The top number in each cell is the coverage frequency. The bottom number (in round brackets) is the length of the

interval.
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Stationary case

95% Confidence Intervals
Table : Coverage for an ARFIMA(1, d , 0) with φ = 0.3 (n = 128)

d=0 d=0.4

m=5 m=10 m=20 m=5 m=10 m=20

CI 40.95(3) 0.940 0.936 0.932 0.942 0.917 0.926
(1.713) (0.935) (0.549) (1.750) (0.929) (0.546)

CI 40.95(5) 0.967 0.950 0.937 0.960 0.948 0.943
(1.771) (0.963) (0.564) (1.800) (0.958) (0.561)

CI 40.95(7) 0.962 0.969 0.953 0.957 0.965 0.948
(1.787) (0.977) (0.574) (1.817) (0.970) (0.570)

CI 50.95(2) 0.847 0.873 0.852 0.846 0.841 0.836
(1.316) (0.804) (0.501) (1.327) (0.802) (0.501)

CI 50.95(5) 0.946 0.924 0.904 0.947 0.929 0.899
(1.543) (0.891) (0.546) (1.564) (0.894) (0.546)

CI 50.95(10) 0.982 0.964 0.941 0.977 0.956 0.934
(1.775) (0.929) (0.562) (1.807) (0.934) (0.562)

CI 50.95(20) 1.000 0.975 0.957 1.000 0.966 0.958
(1.958) (1.013) (0.573) (2.001) (1.013) (0.575)

The top number in each cell is the coverage frequency. The bottom number (in round brackets) is the length of the

interval.
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Stationary case

95% Confidence Intervals

Table : Coverage for an ARFIMA(1, d , 0) with φ = 0.8 (n = 128)

d=0 d=0.4

m=5 m=10 m=20 m=5 m=10 m=20

CI 10.95 0.627 0.402 0.022 0.606 0.419 0.021
(0.877) (0.620) (0.438) (0.876) (0.620) (0.438)

CI 20.95 0.900 0.623 0.043 0.873 0.641 0.057
(1.542) (0.891) (0.553) (1.542) (0.891) (0.553)

CI 30.95(θ̂1) 0.626 0.418 0.033 0.604 0.433 0.040
(0.877) (0.620) (0.438) (0.877) (0.620) (0.438)

CI 40.95(3) 0.977 0.764 0.068 0.965 0.775 0.076
(1.751) (0.935) (0.557) (1.722) (0.912) (0.543)

CI 40.95(5) 0.981 0.772 0.058 0.979 0.775 0.072
(1.809) (0.965) (0.572) (1.766) (0.940) (0.556)

CI 40.95(7) 0.975 0.762 0.051 0.968 0.757 0.065
(1.828) (0.978) (0.580) (1.785) (0.953) (0.564)

The top number in each cell is the coverage frequency. The bottom number (in round brackets) is the length of the

interval.
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Stationary case

95% Confidence Intervals
Table : Coverage for an ARFIMA(1, d , 0) with φ = 0.8 (n = 128)

d=0 d=0.4

m=5 m=10 m=20 m=5 m=10 m=20

CI 40.95(3) 0.977 0.764 0.068 0.965 0.775 0.076
(1.751) (0.935) (0.557) (1.722) (0.912) (0.543)

CI 40.95(5) 0.981 0.772 0.058 0.979 0.775 0.072
(1.809) (0.965) (0.572) (1.766) (0.940) (0.556)

CI 40.95(7) 0.975 0.762 0.051 0.968 0.757 0.065
(1.828) (0.978) (0.580) (1.785) (0.953) (0.564)

CI 50.95(2) 0.788 0.557 0.067 0.797 0.550 0.091
(1.323) (0.835) (0.545) (1.321) (0.827) (0.536)

CI 50.95(5) 0.906 0.646 0.081 0.903 0.628 0.100
(1.581) (0.927) (0.591) (1.574) (0.915) (0.580)

CI 50.95(10) 0.951 0.666 0.053 0.953 0.671 0.069
(1.876) (0.972) (0.592) (1.863) (0.957) (0.581)

CI 50.95(20) 0.977 0.749 0.046 0.981 0.746 0.056
(2.193) (1.088) (0.602) (2.163) (1.063) (0.590)

The top number in each cell is the coverage frequency. The bottom number (in round brackets) is the length of the

interval.
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Stationary case

Skewness and Kurtosis
Table : Skewness and Kurtosis, ARFIMA(1, 0.4, 0), (n = 128)

φ = 0.3 φ = 0.8

m=5 m=10 m=20 m=5 m=10 m=20

Monte Carlo -0.222 -0.351 -0.285 -0.409 -0.356 -0.179
3.524 3.736 3.572 3.618 3.938 3.807

Option 4(m∗=3) -0.280 -0.356 -0.282 -0.370 -0.372 -0.235
3.628 3.696 3.472 3.773 3.776 3.458

Option 4(m∗=5) -0.262 -0.329 -0.294 -0.356 -0.349 -0.282
3.587 3.639 3.429 3.705 3.699 3.437

Option 4(m∗=7) -0.258 -0.304 -0.291 -0.352 -0.313 -0.291
3.558 3.609 3.416 3.674 3.653 3.423

Option 5(kn=2) 0.215 0.045 -0.103 0.202 0.046 -0.098
3.087 3.458 3.409 3.013 3.337 3.300

Option 5(kn=5) -0.003 -0.142 -0.196 -0.030 -0.129 -0.239
3.272 3.384 3.369 3.256 3.374 3.366

Option 5(kn=10) -0.106 -0.233 -0.232 -0.145 -0.209 -0.277
3.220 3.548 3.363 3.195 3.522 3.387

Option 5(kn=20) -0.117 -0.242 -0.247 -0.149 -0.220 -0.242
3.202 3.493 3.369 3.037 3.456 3.357

The top number in each cell is the skewness. The bottom number is the kurtosis.
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Stationary case

Selection of m∗ (kn)

Figure : v̂
(1)
j for selection of m∗ and kn

(a) d = 0.4, φ = 0.3, m = 20
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(b) d = 0.4, φ = 0.8, m = 5
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Nonstationary case

Monte Carlo: 0.75 < d < 1

(1− L)0.8xt = ut , t = 0, 1, 2, ...,

where ut ∼ NID(0, 1). This process sets ut = 0 for t ≤ 0. Then

xt =
t−1∑

k=0

akut−k

with a0 = 1 and ak = d(d+1)···(d+k−1)
k! for k > 0

• n = 512.

• m = 20, 40, 70.

• m∗ = 5, 10, 20.

• kn = 5, 20, 40, 70.
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Nonstationary case

• Asympt. distribution poor approximation even in large samples.

Figure : Pdf LWE, ARFIMA(0,0.8,0),n = 512, m = 40
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Nonstationary case

95% Confidence Intervals, g1 and g2
Table : CI, Skew. (g1) and Kurt. (g2), ARFIMA(0, 0.8, 0), (n = 512)

m=20 m=40 m=70 m=20 m=40 m=70

CI 10.95 || MC g1, g2 0.549 0.577 0.557 -0.233 -0.156 -0.192
(0.496) (0.376) (0.300) 2.853 2.988 3.179

CI 40.95(5) || g1, g2 0.929 0.907 0.907 -0.290 -0.226 -0.191
(0.560) (0.353) (0.251) 3.404 3.248 3.164

CI 40.95(10) || g1, g2 0.954 0.921 0.921 -0.274 -0.227 -0.190
(0.575) (0.361) (0.257) 3.379 3.228 3.154

CI 40.95(20) || g1, g2 0.974 0.952 0.924 -0.256 -0.218 -0.186
(0.584) (0.367) (0.261) 3.357 3.218 3.145

CI 50.95(5) || g1, g2 0.902 0.892 0.888 -0.204 -0.200 -0.192
(0.523) (0.335) (0.240) 3.408 3.280 3.203

CI 50.95(20) || g1, g2 0.962 0.931 0.916 -0.279 -0.229 -0.196
(0.558) (0.356) (0.254) 3.414 3.245 3.157

CI 50.95(40) || g1, g2 0.958 0.960 0.942 -0.251 -0.228 -0.194
(0.589) (0.361) (0.259) 3.339 3.223 3.136

CI 50.95(70) || g1, g2 0.968 0.951 0.954 -0.231 -0.208 -0.186
(0.604) (0.370) (0.260) 3.313 3.197 3.136

Left block shows coverages (top) and lengths (bottom) of 95% CI. Right block shows skewness (top) and kurtosis

(bottom). Skewness and kurtosis in first row are exact (MC) and CI10.95 is obtained with the as. distribution.
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Unknown as. distribution

Monte Carlo: Unknown as. distribution

• ARFIMA(0,−0.7, 0), (1− L)−0.7Yt = εt for εt standard
normal.

• Yt = X 2
t for (1− 0.3L)(1− L)0.4Yt = εt and εt standard

normal.

The sample size and bandwidth parameters are the same as those
considered in the stationary case.
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Unknown as. distribution

95% Confidence Intervals
Table : Coverages ARFIMA(0,−0.7, 0), sq. ARFIMA(1, 0.4, 0) (n = 128)

ARFIMA (0,−0.7, 0) squared ARFIMA (1, 0.4, 0)

m=5 m=10 m=20 m=5 m=10 m=20

CI 40.95(3) 0.972 0.947 0.916 0.925 0.844 0.789
(1.409) (0.883) (0.538) (1.697) (0.892) (0.525)

CI 40.95(5) 0.995 0.959 0.929 0.952 0.892 0.812
(1.487) (0.917) (0.555) (1.751) (0.923) (0.542)

CI 40.95(7) 0.992 0.964 0.937 0.954 0.918 0.838
(1.514) (0.934) (0.564) (1.775) (0.939) (0.551)

CI 50.95(2) 0.806 0.820 0.782 0.845 0.770 0.716
(1.163) (0.748) (0.476) (1.221) (0.739) (0.462)

CI 50.95(5) 0.948 0.909 0.853 0.932 0.853 0.773
(1.341) (0.841) (0.524) (1.455) (0.833) (0.511)

CI 50.95(10) 0.988 0.955 0.901 0.972 0.910 0.823
(1.535) (0.886) (0.548) (1.722) (0.877) (0.532)

CI 50.95(20) 1.000 0.970 0.936 0.998 0.930 0.870
(1.685) (0.959) (0.563) (1.931) (0.975) (0.548)

The cells show coverage frequencies (top number) and lengths of CI for a 95% confidence (bottom number, in

round brackets) for the noninvertible case (left block) and the nonlinear transformation (right block).
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Unknown as. distribution

Skewness and Kurtosis
Table : Sk., Kur., ARFIMA(0,−0.7, 0) and sq. ARFIMA(1, 0.4, 0)

ARFIMA (0,−0.7, 0) squared ARFIMA (1, 0.4, 0)

m=5 m=10 m=20 m=5 m=10 m=20

MC 0.128 -0.159 -0.252 -0.048 0.044 0.067
2.977 3.412 3.026 3.509 3.564 2.814

Op. 4(m∗ = 3) 0.374 -0.189 -0.295 -0.262 -0.397 -0.294
3.662 3.350 3.418 3.669 3.816 3.500

Op. 4(m∗ = 5) 0.317 -0.173 -0.291 -0.244 -0.369 -0.312
3.422 3.271 3.371 3.638 3.755 3.469

Op. 4(m∗ = 7) 0.332 -0.166 -0.283 -0.229 -0.339 -0.310
3.459 3.248 3.344 3.595 3.710 3.440

Op. 5(kn = 5) 0.306 -0.054 -0.196 0.054 -0.130 -0.187
3.439 3.251 3.392 3.371 3.475 3.427

Op. 5(kn = 10) 0.380 -0.138 -0.241 -0.101 -0.264 -0.249
3.505 3.277 3.345 3.335 3.690 3.445

Op. 5(kn = 20) 0.416 -0.093 -0.253 -0.088 -0.257 -0.254
3.440 3.225 3.349 3.260 3.569 3.409

The cells show skewness (top number) and kurtosis (bottom number) for the noninvertible case (left block) and the

nonlinear transformation (right block). The skewness and kurtosis in the first row are the exact ones (Monte Carlo).
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Unknown as. distribution

Densities in squared long memory
Figure : Probability densities, squared ARFIMA(1, 0.4, 0) (n = 128)
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The bootstrap density is based on 999 bootstrap samples of the LW estimator obtained with the Studentized

periodogram with m∗ = 5.
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Application to Nelson-Plosser Data

Table : LW estimator and bootstrap CI 50.95(m
∗ = 5)

m d̂ CI 40.95(5) d̂ CI 40.95(5)
CPI 14 0.925 0.844 1.042 0.226 -0.165 0.556

Employment 13 0.995 0.860 1.085 -0.322 -0.699 0.044
GNP deflator 11 1.083 - 0.183 -0.304 0.686

GNP per capita 11 0.964 0.711 1.131 -0.353 -0.856 0.038
Ind. production 23 0.985 0.895 1.064 -0.381 -0.579 -0.187
Bond Yield 10 1.191 - 0.132 -0.465 0.623
Money stock 20 0.982 0.923 1.004 0.328 0.051 0.605
Nominal GNP 7 0.932 0.808 1.068 0.300 -0.446 0.638
Real wages 10 1.109 - 0.068 -0.495 0.265
Real GNP 12 1.016 -0.327 -0.785 0.058
S&P500 9 0.949 0.650 1.141 -0.055 -0.928 0.204

Unemployment 7 -0.130 -0.697 0.471 -1.029 -
Velocity 6 1.175 - 0.157 -0.747 0.632
Wages 6 1.013 - -0.004 -0.967 1.008

The left block shows the results for raw series and the right block for differenced series.
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Application to Nelson-Plosser Data: GNP per capita

Consider for example the CI obtained with the global and local
bootstrap with m∗ = 3, 5, 7 and kn = 2, 5, 10 for the first
differences of the GNP per capita (m = 11).

Table : 95%CI for differenced GNP per capita

m∗ = 3 m∗ = 5 m∗ = 7
CI 4(m∗) -0.835 -0.011 -0.856 0.038 -0.820 0.081

kn = 2 kn = 5 kn = 10
CI 5(kn) -0.498 -0.151 -0.536 -0.085 -0.572 0.081
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Application to Nelson-Plosser Data: GNP per capita

Figure : v̂
(1)
j for selection of m∗ and kn: (differenced) GNP
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Conclusions

• The asymptotic distribution of the LW estimator may be a
poor approximation of the exact distribution in many
situations.

• We propose two bootstrap strategies, which offer significant
improvements.

• Both are not fully automatic, but require selection of some
bandwidth parameters (which can be selected based on data
observation)⇒ some automatic selecting criteria?.

• The Studentized periodogram bootstrap seems to be more
robust the choice of m∗ than the locally standardized
periodogram bootstrap to the selection of kn.

• The bandwdith for LW estimation m is considered fixed. Of
course m determines the exact bias and variance of the LW
estimator ⇒ can we use bootstrap for bandwidth selection?
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