A bootstrap approximation for the distribution of the Local Whittle estimator

Josu Arteche & Jesus Orbe University of the Basque Country UPV/EHU

ESEM 2014 Toulouse, August 2014

The Local Whittle estimator (LWE) of the memory parameter has a very well developed asymptotic theory.

The Local Whittle estimator (LWE) of the memory parameter has a very well developed asymptotic theory.

However, in many situations the asymptotic distribution is a poor approximation of the exact (finite sample) distribution. \Rightarrow Improve the approximation using a bootstrap strategy.

The Local Whittle estimator (LWE) of the memory parameter has a very well developed asymptotic theory.

However, in many situations the asymptotic distribution is a poor approximation of the exact (finite sample) distribution. \Rightarrow Improve the approximation using a bootstrap strategy.

The bootstrap has to deal with the strong dependence and lack of mixing conditions in long memory series \Rightarrow traditional tools not valid.

Long memory

Long memory series x_t with spectral density

$$f(\lambda) = |\lambda|^{-2d} g(\lambda) \quad \lambda \in [-\pi,\pi]$$

- *d* is the memory parameter (to be estimated):
 - *d* ∈ (−0.5, 0.5) guarantees stationarity and invertibility.
 - $d \ge 0.5$: $f(\lambda)$ is a pseudo-spectral density function.
- $g(\lambda)$ is any function positive and bounded over $\lambda \in [-\pi,\pi]$ satisfying

$$g(\lambda) = g(0) + \Delta(\lambda) \ , \quad |\Delta(\lambda)| \leq C_1 |\lambda|^lpha$$

for constant C_1 and local spectral smoothness parameter $\alpha > 0$ ($\alpha = 2$ in ARFIMA models).

Local Whittle estimation

• The LW estimate \hat{d} is obtained by minimizing

$$R(d) = \log\left(\frac{1}{m}\sum_{j=1}^{m}\lambda_j^{2d}I_j\right) - \frac{2d}{m}\sum_{j=1}^{m}\log\lambda_j$$

where I_j is the periodogram of x_t , t=1,2,...,n, at Fourier frequency $\lambda_j=2\pi j/n$

$$I_j = I(\lambda_j) = \frac{1}{2\pi n} \left| \sum_{t=1}^n x_t \exp(-i\lambda_j t) \right|^2$$

and m is the bandwidth that represents the number of frequencies used in the estimation.

Asymptotic Properties

•
$$\hat{d} \stackrel{p}{\to} d$$
 for $-1 < d \le 1$.
• $\hat{d} \stackrel{p}{\to} 1$ for $d > 1$.
• $\sqrt{m}(\hat{d} - d) \stackrel{d}{\to} \frac{1}{2}U_1$ for $-1/2 < d < 3/4$.
• $\sqrt{m}(\hat{d} - d) \stackrel{d}{\to} \frac{1}{2}U_1 + J(d)U_2^2$ for $d = \frac{3}{4}$.
• $m^{2-2d}(\hat{d} - d) \stackrel{d}{\to} J(d)U_2^2$ for $d \in (3/4, 1)$.
• $\sqrt{m}(\hat{d} - d) \stackrel{d}{\to} \frac{-U_1 + \sqrt{2}U_2U_3}{2(1 + U_3^2)}$ for $d = 1$

 U_i , i = 1, 2, 3, mutually independent standard normal r.v.'s and J(d) is a function of d different for type I and II long memory.

Asymptotic vs exact distribution (-1/2 < d < 3/4)• Problem: Poor approximation in finite samples.

Figure : LW pdf, ARFIMA(1,0.4,0), $\phi = 0.3$, n = 128, m = 20

d

Asymptotic vs exact distribution (3/4 < d < 1)

• Problem: Poor approximation even in large samples

Figure : LWE pdf, ARFIMA(0,0.8,0), n = 512, m = 40

Unknown asymptotic distribution

- Problem: LW is consistent but the asymptotic distribution is unknown:
 - Non invertible ARFIMA (d < -1/2), consistency shown in Shimotsu and Phillips (2006).
 - Non linear transformations of long memory series, consistency shown in Dalla et al. (2005).

Unknown asymptotic distribution

- Problem: LW is consistent but the asymptotic distribution is unknown:
 - Non invertible ARFIMA (d < -1/2), consistency shown in Shimotsu and Phillips (2006).
 - Non linear transformations of long memory series, consistency shown in Dalla et al. (2005).

In all these situations bootstrap can be a useful tool to approximate distributional characteristics of the LW estimator.

• No need to obtain bootstrap samples of the series \Rightarrow Only bootstrap replications of the I_i needed.

- No need to obtain bootstrap samples of the series \Rightarrow Only bootstrap replications of the l_j needed.
- I_j shows a marked structure and ordinates are not asymptotically independent at frequencies close to $0 \Rightarrow$ resample the standardize periodogram $I_j/f(\lambda_j)$ (Franke and Härdle, 1992 and Dahlhaus and Janas, 1996).

- No need to obtain bootstrap samples of the series \Rightarrow Only bootstrap replications of the l_j needed.
- I_j shows a marked structure and ordinates are not asymptotically independent at frequencies close to $0 \Rightarrow$ resample the standardize periodogram $I_j/f(\lambda_j)$ (Franke and Härdle, 1992 and Dahlhaus and Janas, 1996).
- Consistent estimation of $f(\lambda_j)$ is not trivial (Kim and Nordman, 2013), especially at frequencies close to zero where traditional (kernel based) estimators are not consistent (Velasco, 2003).

• Two options to standardize *I_i*:

• Two options to standardize *I_i*:

1. Use the estimator proposed by Hidalgo and Yajima (2002) whose consistency at every Fourier frequency has been recently established in Arteche (2013),

$$\hat{f}_j = \hat{f}(\lambda_j) = rac{|\lambda_j|^{-2\hat{d}}}{2m^* + \mathbf{1}_{j > m^*}} \sum_{k=-m^*,
eq -
u}^{m^*} |\lambda_j + \lambda_k|^{2\hat{d}} I(\lambda_j + \lambda_k)$$

for $\lambda_j = 2\pi j/n$, j = 1, ..., [n/2], \hat{d} the LW estimator. Resample the *Studentized periodogram* $\hat{v}_j^{(0)} = I_j/\hat{f}_j$ as if they were i.i.d.

2. Standardize I_j with $\lambda_j^{-2\hat{d}}$ and resample the *locally standardized* periodogram $\hat{v}_j^{(1)} = I_j \lambda_j^{2\hat{d}}$. Some structure remains (no i.i.d.) \Rightarrow local bootstrap (Paparoditis and Politis, 1999) to maintain the structure in the bootstrap samples.

Frequency domain bootstrap: Steps

1. Obtain $\hat{v}_{j}^{(i)}$, i = 0, 1, for j = 1, ..., [n/2] with a bandwidth m for \hat{d} , and m^* for \hat{f}_j .

2. Let $k_n = [n/2]$ for $\hat{v}_j^{(0)}$ and select a resampling width $k_n \in \mathcal{N}$, $k_n \leq [n/2]$ for $\hat{v}_j^{(1)}$.

3. Define i.i.d. discrete random variables $S_1, ..., S_m$ taking values in the set $\{0, \pm 1, ..., \pm k_n\}$ with equal probability $1/(2k_n + 1)$.

4. Generate *B* bootstrap series $\hat{v}_{bj}^{*(i)} = \hat{v}_{|j+S_j|}^{(i)}$ if $|j + S_j| > 0$, $\hat{v}_{bj}^{*(i)} = \hat{v}_1^{(i)}$ if $j + S_j = 0$ for b = 1, 2, ..., B and j = 1, ..., m.

5. Generate *B* bootstrap samples for the periodogram $I_{bj}^{*(1)} = \lambda_j^{-2\hat{d}} \hat{v}_{bj}^{*(1)}$, $I_{bj}^{*(0)} = \hat{f}_j \hat{v}_{bj}^{*(0)}$ for b = 1, 2, ..., B.

6. Obtain the *B* bootstrap LW estimates $\hat{d}_{b}^{*(i)}$, b = 1, ..., B by minimizing R(d) with the periodogram I_{j} replaced by $I_{bi}^{*(i)}$.

Frequency domain bootstrap: Remarks

Remark 1: m remains fixed. The procedure is designed to obtain bootstrap replicates of d for a given m.

Remark 2: The user has to select m^* or k_n :

- k_n based on the form of $\hat{v}_j^{(1)}$, the higher the structure the lower k_n should be chosen to keep the global structure of $\hat{v}_j^{(1)}$ in the bootstrap samples.
- m^* can be chosen similarly because \hat{f}_j is based on a moving average of neighbour $\hat{v}_k^{(1)}$ s.

Monte Carlo: Stationary series

$$(1 - \phi L)(1 - L)^d X_t = \varepsilon_t, \quad t = 1, 2, ..., n,$$

- *n* = 128.
- $\varepsilon_t \sim NID(0,1)$.
- *d* = 0, 0.4.
- $\phi = 0.3$, 0.8.
- m = 5, 10, 20.
- $m^* = 3, 5, 7$.
- $k_n = 2, 5, 10, 20.$
- B = 999 bootstrap replications.
- 1000 simulations.

• Asymptotic distribution vs exact distribution (-1/2 < d < 3/4).

Figure : LWE pdf, ARFIMA(1,0.4,0), $\phi = 0.3$, n = 128, m = 20

d

Some existing improvements

• Variance improvement: Use the Hessian based approximation:

$$\widehat{var}(\hat{d}) = \left(4\sum_{j=1}^{m}\left(\log \lambda_j - \frac{1}{m}\sum_{k=1}^{m}\log \lambda_k\right)^2\right)^{-1},$$

instead of the asymptotic variance 1/4m (Hurvich and Chen, 2000 and Arteche, 2006).

Some existing improvements

• Variance improvement: Use the Hessian based approximation:

$$\widehat{var}(\hat{d}) = \left(4\sum_{j=1}^{m}\left(\log \lambda_j - \frac{1}{m}\sum_{k=1}^{m}\log \lambda_k\right)^2\right)^{-1},$$

instead of the asymptotic variance 1/4m (Hurvich and Chen, 2000 and Arteche, 2006).

• *Bias improvement*: Use Edgeworth expansions (Giraitis and Robinson, 2003)

$$\sup_{y\in R} \left| P(2\sqrt{m}(\hat{d}-d) \le y) - \Phi(y) - \phi(y)\theta_1\sqrt{m}\frac{m^2}{n^2} \right| = o\left(\sqrt{m}\frac{m^2}{n^2}\right)$$

Confidence Intervals

• Option 1. The asymptotic distribution

$$CI_{1-\alpha}^{1} = \left(\hat{d} - 0.5m^{-1/2}z_{1-\frac{\alpha}{2}}; \quad \hat{d} - 0.5m^{-1/2}z_{\frac{\alpha}{2}}\right)$$

 z_{α} is the 100 $\cdot \alpha$ th percentile of the as. distribution (N(0,1)).

• Option 2. Using Hessian based approximation of the variance

$$Cl_{1-\alpha}^2 = \left(\hat{d} - \sqrt{v\hat{a}r(\hat{d})}z_{1-\frac{\alpha}{2}}; \quad \hat{d} - \sqrt{v\hat{a}r(\hat{d})}z_{\frac{\alpha}{2}}\right).$$

• Option 3. Using Giraitis and Robinson (2003) proposal,

$$Cl_{1-\alpha}^{3}(\hat{\theta}_{1}) = \left(\hat{d} + \frac{\hat{\theta}_{1}}{2}\frac{m^{2}}{n^{2}} - 0.5m^{-1/2}z_{1-\frac{\alpha}{2}}; \hat{d} + \frac{\hat{\theta}_{1}}{2}\frac{m^{2}}{n^{2}} - 0.5m^{-1/2}z_{\frac{\alpha}{2}}\right)$$

Confidence Intervals

• Option $4(m^*)$. Using the global bootstrap strategy based on the *Studentized periodogram* $\hat{v}_i^{(0)}$ for different m^* .

$$Cl^4_{(1-\alpha)}(m^*) = \left(\hat{d}^{*(0)}_{((B+1)(rac{\alpha}{2}))} \ ; \ \hat{d}^{*(0)}_{((B+1)(1-rac{\alpha}{2}))}
ight),$$

where $\hat{a}_{(j)}^{*(0)}$ denotes the *j*th ordered value of the bootstrap estimates of *d*.

• Option $5(k_n)$. $Cl_{(1-\alpha)}^5(k_n)$ is similarly calculated but using the local bootstrap strategy based on the *locally standardized* periodogram $\hat{v}_i^{(1)}$ for different resampling widths k_n .

95% Confidence Intervals

Table : Coverage for an ARFIMA(1, d, 0) with $\phi = 0.3$ (n = 128)

		d=0			d=0.4	
	m=5	m=10	m=20	m=5	m=10	m=20
$Cl_{0.95}^{1}$	0.662	0.811	0.823	0.678	0.795	0.815
	(0.8779)	(0.620)	(0.438)	(0.877)	(0.620)	(0.438)
$Cl_{0.95}^2$	0.894	0.925	0.912	0.887	0.917	0.905
	(1.542)	(0.891)	(0.553)	(1.542)	(0.891)	(0.553)
$Cl_{0.95}^{3}(\hat{\theta}_{1})$	0.662	0.811	0.823	0.678	0.795	0.815
	(0.877)	(0.620)	(0.438)	(0.877)	(0.620)	(0.438)
$CI_{0.95}^{4}(3)$	0.940	0.936	0.932	0.942	0.917	0.926
	(1.713)	(0.935)	(0.549)	(1.750)	(0.929)	(0.546)
$Cl_{0.95}^{4}(5)$	0.967	0.950	0.937	0.960	0.948	0.943
	(1.771)	(0.963)	(0.564)	(1.800)	(0.958)	(0.561)
$CI_{0.95}^{4}(7)$	0.962	0.969	0.953	0.957	0.965	0.948
	(1.787)	(0.977)	(0.574)	(1.817)	(0.970)	(0.570)

The top number in each cell is the coverage frequency. The bottom number (in round brackets) is the length of the

interval.

Stationary case

95% Confidence Intervals

Table : Coverage for an ARFIMA(1, d, 0) with $\phi = 0.3$ (n = 128)

		d=0			d=0.4	
	m=5	m=10	m=20	m=5	m=10	m=20
$CI_{0.95}^{4}(3)$	0.940	0.936	0.932	0.942	0.917	0.926
	(1.713)	(0.935)	(0.549)	(1.750)	(0.929)	(0.546)
$CI_{0.95}^{4}(5)$	0.967	0.950	0.937	0.960	0.948	0.943
	(1.771)	(0.963)	(0.564)	(1.800)	(0.958)	(0.561)
$CI_{0.95}^{4}(7)$	0.962	0.969	0.953	0.957	0.965	0.948
	(1.787)	(0.977)	(0.574)	(1.817)	(0.970)	(0.570)
$CI_{0.95}^{5}(2)$	0.847	0.873	0.852	0.846	0.841	0.836
	(1.316)	(0.804)	(0.501)	(1.327)	(0.802)	(0.501)
$Cl_{0.95}^{5}(5)$	0.946	0.924	0.904	0.947	0.929	0.899
	(1.543)	(0.891)	(0.546)	(1.564)	(0.894)	(0.546)
$Cl_{0.95}^{5}(10)$	0.982	0.964	0.941	0.977	0.956	0.934
	(1.775)	(0.929)	(0.562)	(1.807)	(0.934)	(0.562)
$Cl_{0.95}^{5}(20)$	1.000	0.975	0.957	1.000	0.966	0.958
	(1.958)	(1.013)	(0.573)	(2.001)	(1.013)	(0.575)

The top number in each cell is the coverage frequency. The bottom number (in round brackets) is the length of the

interval.

95% Confidence Intervals

Table : Coverage for an ARFIMA(1, d, 0) with $\phi = 0.8$ (n = 128)

		d=0			d=0.4	
	m=5	m=10	m=20	m=5	m=10	m=20
$Cl_{0.95}^{1}$	0.627	0.402	0.022	0.606	0.419	0.021
	(0.877)	(0.620)	(0.438)	(0.876)	(0.620)	(0.438)
$Cl_{0.95}^2$	0.900	0.623	0.043	0.873	0.641	0.057
	(1.542)	(0.891)	(0.553)	(1.542)	(0.891)	(0.553)
$Cl_{0.95}^3(\hat{ heta}_1)$	0.626	0.418	0.033	0.604	0.433	0.040
	(0.877)	(0.620)	(0.438)	(0.877)	(0.620)	(0.438)
$CI_{0.95}^{4}(3)$	0.977	0.764	0.068	0.965	0.775	0.076
	(1.751)	(0.935)	(0.557)	(1.722)	(0.912)	(0.543)
$CI_{0.95}^{4}(5)$	0.981	0.772	0.058	0.979	0.775	0.072
	(1.809)	(0.965)	(0.572)	(1.766)	(0.940)	(0.556)
$CI_{0.95}^{4}(7)$	0.975	0.762	0.051	0.968	0.757	0.065
	(1.828)	(0.978)	(0.580)	(1.785)	(0.953)	(0.564)

The top number in each cell is the coverage frequency. The bottom number (in round brackets) is the length of the

Stationary case

95% Confidence Intervals

Table : Coverage for an ARFIMA(1, d, 0) with $\phi = 0.8$ (n = 128)

		d=0			d=0.4	
	m=5	m=10	m=20	m=5	m=10	m=20
$Cl_{0.95}^{4}(3)$	0.977	0.764	0.068	0.965	0.775	0.076
	(1.751)	(0.935)	(0.557)	(1.722)	(0.912)	(0.543)
$CI_{0.95}^{4}(5)$	0.981	0.772	0.058	0.979	0.775	0.072
	(1.809)	(0.965)	(0.572)	(1.766)	(0.940)	(0.556)
$CI_{0.95}^{4}(7)$	0.975	0.762	0.051	0.968	0.757	0.065
	(1.828)	(0.978)	(0.580)	(1.785)	(0.953)	(0.564)
$Cl_{0.95}^{5}(2)$	0.788	0.557	0.067	0.797	0.550	0.091
	(1.323)	(0.835)	(0.545)	(1.321)	(0.827)	(0.536)
$Cl_{0.95}^{5}(5)$	0.906	0.646	0.081	0.903	0.628	0.100
	(1.581)	(0.927)	(0.591)	(1.574)	(0.915)	(0.580)
$Cl_{0.95}^{5}(10)$	0.951	0.666	0.053	0.953	0.671	0.069
	(1.876)	(0.972)	(0.592)	(1.863)	(0.957)	(0.581)
$Cl_{0.95}^{5}(20)$	0.977	0.749	0.046	0.981	0.746	0.056
	(2.193)	(1.088)	(0.602)	(2.163)	(1.063)	(0.590)

The top number in each cell is the coverage frequency. The bottom number (in round brackets) is the length of the

interval.

Stationary case

Skewness and Kurtosis

Table : Skewness and Kurtosis, ARFIMA(1, 0.4, 0), (n = 128)

		$\phi = 0.3$			$\phi = 0.8$	
	m=5	m=10	m=20	m=5	m=10	m=20
Monte Carlo	-0.222	-0.351	-0.285	-0.409	-0.356	-0.179
	3.524	3.736	3.572	3.618	3.938	3.807
Option 4(<i>m</i> [*] =3)	-0.280	-0.356	-0.282	-0.370	-0.372	-0.235
	3.628	3.696	3.472	3.773	3.776	3.458
Option 4(<i>m</i> [*] =5)	-0.262	-0.329	-0.294	-0.356	-0.349	-0.282
	3.587	3.639	3.429	3.705	3.699	3.437
Option 4(<i>m</i> [*] =7)	-0.258	-0.304	-0.291	-0.352	-0.313	-0.291
	3.558	3.609	3.416	3.674	3.653	3.423
Option $5(k_n=2)$	0.215	0.045	-0.103	0.202	0.046	-0.098
	3.087	3.458	3.409	3.013	3.337	3.300
Option $5(k_n=5)$	-0.003	-0.142	-0.196	-0.030	-0.129	-0.239
	3.272	3.384	3.369	3.256	3.374	3.366
Option $5(k_n=10)$	-0.106	-0.233	-0.232	-0.145	-0.209	-0.277
	3.220	3.548	3.363	3.195	3.522	3.387
Option $5(k_n=20)$	-0.117	-0.242	-0.247	-0.149	-0.220	-0.242
	3.202	3.493	3.369	3.037	3.456	3.357

The top number in each cell is the skewness. The bottom number is the kurtosis.

Selection of $m^*(k_n)$

Figure :
$$\hat{v}_i^{(1)}$$
 for selection of m^* and k_n

(a) d = 0.4, $\phi = 0.3$, m = 20 (b) d = 0.4, $\phi = 0.8$, m = 5

Nonstationary case

Monte Carlo: 0.75 < d < 1

$$(1-L)^{0.8}x_t = u_t$$
, $t = 0, 1, 2, ...,$

where $u_t \sim NID(0,1)$. This process sets $u_t = 0$ for $t \leq 0$. Then

$$x_t = \sum_{k=0}^{t-1} a_k u_{t-k}$$

with
$$a_0 = 1$$
 and $a_k = \frac{d(d+1)\cdots(d+k-1)}{k!}$ for $k > 0$

- *n* = 512.
- *m* = 20, 40, 70.
- $m^* = 5, 10, 20.$
- $k_n = 5, 20, 40, 70.$

Nonstationary case

• Asympt. distribution poor approximation even in large samples.

Figure : Pdf LWE, ARFIMA(0,0.8,0), n = 512, m = 40

d

Nonstationary case

95% Confidence Intervals, g_1 and g_2

ab	le :	CI,	Skew.	(g_1)	and Kurt.	$(g_2),$	ARFIMA	l(0,	0.8,	0),	(n =	512))
----	------	-----	-------	---------	-----------	----------	--------	------	------	-----	------	------	---

	m=20	m=40	m=70	m=20	m=40	m=70
<i>Cl</i> ¹ _{0.95} MC g ₁ , g ₂	0.549	0.577	0.557	-0.233	-0.156	-0.192
	(0.496)	(0.376)	(0.300)	2.853	2.988	3.179
$Cl_{0.95}^4(5) \mid\mid g_1, g_2$	0.929	0.907	0.907	-0.290	-0.226	-0.191
	(0.560)	(0.353)	(0.251)	3.404	3.248	3.164
$Cl_{0.95}^4(10) g_1, g_2$	0.954	0.921	0.921	-0.274	-0.227	-0.190
	(0.575)	(0.361)	(0.257)	3.379	3.228	3.154
$Cl_{0.95}^4(20) g_1, g_2$	0.974	0.952	0.924	-0.256	-0.218	-0.186
	(0.584)	(0.367)	(0.261)	3.357	3.218	3.145
$Cl_{0.95}^{5}(5) g_1, g_2$	0.902	0.892	0.888	-0.204	-0.200	-0.192
	(0.523)	(0.335)	(0.240)	3.408	3.280	3.203
$Cl_{0.95}^{5}(20) \mid\mid g_{1}, g_{2}$	0.962	0.931	0.916	-0.279	-0.229	-0.196
	(0.558)	(0.356)	(0.254)	3.414	3.245	3.157
$Cl_{0.95}^{5}(40) \mid\mid g_{1}, g_{2}$	0.958	0.960	0.942	-0.251	-0.228	-0.194
	(0.589)	(0.361)	(0.259)	3.339	3.223	3.136
$Cl_{0.95}^5(70) \mid\mid g_1, g_2$	0.968	0.951	0.954	-0.231	-0.208	-0.186
	(0.604)	(0.370)	(0.260)	3.313	3.197	3.136

Left block shows coverages (top) and lengths (bottom) of 95% CI. Right block shows skewness (top) and kurtosis

(bottom). Skewness and kurtosis in first row are exact (MC) and $Cl_{0.95}^1$ is obtained with the as. distribution.

Unknown as. distribution

Monte Carlo: Unknown as. distribution

- ARFIMA(0, -0.7, 0), (1 − L)^{-0.7}Y_t = ε_t for ε_t standard normal.
- $Y_t = X_t^2$ for $(1 0.3L)(1 L)^{0.4}Y_t = \varepsilon_t$ and ε_t standard normal.

The sample size and bandwidth parameters are the same as those considered in the stationary case.

Unknown as. distribution

95% Confidence Intervals

Table : Coverages ARFIMA(0, -0.7, 0), sq. ARFIMA(1, 0.4, 0) (n = 128)

	ARFIMA	(0, -0.7, 0)		squared ARFIMA $(1, 0.4, 0)$
	m=5	m=10	m=20	m=5 m=10 m=20
$Cl_{0.95}^{4}(3)$	0.972	0.947	0.916	0.925 0.844 0.789
	(1.409)	(0.883)	(0.538)	(1.697) (0.892) (0.525)
$CI_{0.95}^{4}(5)$	0.995	0.959	0.929	0.952 0.892 0.812
	(1.487)	(0.917)	(0.555)	(1.751) (0.923) (0.542)
$CI_{0.95}^{4}(7)$	0.992	0.964	0.937	0.954 0.918 0.838
	(1.514)	(0.934)	(0.564)	(1.775) (0.939) (0.551)
$Cl_{0.95}^{5}(2)$	0.806	0.820	0.782	0.845 0.770 0.716
	(1.163)	(0.748)	(0.476)	(1.221) (0.739) (0.462)
$Cl_{0.95}^{5}(5)$	0.948	0.909	0.853	0.932 0.853 0.773
	(1.341)	(0.841)	(0.524)	(1.455) (0.833) (0.511)
$Cl_{0.95}^{5}(10)$	0.988	0.955	0.901	0.972 0.910 0.823
	(1.535)	(0.886)	(0.548)	(1.722) (0.877) (0.532)
$CI_{0.95}^{5}(20)$	1.000	0.970	0.936	0.998 0.930 0.870
	(1.685)	(0.959)	(0.563)	(1.931) (0.975) (0.548)

The cells show coverage frequencies (top number) and lengths of CI for a 95% confidence (bottom number, in

round brackets) for the noninvertible case (left block) and the nonlinear transformation (right block).

Unknown as. distribution

Skewness and Kurtosis

Table : Sk., Kur., ARFIMA(0, -0.7, 0) and sq. ARFIMA(1, 0.4, 0)

	ARFIMA (0, -0.7, 0)			squared	squared $ARFIMA$ $(1, 0.4, 0)$		
	m=5	m=10	m=20	m=5	m=10	m=20	
MC	0.128	-0.159	-0.252	-0.048	0.044	0.067	
	2.977	3.412	3.026	3.509	3.564	2.814	
Op. $4(m^* = 3)$	0.374	-0.189	-0.295	-0.262	-0.397	-0.294	
	3.662	3.350	3.418	3.669	3.816	3.500	
Op. $4(m^* = 5)$	0.317	-0.173	-0.291	-0.244	-0.369	-0.312	
	3.422	3.271	3.371	3.638	3.755	3.469	
Op. $4(m^* = 7)$	0.332	-0.166	-0.283	-0.229	-0.339	-0.310	
	3.459	3.248	3.344	3.595	3.710	3.440	
Op. $5(k_n = 5)$	0.306	-0.054	-0.196	0.054	-0.130	-0.187	
	3.439	3.251	3.392	3.371	3.475	3.427	
Op. $5(k_n = 10)$	0.380	-0.138	-0.241	-0.101	-0.264	-0.249	
	3.505	3.277	3.345	3.335	3.690	3.445	
Op. $5(k_n = 20)$	0.416	-0.093	-0.253	-0.088	-0.257	-0.254	
	3.440	3.225	3.349	3.260	3.569	3.409	

The cells show skewness (top number) and kurtosis (bottom number) for the noninvertible case (left block) and the

nonlinear transformation (right block). The skewness and kurtosis in the first row are the exact ones (Monte Carlo).

Unknown as. distribution Densities in squared long memory

Figure : Probability densities, squared ARFIMA(1, 0.4, 0) (n = 128)

The bootstrap density is based on 999 bootstrap samples of the LW estimator obtained with the Studentized

periodogram with $m^* = 5$.

Application to Nelson-Plosser Data

Table : LW estimator and bootstrap $Cl_{0.95}^5(m^*=5)$

	т	$\hat{d} = Cl_{0.95}^4(5)$		â	Cl _{0.9}	₅ (5)	
CPI	14	0.925	0.844	1.042	0.226	-0.165	0.556
Employment	13	0.995	0.860	1.085	-0.322	-0.699	0.044
GNP deflator	11	1.083		-	0.183	-0.304	0.686
GNP per capita	11	0.964	0.711	1.131	-0.353	-0.856	0.038
Ind. production	23	0.985	0.895	1.064	-0.381	-0.579	-0.187
Bond Yield	10	1.191		-	0.132	-0.465	0.623
Money stock	20	0.982	0.923	1.004	0.328	0.051	0.605
Nominal GNP	7	0.932	0.808	1.068	0.300	-0.446	0.638
Real wages	10	1.109		-	0.068	-0.495	0.265
Real GNP	12	1.016			-0.327	-0.785	0.058
S&P500	9	0.949	0.650	1.141	-0.055	-0.928	0.204
Unemployment	7	-0.130	-0.697	0.471	-1.029	-	
Velocity	6	1.175		-	0.157	-0.747	0.632
Wages	6	1.013		-	-0.004	-0.967	1.008

The left block shows the results for raw series and the right block for differenced series.

Application to Nelson-Plosser Data: GNP per capita

Consider for example the CI obtained with the global and local bootstrap with $m^* = 3, 5, 7$ and $k_n = 2, 5, 10$ for the first differences of the GNP per capita (m = 11).

	<i>m</i> [*] = 3	$m^* = 5$	<i>m</i> [*] = 7
$CI^{4}(m^{*})$	-0.835 -0.011	-0.856 0.038	-0.820 0.081
	$k_n = 2$	$k_n = 5$	$k_n = 10$
$CI^5(k_n)$	-0.498 -0.151	-0.536 -0.085	-0.572 0.081

Table : 95%CI for differenced GNP per capita

Application to Nelson-Plosser Data: GNP per capita

Figure : $\hat{v}_i^{(1)}$ for selection of m^* and k_n : (differenced) GNP

• The asymptotic distribution of the LW estimator may be a poor approximation of the exact distribution in many situations.

- The asymptotic distribution of the LW estimator may be a poor approximation of the exact distribution in many situations.
- We propose two bootstrap strategies, which offer significant improvements.

- The asymptotic distribution of the LW estimator may be a poor approximation of the exact distribution in many situations.
- We propose two bootstrap strategies, which offer significant improvements.
- Both are not fully automatic, but require selection of some bandwidth parameters (which can be selected based on data observation)⇒ some automatic selecting criteria?.

- The asymptotic distribution of the LW estimator may be a poor approximation of the exact distribution in many situations.
- We propose two bootstrap strategies, which offer significant improvements.
- Both are not fully automatic, but require selection of some bandwidth parameters (which can be selected based on data observation)⇒ some automatic selecting criteria?.
- The Studentized periodogram bootstrap seems to be more robust the choice of *m*^{*} than the locally standardized periodogram bootstrap to the selection of *k_n*.

- The asymptotic distribution of the LW estimator may be a poor approximation of the exact distribution in many situations.
- We propose two bootstrap strategies, which offer significant improvements.
- Both are not fully automatic, but require selection of some bandwidth parameters (which can be selected based on data observation)⇒ some automatic selecting criteria?.
- The Studentized periodogram bootstrap seems to be more robust the choice of *m*^{*} than the locally standardized periodogram bootstrap to the selection of *k_n*.
- The bandwdith for LW estimation *m* is considered fixed. Of course *m* determines the exact bias and variance of the LW estimator ⇒ can we use bootstrap for bandwidth selection?

